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The primary genetic, environmental, and metabolic factors re-
sponsible for causing insulin resistance and pancreatic �-cell
failure and the precise sequence of events leading to the devel-
opment of type 2 diabetes are not yet fully understood. Abnor-
malities of triglyceride storage and lipolysis in insulin-sensitive
tissues are an early manifestation of conditions characterized
by insulin resistance and are detectable before the development
of postprandial or fasting hyperglycemia. Increased free fatty
acid (FFA) flux from adipose tissue to nonadipose tissue, result-
ing from abnormalities of fat metabolism, participates in and
amplifies many of the fundamental metabolic derangements
that are characteristic of the insulin resistance syndrome and
type 2 diabetes. It is also likely to play an important role in the
progression from normal glucose tolerance to fasting hypergly-
cemia and conversion to frank type 2 diabetes in insulin resis-
tant individuals. Adverse metabolic consequences of increased
FFA flux, to be discussed in this review, are extremely wide
ranging and include, but are not limited to: 1) dyslipidemia and
hepatic steatosis, 2) impaired glucose metabolism and insulin
sensitivity in muscle and liver, 3) diminished insulin clearance,
aggravating peripheral tissue hyperinsulinemia, and 4) im-

paired pancreatic �-cell function. The precise biochemical
mechanisms whereby fatty acids and cytosolic triglycerides
exert their effects remain poorly understood. Recent studies,
however, suggest that the sequence of events may be the
following: in states of positive net energy balance, triglyceride
accumulation in “fat-buffering” adipose tissue is limited by the
development of adipose tissue insulin resistance. This results in
diversion of energy substrates to nonadipose tissue, which in
turn leads to a complex array of metabolic abnormalities
characteristic of insulin-resistant states and type 2 diabetes.
Recent evidence suggests that some of the biochemical mecha-
nisms whereby glucose and fat exert adverse effects in insulin-
sensitive and insulin-producing tissues are shared, thus impli-
catingadiabetogenicrole forenergyexcessasawhole.Although
there is now evidence that weight loss through reduction of
caloric intake and increase in physical activity can prevent the
development of diabetes, it remains an open question as to
whether specific modulation of fat metabolism will result in
improvement in some or all of the above metabolic derange-
ments or will prevent progression from insulin resistance syn-
drome to type 2 diabetes. (Endocrine Reviews 23: 201–229, 2002)
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I. Introduction

UPTAKE, SYNTHESIS, AND storage of adipose tissue
triglycerides and mobilization of this energy source as

FFA are processes that are highly regulated by genetic, nu-
tritional, hormonal, and paracrine factors. In this review we
will present evidence incriminating a net positive energy
balance and disordered fat storage and mobilization as cen-
tral factors in the pathogenesis of many of the metabolic
features of the insulin resistance syndrome (IRS) and type 2
diabetes. We will begin by reviewing evidence that fat stor-
age and mobilization from fat storage sites is abnormal at a
very early stage in IRS. We will also critically examine the
evidence for a role of abnormal fatty acid metabolism in
skeletal muscle and intestinal absorption of fatty acids in IRS.
We will then discuss the consequences of these abnormalities
for hepatic lipoprotein production, insulin action in muscle
and liver, insulin clearance, and pancreatic �-cell function. It
is beyond the scope of this review to discuss the many other
putative effects of fatty acids, such as those that have been
described on endothelium, myocardium, carcinogenesis, and
atherosclerosis, to mention a few. This theory in no way
precludes an important role for peptides and hormones se-
creted by the adipose tissue that have been shown to link
adiposity to insulin resistance and type 2 diabetes (1, 2).

II. Abnormalities of FFA Metabolism in Obesity,
Insulin Resistance, and Type 2 Diabetes

Fasting plasma FFAs have generally been found to be
elevated when examined in large, well-characterized popu-
lations of individuals with obesity, IRS (see Ref. 3 for defi-
nition), and type 2 diabetes (4, 5). Postprandial FFA levels
may also be higher in obese, insulin-resistant individuals (6)
and in subjects with type 2 diabetes (7, 8). Prospective epi-
demiological studies have suggested that elevated plasma
FFA is an independent predictor of progression to type 2
diabetes in Caucasians and Pima Indians (9–11). Although

some studies did not find elevation of fasting plasma FFA in
first-degree relatives of patients with type 2 diabetes (12, 13),
other studies have shown that elevated fasting plasma FFA
correlated with low insulin-mediated glucose disposal in
these individuals (14, 15).

Plasma FFA concentration reflects a balance between re-
lease (from the intravascular lipolysis of triglyceride-rich
lipoproteins and lipolysis of adipose tissue triglyceride
stores) and uptake (predominantly re-esterified in adipose
tissue and liver and oxidized in muscle, heart, liver, and
other tissues). In the postabsorptive state, the systemic FFA
concentration is determined largely by the rate of FFA entry
into the circulation, but postprandially, the rate of uptake,
particularly by adipose tissue, is also a critical determinant
of plasma FFA concentration.

A. Hormone-sensitive lipase (HSL) and insulin suppression
of lipolysis

Because insulin has a potent suppressive effect on HSL, the
enzyme which is the principal regulator of FFA release from
adipose tissue, there has been an intense focus on determin-
ing whether resistance of HSL to insulin in IRS and type 2
diabetes is the predominant abnormality accounting for in-
creased flux of FFAs from adipose tissue in these conditions.

A number of in vitro studies have failed to demonstrate
increased HSL and basal lipolytic rate in adipose tissue from
obese individuals (16) or resistance to insulin’s suppressive
effect on HSL (Refs. 16 and 17 and reviewed in Ref. 18). There
has been some confusion in the literature because of differ-
ences in the denominator used to ascertain the true lipolysis
rate (i.e., in relation to fat cell number, per unit lipid weight
or cell surface area; reviewed in Ref. 18). Some studies have
actually shown that the sensitivity or maximum insulin-
induced inhibition of adipose tissue lipolysis was greater in
obese subjects than in normal weight controls (17, 19).

In vivo, the rate of FFA turnover per unit of lean body
weight does appear to be elevated in obese individuals (20–
28). A number of studies have shown a diminished suppres-
sive effect of insulin on FFA rate of appearance in obese and
nonobese insulin-resistant humans (20, 21, 29) and in those
with type 2 diabetes (25, 30). Resistance to insulin’s suppres-
sive effect on HSL also appears to be present postprandially
in IRS and type 2 diabetes (6). Confusion regarding whether
HSL activity in individual adipocytes is actually resistant to
the suppressive effect of insulin arises because, when nor-
malized per total body fat, lipolysis appears in fact to be
normal or reduced in obese individuals (20, 28, 31, 32). In
other words, the diminished whole-body insulin-suppres-
sive effect on FFA rate of appearance seen in obese individ-
uals may be largely due to a mass effect of the overall ex-
pansion of body fat depots.

A reduction in insulin-mediated suppression of fasting
lipolysis vs. control subjects of the same age and weight has
been found in most (13, 33, 34), but not in all (34), studies
performed in glucose-tolerant first-degree relatives of pa-
tients with type 2 diabetes. This suggests that abnormal in-
sulin-mediated suppression of plasma FFA appearance rate
is a very early defect in those genetically predisposed to
develop type 2 diabetes.
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B. Adipose tissue uptake and intracellular esterification of
fatty acids (see Fig. 1)

Although insulin plays an important role in the suppres-
sion of HSL, an additional major mechanism of insulin action
is in stimulating postprandial glucose uptake and FFA es-
terification (2, 6, 20, 35–42). Riemens et al. (36) recently chal-
lenged the notion that the elevated FFA transport rate during
fasting in patients with type 2 diabetes is due to impaired
insulin-mediated suppression of HSL activity and suggested
that the main abnormality is rather an elevated rate of escape
of FFA from esterification in adipose tissue. We have shown
previously that postprandial fatty acids become markedly
elevated in type 1 diabetic subjects after ingestion of a high-
fat meal when insulin is underreplaced in the periprandial
period, emphasizing the important role that insulin plays in
postprandial fatty acid disposal (43). Although the adipose
tissue in lean individuals can switch from a negative to a
positive FFA balance during the transition from fasting to the
postprandial state, the adipose tissue FFA balance remains
negative postprandially in insulin-resistant obese individu-
als, despite the presence of hyperinsulinemia (41). Lean, glu-
cose-tolerant first-degree relatives of patients with type 2
diabetes have an increase in postprandial glucose and tri-
glyceride excursion and less suppression of plasma FFA after
a mixed meal compared with matched control subjects with-
out a family history of diabetes (12). The precise mechanisms

causing this postprandial elevation of plasma FFA are not
known.

FFA esterification in fat cells is dependent on the supply of
glycerol-3-phosphate derived from insulin-mediated glucose
uptake and glycolysis in the adipocyte (Fig. 1), and insulin-
mediated glucose uptake is diminished in insulin resistance (2).
Less is known about direct insulin-stimulatory effects on
esterification enzymes, and it is not entirely clear whether in-
sulin directly stimulates the enzyme that catalyzes the final step
in triglyceride synthesis, acyl coenzyme A:diacylglycerol acyl-
transferase [DGAT (44, 45)]. Although insulin directly stimu-
lates enzymes responsible for de novo fatty acid synthesis,
de novo fatty acid synthesis in the adipocyte is quantitatively
insignificant in normal physiological conditions.

The activity of lipoprotein lipase (LPL) is an important first
step in plasma triglyceride clearance and FFA delivery to the
adipocyte, particularly in the postprandial state (46). Insulin
and glucose have been shown to stimulate adipose tissue
LPL activity and to reduce LPL activity in muscle, implying
a preferential postprandial partitioning of lipoprotein-
derived fatty acids toward adipose tissue and away from
muscle (47). In obesity and type 2 diabetes, insulin activation
of LPL in adipose tissue is delayed, and LPL activity in
skeletal muscle is increased instead of decreased by hyper-
insulinemia (48, 49). The importance of LPL in tissue FFA
uptake has recently been demonstrated by experiments in

FIG. 1. Adipocyte: role of insulin in the stimulation of adipose tissue fatty acid uptake, esterification, and storage. Solid lines indicate flux of
metabolic substrates, and dashed lines indicate stimulatory or inhibitory effects of insulin. � Indicates a stimulatory effect of insulin, and -
indicates an inhibitory effect of insulin. Insulin promotes FFA uptake into the adipocyte by stimulating the LPL-mediated release of FFA from
lipoprotein triglyceride. Fatty acids enter the adipocyte both by diffusion down a concentration gradient as well as by facilitated transport.
Insulin regulation of fatty acid transporters such as FAT/CD36, FABPs, and/or FATP is not known. Insulin stimulates glucose transport into
the adipocyte, thereby increasing the availability of glycerol-3 phosphate (Glycerol-3P) for triglyceride (TG) synthesis. Insulin may have a direct
stimulatory effect on lipogenic enzymes such as DGAT. By inhibiting HSL, it reduces the intracellular lipolysis of cytosolic triglycerides, thereby
promoting adipocyte triglyceride storage.
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which either muscle-specific or liver-specific overexpression
in mice induces marked tissue lipid accumulation (50). Al-
though LPL may be viewed as a first step leading to the
uptake of FFA by adipose tissue, it is clear that the deposition
of FFA is also regulated downstream of LPL (46).

We are only beginning to elucidate the mechanisms of
fatty acid transporter regulation in IRS and type 2 diabetes,
and there is still considerable controversy as to whether the
cellular uptake of fatty acids occurs predominantly by facil-
itated transmembrane transport or by passive diffusion (for
reviews, see Refs. 51–53). The “scavenger” receptor CD36 has
recently been identified as a fatty acid receptor/transporter
(54), with particular abundance in adipose tissue, heart, and
skeletal muscle but with low expression in kidney and liver
(53). A deficiency in CD36, a protein analogous to CD36/
fatty acid transporter (FAT) in humans, has been reported to
underlie the metabolic abnormalities of the insulin-resistant
spontaneously hypertensive rat (55, 56) and has been asso-
ciated with functionally significant impairment of intracel-
lular FFA transport (57, 58). Furthermore, transgenic expres-
sion of CD36 in the spontaneously hypertensive rat
ameliorates insulin resistance and lowers serum fatty acids
(59), perhaps by improving FFA uptake in adipose tissue.
Mice with CD36 overexpression targeted to muscle tissue
(MCK/CD36) have less body fat and lower serum FFAs and
very low density lipoprotein (VLDL) triglycerides but ele-
vated plasma glucose and insulin, suggesting that they are
insulin resistant (60). One may speculate that the increased
FFA uptake and oxidation in muscle tissues of these animals
impairs muscle glucose utilization, thereby inducing insulin
resistance in a fashion analogous to that seen in mice with
muscle-specific LPL overexpression (50). In contrast, the up-
take of fatty acids by heart, skeletal muscle, and adipose
tissues from CD36-null mice is markedly reduced (by 50–
80%), whereas that of glucose is increased severalfold (61).
CD36 deficiency is present in 2–3% of the Japanese popula-
tion, and recent evidence suggests that it may be associated
with insulin resistance, dyslipidemia (62), and absence of
myocardial uptake of FFA tracers in vivo (63). An association
between IRS or diabetes and mutations in CD36 has not yet,
however, been reported in other human populations. At the
present time, the link between CD36 deficiency and the de-
velopment of insulin resistance in humans cannot be incor-
porated into a consistent model due to our lack of knowledge
regarding the functional consequence of CD36 deficiency on
FFA metabolism in the various tissues in vivo. Animal models
of obesity, insulin resistance, and type 2 diabetes are gen-
erally characterized by an increase, not a decrease, in adipose
tissue fatty acid binding and transport proteins (64). Fur-
thermore, marked compensation of other functionally re-
dundant proteins can occur, which could limit the physio-
logical impact of any deletion or defect of fatty acid binding
proteins in adipose tissue (65). To date, there has been no
demonstrated defect in adipose tissue fatty acid uptake
caused by a defect in any of the FFA transport or binding
proteins in humans (66).

The production of acylation stimulating protein (ASP), a
proteolytic cleavage product of the third component of com-
plement, is stimulated by hydrolyzed chylomicrons and is an
important regulator of adipocyte fatty acid esterification by

increasing the activity of diacylglycerol acyltransferase
through a PKC-dependent pathway (35). There is contro-
versy in the literature regarding the physiological impor-
tance of ASP, because some (67) but not others (68) have
described abnormalities of postprandial lipoprotein metab-
olism in ASP-null mice. Although a blunted response to ASP
in IRS and type 2 diabetes cannot as yet be ruled out, evi-
dence in support of such a defect is currently lacking. ASP
levels are increased in obesity (69), and adipocytes from
obese humans remain responsive to ASP (70).

C. Total fat mass and regional fat depots

Aside from putative intrinsic abnormalities in adipocytes,
these two other factors have important bearing on adipose
tissue fat storage and release in IRS and type 2 diabetes.
Firstly, because the pool of FFAs in adipocytes is released
into the circulation in relation to its size, the greater overall
fat mass of adipose tissue in obese individuals will result in
an elevation of fatty acid flux to nonadipose tissues, even in
the absence of a qualitative abnormality in adipose tissue
metabolism (31). Secondly, there is an undisputed relation-
ship between “central” fat distribution (i.e., fat in the visceral
and sc abdominal region) and features of the IRS (71), al-
though the causal nature of this relationship (72, 73) and the
relative importance of visceral vs. sc abdominal fat remains
a matter of debate (72, 74, 75). Visceral fat cells are more
sensitive than sc fat cells to the lipolytic effect of cat-
echolamines and less sensitive to the antilipolytic and fatty
acid re-esterification effect of insulin (reviewed in Ref. 2), a
phenomenon which could further enhance FFA flux in those
who are predisposed to store fat in the visceral area. Fur-
thermore, the venous effluent of visceral fat depots leads
directly into the portal vein, resulting in greater FFA flux to
the liver in viscerally obese individuals than in those with
predominantly sc obesity. Although visceral fat depots have
been estimated to represent only approximately 20% of total
body fat mass in men and 6% in women (76, 77), approxi-
mately 80% of hepatic blood supply is derived from the
portal vein (78). Furthermore, total splanchnic blood supply
increases postprandially (79) as might the proportion of li-
polysis from splanchnic vs. sc fat (because of increased in-
sulin and sympathetic activation after meals). Thus, the con-
tribution of visceral fat to hepatic FFA uptake and systemic
FFA appearance could be more substantial in the postpran-
dial than in the fasting state.

D. Fat diversion from adipose to nonadipose tissue

The net result of increased FFA lipolysis and diminished
FFA fractional esterification in IRS and type 2 diabetes is
diversion of FFAs toward nonadipose tissues such as liver
(Fig. 2), muscle, heart, and pancreatic �-cells. Extreme ex-
amples, at opposite ends of the spectrum, of adipose tissue
capacity to take up and store incoming fatty acids are illus-
trated by the clinical conditions of congenital lipoatrophy
and massive obesity. In humans (80) and animal models of
lipoatrophy (81–83), in which there is absence of adipose
tissue, nonadipose tissues accumulate cytosolic triglycerides
to a massive extent and manifest many of the consequences
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of extreme insulin resistance. Furthermore, all aspects of the
fatless mouse phenotype are alleviated in a dose-response
fashion with surgical implantation of adipose tissue (81).
Based on his studies with animal models of lipodystrophy,
Shulman (84) has recently proposed that insulin resistance
develops because of an imbalance of fat distribution between
tissues. Consistent with this hypothesis is the observation
that some massively obese individuals have surprisingly few
manifestations of the IRS (85, 86). Normoglycemic and
normolipidemic obese individuals display improved post-
prandial fat storage compared with lean subjects (87). Indi-
viduals with morbid obesity (body mass index � 40 kg/m2)
have been recently shown to display a greater meal-derived
storage capacity than weight- and age-matched subjects after
successful gastric bypass surgery, despite a slightly lower
postprandial plasma insulin response (88). Presumably, the
more efficient adipose tissue fat-storing capacity in these
individuals could confer relative protection against lipotox-
icity in nonadipose tissues.

There appears to be a reciprocal channeling of fuels be-
tween muscle and fat when one or the other tissue becomes
preferentially insulin resistant. For example, there is prefer-
ential channeling of energy fuels toward fat rather than mus-
cles during fat infusion in Zucker rats, related to down-
regulation of muscle and simultaneous up-regulation of

adipose tissue transporters and genes involved in glucose
and fatty acid uptake and disposal (89). Similarly, mice with
targeted disruption of glucose transporter (GLUT)4 in mus-
cle and consequent muscle insulin resistance have a redis-
tribution of substrate from muscle to adipose tissue (90). The
converse also appears to be true, as down-regulation of
GLUT4 and glucose transport selectively in adipose tissue
has recently been shown to cause insulin resistance in muscle
(91), perhaps by diverting FFAs and other fuels from adipose
to nonadipose tissues, although the mechanism is not cur-
rently known. Ob/Ob mice lacking aP2, an adipose tissue
fatty acid binding protein, have reduced adipose tissue li-
polysis and increased adipose tissue mass, together with
paradoxical reduction in plasma lipids and improvement in
insulin sensitivity and insulin secretion (92), suggesting that
enlargement of adipose tissue mass may protect against in-
sulin resistance and diabetes in some circumstances. This
concept of adipose tissue acting as a sink to protect other
tissues from the toxic effects of excessive exposure to energy
substrates is further supported by the finding that overex-
pression of GLUT4 in adipose tissue in mice is associated
with an increase in adipose tissue mass and improved whole-
body insulin sensitivity (93, 94). It is likely that the majority
of individuals who fall along the spectrum between lipo-
dystrophy and massive obesity have a genetically deter-

FIG. 2. Role of fatty acids in overproduction of hepatic VLDL and fatty liver infiltration. In insulin resistance and type 2 diabetes, there is
defective esterification and re-esterification of fatty acids in adipose tissue, as well as possibly reduced insulin-mediated suppression of HSL,
the rate-limiting enzyme for adipose tissue triglyceride mobilization. Fatty acid flux from adipose tissue is elevated in these conditions, and
FFAs released by lipolysis of plasma triglyceride-rich lipoproteins (VLDL and chylomicrons) are diverted from adipose tissue to other organs,
where they can exert their deleterious effects. Increased FFA flux to the liver in IRS and type 2 diabetes increases the hepatocyte fatty acid
pool size. In the presence of hepatic hyperinsulinemia/insulin resistance, hepatic DNL is increased and esterification of incoming fatty acids
is relatively favored over oxidation. Esterified fatty acids are either stored as cytosolic triglycerides (TG) or directed toward VLDL synthesis.
The majority of fatty acids released from the cytosolic triglyceride stores are re-esterified and recycled to the cytosol or secreted in VLDL. A
high VLDL production rate raises the plasma VLDL concentration, as well as the concentration of intestinally derived chylomicrons because
of competition for removal between chylomicrons and VLDL. High plasma concentrations of triglyceride-rich lipoproteins (VLDL and chylo-
microns) lead to an increase in the release of FFAs and generation of remnants as a result of lipolysis by LPL. FFAs and remnants of
triglyceride-rich lipoproteins contribute to increase the hepatocyte fatty acid pool, thereby setting up a vicious cycle and further driving VLDL
production.
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mined set point at which adaptive adipose tissue insulin resis-
tance limits further adipose tissue fat accumulation, with
consequent spillover of fat to nonadipose tissues (Fig. 3).

E. Abnormal fatty acid metabolism in skeletal muscle

Intramyocellular triglyceride (IMTG) accumulation has
been associated with muscle insulin resistance in humans
(95–98). IMTG is also elevated in lean, glucose-tolerant off-
spring of two parents with type 2 diabetes mellitus compared
with individuals without a family history of diabetes and is
associated with lower glucose disposal (14). Somewhat par-
adoxically, however, triglycerides have also been shown to
accumulate in the muscle tissue of highly physically trained
athletes (99). As pointed out in a recent review on this topic
by Kelley and Goodpaster (100), muscle triglyceride may not
have adverse metabolic consequences in muscle that has the
capacity for efficient lipid utilization.

The mechanism accounting for the relationship between
muscle triglyceride accumulation and insulin resistance is
not known. It remains an open question as to whether muscle
triglyceride accumulation is merely a marker or plays a caus-
ative role in the insulin resistance. A key issue is whether
triglycerides accumulate in muscle tissue of insulin-resistant
individuals as a result of a primary defect in fatty acid ox-
idation, increased total FFA flux to muscle, or due to an
imbalance between FFA uptake, esterification, triglyceride
lipolysis, and fatty acid oxidation. Muscle from obese, insu-

lin-resistant individuals and type 2 diabetic patients has been
shown to have reduced capacity for uptake and oxidation of
fatty acids derived from the plasma FFA pool during fasting
and exercise (101–105). These changes could perhaps be at-
tributed to defects of fatty acid oxidation at the carnitine
palmitoyl-transferase-1 (CPT-1) and post-CPT-1 levels (106).
Furthermore, weight reduction using low-calorie diets in
patients with type 2 diabetes has been shown to reduce
plasma FFA flux during fasting but not exercise, without
significant change in plasma-derived FFA oxidation or mus-
cle mitochondrial oxidative enzymes (102, 107). Prolonged
pharmacological inhibition of muscle CPT-1 in rats has also
been associated with IMTG accumulation and development
of insulin resistance (108). These findings have been inter-
preted to suggest that impaired muscle fatty acid oxidation
is the primary defect causing the IMTG accumulation and
muscle insulin resistance in patients with obesity, IRS, and
type 2 diabetes (100). Impaired muscle FFA oxidation in these
conditions could also be the result of excessive chronic ex-
posure to FFA, because the elevation of malonyl-coenzyme
A (CoA) due to energy excess has been associated with re-
duced muscle fat oxidation through inhibition of CPT-1 (109,
110). It should be pointed out that the reduction of plasma-
derived FFA oxidation seen in patients with obesity and
diabetes has been shown by some to occur in association with
unaltered or even elevated total fat oxidation and with ele-
vated muscle triglyceride lipolysis (104, 105). Thus, while the
capacity for fat oxidation appears to be reduced, total fat

FIG. 3. Positive net energy balance exceeds the buffering capacity of adipose tissue, leading to glucolipotoxicity. Positive net energy balance,
resulting from increased calorie intake and reduced energy expenditure, leads to an accumulation of triglyceride in many tissues, particularly
in adipose tissue. The accumulation of triglyceride in adipose tissue leads to increased lipolysis by a mass effect. This, associated with the
development of adipocyte insulin resistance, results in net spillover of fatty acids to nonadipose tissue, which further increases extraadipocytic
triglyceride storage, leading to many of the typical features that characterize the insulin-resistant state and type 2 diabetes.
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oxidation may be increased because of the mass action effect
of increased FFA delivery from plasma and from increased
intracellular triglyceride stores. Furthermore, net fat oxida-
tion is not reduced in obese individuals in response to ele-
vation of plasma FFAs using iv infusion of heparin and lipid
emulsion (111). In addition, weight loss secondary to fat
malabsorption after bariatric surgery in morbidly obese in-
dividuals corrects both the low respiratory quotient and in-
sulin resistance seen in these individuals, suggesting that
improvement in insulin resistance with correction of obesity
is associated with reduction of lipid oxidation relative to
carbohydrate oxidation (112). Because plasma FFA delivery
itself, as well as glucose delivery and plasma insulin levels,
may determine the rate of muscle FFA oxidation (113–116),
these factors should also be carefully controlled for in in vivo
experiments before drawing any conclusion regarding the
presence of a primordial defect in muscle FFA oxidation in
patients at risk for or with established type 2 diabetes.

Skeletal muscle has a high fractional extraction of FFAs in
the postabsorptive state, and lipid oxidation accounts for the
majority of its energy production (100). Some studies in hu-
mans have suggested that muscle fatty acid binding and
transport proteins may be altered in obesity and type 2 di-
abetes. Skeletal muscle cytoplasmic fatty acid binding pro-
tein (FABP) content has been shown to be reduced together
with reduced in vivo muscle plasma FFA uptake and oxida-
tion in obese type 2 diabetic patients (105), but not in glucose-
tolerant obese subjects (102). As mentioned above in the
discussion of CD36, muscle-specific overexpression of
the CD36/FAT is associated with insulin resistance (60). The
skeletal muscle expression of another FAT protein, FATP-1,
was found to be reduced in obese women with or without
type 2 diabetes, but not in men (51, 66, 117), and their po-
tential role in intramyocellular triglyceride accumulation
and insulin resistance remains unclear. Despite the fact that
the efficiency of skeletal muscle FFA uptake and utilization
in the postabsorptive state has been shown to be impaired in
obese patients with type 2 diabetes (118, 119) and in nondi-
abetic individuals with visceral obesity (120), we need to be
cautious in interpreting this observation to mean that total
24-h fatty acid flux to muscle is reduced in insulin resistance
and type 2 diabetes. Experimental evidence suggests that
excessive FFA delivery to muscle from the circulation can be
a source of muscle triglyceride accumulation (121–124). An
extramuscular defect of fatty acid metabolism could contrib-
ute to the intramyocellular triglyceride accumulation and the
skeletal muscle lipotoxic effects seen in obesity and type 2
diabetes.

F. Potential abnormalities in intestinal fatty acid uptake

It has been proposed that gain-of-function mutations of
FABP-2, a FABP highly expressed in the small intestine,
could result in postprandial lipid abnormalities, insulin re-
sistance, and diabetes (125). A common polymorphism of the
intestinal FABP2 gene (A54T) that results in higher affinity
of FABP2 for long-chain fatty acids in vitro has been asso-
ciated with an increased prevalence of insulin resistance or
diabetes in some populations (126–129) but not in others
(130–134). In vivo, this polymorphism has been inconsistently

associated with increased total body fat oxidation and a small
elevation of plasma FFA levels in different populations (126,
135, 136). The association with higher postprandial triglyc-
eride and lipoprotein excursion has also been found in some
(136, 137) but not all studies (134, 135). Although increased
intestinal absorption of FFA has been postulated to be the
cause of these abnormalities, this has not yet been convinc-
ingly demonstrated in humans (138). It is therefore likely that
A54T polymorphism of the FABP2 gene could play some role
in abnormal FFA metabolism and be linked with the devel-
opment of insulin resistance and type 2 diabetes by an un-
known mechanism in some populations, such as the Pima
Indians, but not in others.

G. Protective role of leptin and adiponectin
against lipotoxicity

Unger and colleagues (139–142) have proposed that the
physiological role of the hyperleptinemia that accompanies
caloric excess is to protect nonadipocytes from steatosis and
lipotoxicity by preventing up-regulation of lipogenesis and
by increasing fatty acid oxidation. These researchers argue
convincingly against the conventional view that the physi-
ological role of leptin is to prevent obesity during overnu-
trition. Leptin has been shown to be antilipogenic in some
tissues (143) and up-regulates fatty acid oxidation (144). Lep-
tin-deficiency states, including lipodystrophic syndromes,
are associated with massive nonadipose tissue fat accumu-
lation due to increased lipogenesis and reduced fatty acid
oxidation (145), with adverse consequences of nonadipose
tissue lipid overaccumulation. Adenoviral-mediated leptin
overexpression in normal rats is antilipogenic and up-
regulates �-oxidation (144). Transgenic overexpression of
leptin rescues the insulin resistance and diabetes in a mouse
model of lipoatrophic diabetes (146).

In humans, hyperleptinemia characterizes obesity, insu-
lin-resistant states, and type 2 diabetes, suggesting that leptin
resistance, not leptin deficiency, may be involved in the
pathophysiology (147). The reduction of plasma leptin con-
centration after bariatric surgery in morbidly obese individ-
uals occurs independently of the reduction of fat mass but
correlates with the reduction of plasma insulin levels, sug-
gesting that resistance to leptin and insulin are closely linked
in humans (148). Although leptin resistance could play a role
in extra-adipose tissue fat deposition and lipotoxicity, it
could also be a consequence of elevated fatty acid availability
to tissues (149, 150). Elevated plasma FFA could lead to
relative suppression of leptin release by the adipose tissue,
contributing to impaired leptin signaling in insulin-resistant
states (151). Therefore, hyperleptinemia/leptin resistance
may also be a consequence of abnormal FFA partitioning.
Nevertheless, the important role of leptin in regulating rates
of lipogenesis and fatty acid oxidation illustrates that factors
in addition to fat spillover from adipose to nonadipose tis-
sues may regulate the magnitude of triglyceride accumula-
tion in nonadipose tissues in states of caloric overload.

Recently the adipocyte-derived hormone adiponectin has
been shown to reverse insulin resistance associated with both
lipoatrophy and obesity (152). Decreased expression of adi-
ponectin was shown to correlate with insulin resistance in
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mouse models of insulin resistance. Insulin resistance in li-
poatrophic mice was completely reversed by the combina-
tion of physiological doses of adiponectin and leptin, but
only partially by either adiponectin or leptin alone. Adi-
ponectin reduced the triglyceride content of muscle and liver
in obese mice by increasing the expression of fatty acid ox-
idation and energy dissipation in muscle.

H. Summary of the abnormalities of FFA metabolism in
obesity, IRS, and type 2 diabetes

Adipose tissue storage, release of fatty acids, and its con-
trol by insulin are grossly abnormal in IRS well before the
development of type 2 diabetes. In the postabsorptive period,
basal lipolysis is elevated and suppression by insulin dimin-
ished. In the postprandial period, there is likely to be a net
diversion of fat away from adipose tissue depots and toward
nonadipose tissues. FFA efflux from an enlarged and lipo-
lytically active visceral fat depot plays a major role in the
elevation of fatty acids, which are then free to exert their
biological effects in nonadipose tissues.

A high capacity for efficient triglyceride accumulation in
adipose as well as nonadipose tissue may have presented a
survival advantage in the past, during times of starvation,
thus accounting for selection of a “thrifty genotype” as orig-
inally proposed by Neel (153) in 1962. This phenotype is
hypothesized to be characterized by low oxidative or fat
oxidative capacity and a tendency toward a positive energy
balance (154). With current high-calorie, high-fat diets and
sedentary lifestyle, such a thrifty genotype would accumu-
late excess tissue triglyceride stores, despite resistance to
glucose disposal (155). As indicated in Fig. 3, in the presence
of a positive net energy balance there is ongoing accumu-
lation of triglyceride in both adipose and nonadipose tissues.
In addition, adipose cells could adaptively limit further fat
accumulation by becoming insulin resistant, thereby divert-
ing fat to nonadipose tissues. Perhaps a corollary of the
thrifty genotype theory is that those whose adipocytes are
able to most effectively protect themselves against ongoing
caloric overload, i.e., by developing resistance to insulin’s
anabolic effects, are also those most likely to develop extra-
adipocyte fat overload, with consequent metabolic manifes-
tations of insulin resistance. Perhaps the accumulation of
adipose tissue represented an evolutionary disadvantage to
those engaged in hunter-gatherer lifestyles. Cytosolic tri-
glyceride accumulation in nonadipose tissues such as muscle
and liver is linked to the development of insulin resistance
as these tissues also attempt to protect themselves from en-
ergy overload. Insulin resistance imposes a chronic stress on
pancreatic �-cells, which may fail to hypersecrete insulin, as
the same mechanisms that lead to insulin resistance may
ultimately result in �-cell dysfunction and damage (see Fig.
3 and Section VII).

III. Dyslipidemia and Fatty Liver Infiltration in IRS
and Type 2 Diabetes

The hypertriglyceridemia of IRS and type 2 diabetes is
primarily due to VLDL overproduction, with reduced VLDL
clearance playing a role in some instances, particularly when

there is marked insulin deficiency or poor glycemic control
in type 2 diabetes (156). Some of the other prominent features
of the dyslipidemia of IRS and type 2 diabetes, such as low
high density lipoprotein cholesterol and small, dense LDL
particles, may be secondary to VLDL overproduction, as we
have previously reviewed (157, 158). Hepatic VLDL produc-
tion is primarily substrate driven, with the most important
regulatory substrates being FFAs (159). FFAs are taken up by
the liver in proportion to their delivery rate (160, 161). He-
patic fractional extraction of FFA is high (20–30%; Refs. 161–
163) and does not appear to be a primary site of hormonal
regulation, although it was reported to be reduced after a
glucose load (163–165) and to be increased under conditions
of increased hepatic FFA oxidation such as exercise (161) and
prolonged starvation (166). Hepatic fractional extraction of
FFA, however, is not affected in type 1 diabetic patients (161)
or in depancreatized dogs (167). In the liver, depending on
the nutritional and hormonal state of the organism, fatty
acids are either predominantly oxidized or are esterified to
form triglycerides, which are then either stored in the cytosol
or secreted in VLDL.

The production rate of apolipoprotein B (apo B) is an
important regulatory step in VLDL production, but the apo
B transcription and translation rate does not regulate the
pathway under most physiological conditions (168–170).
Regulation of apo B occurs primarily at the posttranslational
level, either during its translocation into the endoplasmic
reticulum lumen or its rate of degradation. Protection against
proteolysis is critically dependent on neutral lipid availabil-
ity and is facilitated by a number of chaperone proteins and
microsomal transfer protein [MTP (168)]. MTP catalyzes the
transfer of lipids to the apo B molecule and is an important
factor involved in the assembly of apo B-containing lipopro-
teins (171, 172). Primary rat hepatocytes, incubated in vitro
with high concentrations of insulin for 3 d, no longer respond
to insulin suppression of VLDL apo B secretion and secrete
higher basal levels of VLDL apo B (173).

FFAs have been shown to directly stimulate hepatocyte
VLDL triglyceride synthesis and secretion in HepG2 cells
(174–180) and cultured hepatocytes (181, 182). Although it is
generally believed that the rate of apo B secretion is deter-
mined by the extent of its intracellular degradation, several
studies have shown that protection from degradation is in-
sufficient to drive apo B secretion in the absence of available
core lipoprotein lipids. Addition of oleate can rescue the
protected apo B polypeptides and induce their lipidation and
extracellular secretion in some but not all model systems. It
has also been previously suggested that oleate treatment of
HepG2 cells facilitates translocation of newly synthesized
apo B across the endoplasmic reticulum membrane, which in
turn reduces early degradation (183). However, whether or
not this protection of early degradation stimulates apo B
extracellular secretion appears to differ among cell types. In
HepG2 cells (176, 179, 184), a rat hepatoma cell line (180), and
freshly isolated rabbit hepatocytes (185), exogenous oleate
significantly stimulates apo B secretion. In contrast, this is not
the case in McArdle H7777 cells (186) and primary rat (187,
188), hamster (189), or human (190) hepatocytes, although
oleate may increase the stability of apo B. Overall, the effect
of oleate on the stability and secretion of apo B appears to be
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dependent on the cell type (primary vs. transformed cell line),
turnover of the triglyceride/fatty acid in the cells, size of the
cellular triglyceride pool, and duration of incubation with
oleate.

Because FFAs entering the hepatocyte are predominantly
re-esterified and enter a cytoplasmic pool before secretion in
VLDL, the size of the cytoplasmic triglyceride pool, rather
than the availability of extracellular oleic acid, correlates with
VLDL secretion (181). Although it is well recognized that
plasma FFAs stimulate VLDL production (191) and are an
important source of VLDL triglyceride fatty acids (192–195),
an important contribution to the hepatocyte fatty acid pool
also comes from three sources other than plasma FFAs: 1) de
novo lipogenesis (DNL), 2) cytoplasmic triglyceride stores,
and 3) intracellular lipolysis of lipoproteins taken up directly
by the liver (Fig. 2). Hepatic re-esterification of plasma FFAs
contributes the majority of fatty acids to VLDL triglycerides
(195), with sources such as DNL, hepatic triglyceride stores,
and lipoprotein remnants contributing somewhat less (194,
195). The contribution to VLDL triglycerides from plasma
FFAs is lower in hypertriglyceridemic than in normotriglyc-
eridemic individuals (195).

A. The contribution of de novo lipogenesis to elevated
VLDL production

Chronic hyperinsulinemia and carbohydrate ingestion
stimulate the production of newly synthesized fatty acids
[DNL (196–199)], by stimulating the activity of lipogenic
enzymes in the liver (200) and by increasing the transcription
of the genes for fatty acid synthase and acetyl-coenzyme A
carboxylase [ACC (170, 201)]. Recent studies suggest that the
mechanism by which insulin and perhaps glucose stimulate
transcription of these lipogenic enzymes is by increasing
transcription of sterol-regulatory element-binding protein-1c
(SREBP-1c), a member of a family of regulated transcription
factors (202). Despite down-regulation of the IRS-2-mediated
insulin signaling pathway in insulin-resistant states, there
appears to be up-regulation of SREBP-1c and chronic stim-
ulation of DNL (and reduced fatty acid oxidation) in the liver
(203, 204), which can in turn enhance intracellular availability
of triglyceride, promoting fatty liver and driving VLDL as-
sembly and secretion.

Under nonstimulated conditions, the contribution of DNL
to VLDL triglyceride fatty acid is exceedingly small, esti-
mated to be less than 5% in the postabsorptive state (194, 195,
205). Even with carbohydrate feeding, which usually stim-
ulates DNL, newly synthesized fatty acids account for the
minority of VLDL-triglyceride fatty acids (195, 206–209).
Nevertheless, even though DNL may not be a quantitatively
significant contributor to VLDL triglyceride production, it
appears to be an important marker of the relative rate of fatty
acid re-esterification vs. oxidation (206), and there is a well-
established correlation between the rates of DNL and the
secretion of VLDL (210). Elevation of malonyl-CoA, which is
the product of acetyl-CoA carboxylase, the rate-limiting en-
zyme in hepatic DNL, inhibits CPT-1 activity, thus resulting
in diversion of fatty acids from an oxidative to a re-esteri-
fication pathway (211, 212). Conditions associated with high
rates of DNL, such as high carbohydrate ingestion, hyper-

glycemia, and hyperinsulinemia, are invariably associated
with a shift in cellular metabolism from lipid oxidation to
triglyceride esterification, increasing the availability of liver
triglyceride for VLDL synthesis and secretion. In accordance
with the notion that the total capacity to secrete VLDL cor-
relates with the rate of DNL (213, 214), hyperglycemia in the
presence of constant FFA availability increases VLDL pro-
duction in humans (215).

B. Contribution of hepatic cytosolic triglyceride stores to
VLDL overproduction and fatty liver infiltration
(nonalcoholic steatohepatitis)

There is debate about the quantitative contribution of cy-
tosolic triglyceride stores to VLDL triglyceride production,
but it does appear that the majority of FFAs esterified upon
entering the hepatocyte enter this storage pool, at least tem-
porarily, before their incorporation into VLDL (216–220).
This intracellular triglyceride storage depot likely serves as
a buffer, providing temporary disposal of potentially toxic
FFA when their delivery to the liver exceeds its oxidative and
VLDL secretory capacity. It also provides a means of regu-
lating VLDL production in the face of widely fluctuating
plasma FFA concentrations. Stored triglyceride turns over
fairly rapidly, but only a minor proportion of the released
fatty acids are used for VLDL assembly, the remainder being
recycled back into the storage pool (216). Fatty acids released
from lipolysis of stored triglycerides appear to be preferen-
tially channeled into re-esterification rather than oxidative
pathways (216). The cytosolic triglyceride droplets are not
incorporated into VLDL en bloc across the endoplasmic re-
ticulum membrane, but first have to be hydrolyzed (216).
Hydrolysis of cytosolic triglycerides appears to be partial, to
the level of diacylglycerol, followed by remodeling of some
of its acyl chains, before re-esterification to form secretory
triglyceride (221). Hydrolysis may also proceed to mono-
glyceride and FFA. The lipase involved in this process and
the details of its regulation are not yet known (216). The
partitioning of re-esterified triglycerides between secretory
and storage (cytosolic) pathways can be acutely regulated
and is a potentially important site for the regulation of VLDL
secretion (221, 222). Secretion of the esterified fatty acids as
VLDL triglycerides is limited by the availability of a number
of factors other than the hepatocyte triglyceride pool size per
se, including cholesteryl esters, apo B synthesis and trans-
location across the endoplasmic reticulum membrane, phos-
pholipids, rate-limiting enzymes such as MTP, etc.

Fatty liver frequently coexists with obesity, type 2 diabe-
tes, and metabolic features of IRS and responds to their
amelioration (223–230). The capacity of the liver to esterify
and store incoming fatty acids as cytosolic triglycerides ap-
pears to be quite considerable under metabolic conditions
when triglyceride synthesis exceeds the combination of he-
patic fatty acid oxidation and VLDL-triglyceride secretion
(216).

C. Hepatic lipoprotein remnant uptake also contributes to
VLDL production

Postlipolysis remnants of triglyceride-rich lipoproteins,
taken up by receptor-mediated mechanisms, are hydrolyzed
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in hepatic lysosomes, thereby contributing to the intracellu-
lar fatty acid and cholesteryl ester pool and stimulating
VLDL secretion in a fashion similar to that of FFAs (231, 232).
The quantitative contribution of fatty acids derived from
remnant uptake is not known but could be quite substantial,
particularly in the postprandial state. A self-perpetuating
cycle is thus set up, in which elevated FFAs drive VLDL
secretion, and FFAs derived from the elevated circulating
pool of triglyceride-rich lipoproteins positively feed back on
VLDL production by further increasing the FFA pool in the
hepatocyte (Fig. 2).

D. The role of resistance to insulin action in the hepatocyte
and chronic hyperinsulinemia per se in facilitating VLDL
synthesis and secretion

The preceding discussion has emphasized the importance
of fatty acid availability in the hepatocyte in driving VLDL
production. Nevertheless, increased FFA availability per se is
not sufficient to explain the high VLDL production rates seen
in IRS and type 2 diabetes. The role of resistance to insulin
action in the hepatocyte and chronic hyperinsulinemia per se
in facilitating VLDL synthesis and secretion has been the
focus of intense investigation for many years (159, 233, 234).
There is still not widespread agreement regarding the acute
effects of insulin on VLDL production, but the majority of
studies have demonstrated that insulin acutely inhibits
VLDL production, shown in both in vitro (170, 235, 236) and
in vivo experiments in fasting humans (191, 237–241). The
nutritional state of the organism, fed or fasted, has recently
been shown to modify the acute effect of insulin on VLDL
production (242), perhaps due to a switch in fatty acid par-
titioning in the hepatocyte (222, 243, 244). The acute inhib-
itory effect of insulin on VLDL production in fasting indi-
viduals appears to be independent of the profound FFA
suppression induced by hyperinsulinemia in vivo (191), al-
though this has been disputed by others (245). Chronically
insulin-resistant hyperinsulinemic, obese humans and those
with type 2 diabetes are resistant to the acute inhibitory effect
of insulin on VLDL production (237, 241), in keeping with
similar findings in hepatocytes derived from fructose-fed
and insulin-resistant rats (197, 198, 246). The relationship
between peripheral tissue insulin resistance with regard to
insulin’s antilipolytic effect and VLDL secretion rate may not
be direct and could depend on other concomitant factors
found in insulin-resistant individuals. For example, we re-
cently found that VLDL secretion rate in healthy individuals
is not predicted by the sensitivity of insulin-mediated sup-
pression of plasma FFA concentration in the postabsorptive
state but appears to be much more dependent on body mass
index (247). Furthermore, VLDL oversecretion is not present
in recipients of combined kidney-pancreas transplantation
with systemic venous anastomosis of their pancreatic graft
who display marked peripheral tissue insulin resistance
without gross hepatic insulin resistance/hepatic overinsu-
linization, compared with graft recipients with portal venous
anastomosis or healthy subjects (248). VLDL oversecretion
associated with the insulin resistance syndrome in humans
may therefore depend of the combination of peripheral tissue

insulin resistance, hepatic insulin resistance/overinsuliniza-
tion, and/or the presence of visceral obesity.

We have recently shown in the fructose-fed hamster, an
animal model of insulin resistance whose lipoprotein phys-
iology has a number of similarities to that of humans, and in
vitro in cultured hamster hepatocytes, that hepatic VLDL-apo
B overproduction is associated with whole-body insulin re-
sistance and attenuated hepatic insulin signaling (249–251).
Fructose feeding was associated with hyperinsulinemia, en-
hanced MTP expression in the liver, increased intracellular
apo B stability, and facilitated assembly of apo B-containing
lipoproteins leading to VLDL oversecretion (249). Induction
of insulin resistance was accompanied by a considerable rise
in hepatic VLDL-apo B and VLDL-triglyceride production.
Although there was an increase in total apo B secretion, the
apo B fraction secreted as VLDL was more prominently
enhanced in fructose-fed hamsters, suggesting an increase in
both the number of VLDL particles and the proportion se-
creted as VLDL. Enhanced apo B secretion appeared to be
caused by increased intracellular stability of apo B, elevated
levels of MTP, and enhanced assembly of VLDL particles,
with no apparent changes in apo B translocational status in
the endoplasmic reticulum. Control studies showed that in-
sulin resistance induced these changes rather than being
direct effects of fructose itself. More recently, we obtained
molecular evidence (251) for impairment of hepatic insulin
signaling and insulin resistance, including reduced tyrosine
phosphorylation of the insulin receptor, IRS-1 and IRS-2, and
suppressed activity of PI3K associated with IRS proteins.
Importantly, changes in the insulin signaling pathway co-
incided with drastic suppression of ER-60, a cysteine pro-
tease previously shown to be associated with apo B in HepG2
cells that has been postulated to play an important role in the
degradation of apo B in the endoplasmic reticulum lumen
(252). These changes were also accompanied by an increase
in the secretion of apo B.

The rate of assembly and secretion of apo B-containing
lipoproteins is critically linked with the expression level of
MTP as demonstrated in an elegant series of studies in knock-
out mouse models (253) as well as a model of adenoviral-
mediated overexpression (254). Chronic modulation of he-
patic apo B secretion in insulin-resistant states may be
mediated through changes in expression of MTP. The pro-
moter region of the MTP gene has an insulin response ele-
ment, which is negatively regulated by the hormone (255).
Thus, it is reasonable to suggest that in insulin-resistant
states, there may be a chronic up-regulation of MTP expres-
sion and protein levels due to resistance to suppressive ef-
fects of insulin on MTP gene expression, leading to hepatic
VLDL overproduction.

Based on these recent data, we hypothesize that attenuated
insulin signal transduction in hepatocytes causes suppres-
sion of ER-60 protease expression, which may contribute to
the observed increase in apo B stability. Furthermore, im-
pairment of hepatic insulin signal transduction may negate
a negative regulatory effect of insulin on MTP expression,
leading to the overexpression of this key protein, which may
further facilitate VLDL assembly and secretion. Enhanced
hepatic FFA flux to the liver, as observed in insulin-resistant
states, can provide ample lipid substrate for the high rate of
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VLDL assembly and secretion. An important additional fac-
tor may be up-regulation of SREBP-1c and chronic stimula-
tion of DNL (and reduced fatty acid oxidation) in the liver
(204), which can in turn enhance intracellular availability of
triglyceride and drive VLDL assembly and secretion. The
important factor responsible for up-regulation of SREBP-1c
seems to be hyperinsulinemia per se rather than insulin re-
sistance (204). Thus, an interaction between hepatic insulin
resistance, hyperinsulemia, increased flux of FFA, and en-
hanced DNL may be essential to induce the VLDL overpro-
duction state in IRS.

E. Summary of the mechanisms of VLDL overproduction in
relation to fat maldistribution between adipose and
nonadipose tissue

In summary, VLDL overproduction occurs as a result of a
composite set of factors, which includes increased flux of
fatty acids from extrahepatic tissues to the liver and directly
from lipoprotein remnant uptake, increased hepatic de novo
fatty acid synthesis, preferential esterification vs. oxidation of
fatty acids, reduced posttranslational degradation of apo B,
and overexpression of MTP. These conditions, together with
resistance to the normal acute suppressive effect of insulin on
VLDL secretion, act in concert to channel fatty acids into
secretory and storage rather than degradative pathways. The
increased flux of FFAs to the liver arise from adipose tissue
resistance to insulin action, as described above, but we do not
know whether the hepatic effects of IRS and type 2 diabetes
arise as a result of insulin resistance or hyperinsulinemia per
se. It is possible that the changes in liver metabolism outlined
above may be due to both increased and reduced insulin
action, with some biochemical pathways in the liver remain-
ing responsive to insulin (i.e., DNL and triglyceride esteri-
fication), whereas others are down-regulated (i.e., insulin-
suppressive pathways of apo B biogenesis) in IRS and type
2 diabetes.

IV. Effects of FFA on Muscle Glucose Metabolism

It is well established that FFAs impair glucose metabolism
in insulin-sensitive tissues, such as muscle and liver (re-
viewed in Ref. 84). Recent studies in muscle have shown that
there are multiple mechanisms responsible for this impair-
ment (Table 1), but they may be initiated by a single event,

i.e., increased energy availability, and may serve one pre-
dominant function, i.e., that of preventing further accumu-
lation of intracellular energy substrates. There is general
agreement, as discussed below, that an elevation of FFAs
impairs cellular glucose uptake. Recently, however, contro-
versy has arisen regarding the inhibitory effect of FFAs on
glucose oxidation that has been postulated to account for the
FFA-mediated inhibition of glucose uptake (i.e., the “Randle
hypothesis”). Although this issue remains unresolved, we
will attempt to provide a balanced analysis of existing data.

A. Effects of the Randle cycle on muscle glucose metabolism

One of the mechanisms whereby FFAs have been postu-
lated to impair glucose metabolism, by substrate competi-
tion, was first described by Randle et al. (256) based on
studies in the isolated perfused rat heart and diaphragm.
According to the concept of substrate competition, glucose
uptake is limited in tissues that can utilize both FFAs and
glucose when the tissue energy needs are satisfied by in-
creased FFA availability. FFA oxidation results in production
of acetyl-CoA and reduced coenzymes [dihydronico-
tinamide adenine dinucleotide (NADH) and dihydroflavine
adenine dinucleotide]. Acetyl-CoA can decrease glucose ox-
idation by inhibiting pyruvate dehydrogenase. NADH can
inhibit the Krebs’ cycle, and according to the classical Randle
hypothesis, the resulting accumulation of citrate would in-
hibit phosphofructokinase-1 (PFK-1), thereby increasing glu-
cose-6-phosphate. In muscle, glucose-6-phosphate inhibits
hexokinase, and the consequent rise in intracellular glucose
would ultimately decrease glucose uptake.

In skeletal muscle, which accounts for the bulk of whole-
body insulin-mediated glucose uptake, in vitro studies only
partially confirmed Randle’s hypothesis, as FFAs reduced
glucose oxidation but did not consistently reduce glucose
uptake (257–259). In vivo, FFA elevation obtained by In-
tralipid plus heparin infusion (Intralipid is a triglyceride
emulsion and heparin activates LPL, thereby hydrolyzing
the Intralipid triglycerides to FFAs and glycerol) consistently
reduced glucose oxidation and decreased glucose uptake in
the majority of hyperinsulinemic clamp studies in rats (260–
264), dogs (265–267), and humans (118, 268–277). Under the
latter conditions, most of the glucose uptake occurs in skel-
etal muscle. In addition, leg (118) and forearm balance stud-
ies (271, 272) and studies using positron emission tomogra-

TABLE 1. Mechanism of FFA effect

Impaired
glucose

metabolism
in muscle

Impaired
glucose

metabolism
in liver

Reduced
insulin

clearance

�-Cell
hyperfunction

�-Cell
dysfunction

�-Cell
apoptosis

Randle’s cycle � � �? – �? –
PKC activation � �? �? � �? ?
Glucosamine pathway � �? ? �? �? ?
Oxidative stress �? �? ? – �? �?
iNOS induction �? ? ? – � �
Ceramide synthesis �? ? ? – �? �

�, Established mechanism.
�?, Suggested mechanism.
?, No information.
–, No reported effect.
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phy (277) have localized the reduction in whole-body glucose
uptake to muscle. In these in vivo studies, the effect of FFA
on glucose uptake was studied for a longer time than in in
vitro preparations. The results showed that the expected re-
duction in glucose uptake is delayed (261, 268, 269, 274) and
is more often associated with decreased (264, 269, 274), rather
than increased (262), muscle content of glucose-6-phosphate.
An early increase in muscle glucose-6-phosphate concentra-
tion followed by a decrease when glucose transport is in-
hibited, as found in rats (264), could still be consistent with
Randle’s hypothesis. Nevertheless, studies in humans based
on nuclear magnetic resonance measurements of glucose-6-
phosphate (274, 275) could not detect such an early increase.
In addition, FFAs may induce a delayed impairment in gly-
cogen synthesis, which exceeds that expected from the re-
duction in glucose uptake (261, 269). It is therefore evident
that in muscle, FFAs have effects on glucose metabolism
other than or beyond those postulated by the classical Randle
cycle (i.e., inhibition of PFK-1 by citrate).

B. Effects of long-chain fatty acyl-CoA (LCFA-CoA) and
PKC activation on muscle glucose metabolism

Some studies have linked the impairing effects of FFAs on
muscle glucose metabolism with increased LCFA-CoA (see
for Ref. 278 review). LCFA-CoAs accumulate in the cytosol
when increased FFA inflow is associated with malonyl-CoA
inhibition of CPT-1 (the enzyme that transports fatty acid
into the mitochondria for oxidation). In states of energy,
excess glucose, insulin, and citrate (note the link with the
Randle’s cycle) activate ACC, the enzyme that synthesizes
malonyl-CoA, and the rise in malonyl-CoA is paralleled by
a rise in cytosolic LCFA-CoA. LCFA-CoAs have allosteric
effects on purified enzyme preparations such as glycogen
synthase (279); however, the physiological importance of
these effects in vivo in muscle is uncertain. The impairment
in glucose metabolism induced by the Randle cycle and/or
allosteric effects of LCFA-CoA could become more evident
when glucose metabolism is stimulated by insulin, as sug-
gested by the findings that: 1) Intralipid infusion had little or
no effect on peripheral glucose uptake in obese insulin re-
sistant subjects (280) and in patients with type 2 diabetes
(281), and 2) FFA impaired insulin-mediated glucose utili-
zation to a greater extent than non-insulin-mediated glucose
utilization in vitro (258) and in vivo (270, 271, 282). Recent
studies by Shulman and colleagues (262, 275), however, have
also demonstrated that insulin signaling is directly and spe-
cifically impaired by FFAs. This specific impairment may
occur through LCFA-CoA and/or FFA esterification path-
ways, as muscle triglyceride content, which is a source of
cytosolic LCFA-CoA [via the action of HSL (283) and is a
marker of overactive esterification pathways], consistently
correlates with insulin resistance (14, 97).

By their esterification to diacylglycerol (DAG), and per-
haps directly, LCFA-CoAs stimulate PKC activity (284). PKC
has inhibitory effects on insulin action, due to serine-threo-
nine phosphorylation of the insulin receptor and other in-
termediates in the insulin signaling cascade (285). PKC can
also directly inhibit glycogen synthase (286). In rat skeletal
muscle, Intralipid plus heparin infusion increased mem-

brane-bound (active) PKC� (263). In addition, transgenic
mice with inactivation of PKC� have recently been shown to
be protected from lipid-induced defects in insulin action and
signaling in skeletal muscle (287), suggesting a direct role of
PKC� in the development of fat-induced insulin resistance in
skeletal muscle. Other studies have found that high-fat feed-
ing increased DAG and the percentage of membrane-asso-
ciated PKC� and � (288). Overexpression of PKC�, in par-
ticular, in skeletal muscle is believed to be causally related to
the development of nutritionally induced insulin resistance
and diabetes in the sand rat [Psammomys obesus (289)], per-
haps in part by increasing degradation of the insulin recep-
tor. Recent studies in muscle cell lines have suggested that
ceramides, which can be derived from palmitoyl-CoAs via de
novo synthesis, can also inhibit insulin signaling (Ref. 290,
and for review see Ref. 139).

LCFA-CoA may also affect GLUT4 translocation by acy-
lating proteins involved in membrane fusion processes (291),
although further studies are required to investigate this
mechanism in muscle.

C. Effects of FFAs on the hexosamine pathway and
oxidative stress in muscle

A pathway that has been linked with the FFA-induced
impairment of muscle glucose metabolism by some authors
(264) but not by others (292) is the hexosamine pathway. This
is also an energy-sensing pathway, which is stimulated by
increased glucose uptake under conditions of hyperglycemia
and hyperinsulinemia. FFAs could stimulate this pathway
via increased fructose-6-phosphate due to FFA-induced in-
hibition of PFK-1. PFK-1 could be inhibited by citrate or by
depletion of xylulose-5-phosphate (see Ref. 293 for the latter
mechanism). The mechanism of hexosamine-induced insulin
resistance is unknown, although O-glycosylation of insulin
signaling molecules or transcription factors may be impli-
cated (294).

Another pathway that may be involved in the FFA-
induced impairment in glucose metabolism is oxidative
stress. FFAs can directly increase reactive oxygen species
(ROS) via peroxidation reactions (295) and via mitochondrial
production (296). FFAs can also indirectly increase ROS via
hexosamine biosynthetic products (297). Again, the oxidative
stress pathway is shared by hyperglycemia/hyperinsulin-
emia (295). Recent data obtained in collaboration with Dr.
I. G. Fantus (University of Toronto) and co-workers suggests
that iv infusion of N-acetyl-l-cysteine (NAC), an antioxidant,
abolishes hyperglycemia and glucosamine-induced insulin
resistance (298) and prevents, in part, FFA-induced insulin
resistance in rats (299). Infusion of reduced glutathione, an
antioxidant, partially prevented FFA-induced insulin resis-
tance in humans (273). The biochemical mechanisms of ox-
idative stress-induced insulin resistance are unknown; how-
ever, it is well known that ROS can affect both signal
transduction and gene expression, perhaps via redox mod-
ification of critical molecules. It is known that both oxidative
stress (300) and the glucosamine pathway (301) can induce
PKC activation. Perhaps linked to FFA-induced oxidative
stress and PKC activation is the activation of I�B kinase �
(IKK-�), a serine-threonine kinase that phosphorylates the
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insulin receptor and IRSs, thus inhibiting their tyrosine ki-
nase phosphorylation. The latter pathway has recently been
implicated in FFA-induced inhibition of insulin signaling
and action, because high-dose salicylate, an inhibitor of
IKK-� (302), prevented FFA-induced insulin resistance in
skeletal muscle in vivo, and IKK-�-knockout mice did not
exhibit altered skeletal muscle insulin signaling and action
after lipid infusion (303, 304). Also perhaps linked to oxida-
tive stress and to synthesis of ceramides is the induction of
inducible nitric oxide (iNOS) in muscle, which has recently
been implicated in insulin resistance in the high-fat-fed rat
(305).

D. Effects of FFAs on the gene expression of enzymes
involved in muscle glucose metabolism

By activating all the signaling pathways described above,
FFA can indirectly influence gene expression (306). FFAs and
their eicosanoid derivatives can also directly affect gene ex-
pression by binding to PPARs (307). These nuclear receptors
induce genes of peroxisomal and mitochondrial fatty acid
oxidation (307), thus potentially up-regulating the Randle
cycle. Paradoxically, however, PPAR activation increases
muscle insulin sensitivity, presumably because of induction
of uncoupling proteins, which dissipate intracellular energy
and reduce intracellular triglycerides. This may be viewed as
a protective mechanism whereby fat accumulation tends to
be self-limited. Fat accumulation also depends on the type of
fatty acid. n-3 fatty acids, which preferentially activate
PPARs, are associated with less muscle fat accumulation and
increased insulin sensitivity compared with saturated fatty
acids (306). Fatty acid activation of PPAR� in the adipocyte,
perhaps by increasing adipocyte insulin sensitivity and by
stimulating adipogenesis, may also indirectly improve mus-
cle insulin sensitivity in vivo by modulating a fat-derived
signaling molecule or FFA flux from adipose to muscle tissue
(308).

V. Effects of FFA on Hepatic Glucose Metabolism

A. Controversial role of FFA in the regulation of hepatic
glucose production in vivo

Most of the in vivo literature regarding the effect of FFA on
hepatic glucose metabolism refers to the acute effect of In-
tralipid and heparin on glucose production. Intralipid plus
heparin increases FFA as well as glycerol, which is a glu-
coneogenic precursor, and in almost all of the studies, a
glycerol control was not performed. However, glycerol in-
fusion had negligible effects on glucose production in both
dogs (309) and humans (269), whereas we have shown that
direct infusion of FFA (oleate) can increase glucose produc-
tion during low-dose insulin clamps in dogs (310). In a num-
ber of studies, which were mostly conducted at basal insulin
levels, Intralipid plus heparin increased gluconeogenesis but
not glucose production, consistent with a compensatory re-
duction in glycogenolysis (311–315). This decrease in glyco-
genolysis may have been due, in part, to small changes in
portal insulin concentrations induced by FFA stimulation of
insulin secretion or to FFA-induced changes in plasma glu-

cose (313). However, a compensatory reduction in glycogen-
olysis was also found in studies in which basal insulin and
glucose levels were clamped (312). This is consistent with an
intrahepatic autoregulatory mechanism, which has mainly
been attributed to glucose-6-phosphate stimulation of gly-
cogen synthase and inhibition of phosphorylase (316).

Hepatic autoregulation may break down, as evidenced by
the increase in basal glucose production induced by In-
tralipid plus heparin in other studies (270, 282). The break-
down of autoregulation is facilitated under hyperinsuline-
mic clamp conditions (265, 269, 276, 280, 317), presumably
because, at hyperinsulinemia, glycogenolysis is already max-
imally suppressed. It is also possible that, as is the case in
muscle, FFAs eventually impair insulin signaling, leading to
an increase of both glycogenolysis and gluconeogenesis and
perhaps also to a decrease of hepatic glucose uptake (318).
The latter is currently controversial (319, 320).

The effect of FFA on hepatic glucose production during
hyperinsulinemic clamps, however, is more controversial
than the effect of FFA on peripheral glucose uptake, as in
some studies (260, 262, 270, 281). Intralipid plus heparin
failed to increase glucose production. The negative results
could be explained, in part, by the high rate of insulin in-
fused, which completely suppressed glucose production, in-
dependent of FFA (262, 270, 281). In addition, in most studies,
plasma glucose-specific activity was not maintained con-
stantly during the clamp, which leads to an underestimation
of glucose production, particularly in the early non-steady-
state periods of the clamp (321). Due to this methodological
problem, the time course of the effect of FFA on glucose
production could not be accurately estimated in most studies
(280, 317), although there is some suggestion that it might be
more rapid than the time course of the effect of FFA on
peripheral glucose uptake (269, 280, 317).

B. Effects of FFA oxidation on hepatic glucose metabolism

Some of the mechanisms that have been implicated in the
FFA-induced impairment of hepatic glucose metabolism are
shown in Table 1. The classical Randle hypothesis has been
expanded to include FFA-induced stimulation of gluconeo-
genesis. As is the case with FFA-induced inhibition of gly-
colysis, this pathway is also related to FFA oxidation. Acetyl-
CoA derived from FFA oxidation stimulates pyruvate
carboxylase, and the increased NADH is necessary to pro-
duce glyceraldehyde-3-phosphate from 1,3 bisphosphoglyc-
erate. Citrate-induced inhibition of PFK-1 (which reduces
glycolysis) has been demonstrated in the perfused rat liver
(322) and in isolated hepatocytes exposed to FFA (323). In the
liver, in contrast to muscle, the increased content of glucose-
6-phosphate (324) from reduction of glycolysis and stimu-
lation of gluconeogenesis should not affect glucose uptake
because liver glucokinase, unlike muscle hexokinase, is not
inhibited by glucose-6-phosphate. However, translocation of
glucokinase [i.e., dissociation of glucokinase from its binding
protein, which correlates with glucokinase activity (325)] is
inhibited by fructose-6-phosphate, NADH (which increases
after FFA oxidation), and directly by LCFA-CoA (325, 326).
As is the case with muscle, FFA oxidation might be inade-
quate to fully account for the FFA-induced changes in glu-
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cose metabolism in liver. In fact, Randle’s expanded hypoth-
esis might not entirely explain why FFAs mainly affect the
insulin-mediated suppression of glucose production rather
than basal glucose production, consistent with an impair-
ment in hepatic insulin signaling. In addition, in the high-
fat-fed rat, the resistance of glucose production to insulin was
not ameliorated by inhibitors of FFA oxidation (327).

C. Other effects of FFA on hepatic glucose metabolism

LCFA-CoAs accumulate in liver, when increased FFA ex-
posure is combined with inhibition of fatty acid oxidation
due to elevated malonyl-CoA (328). Numerous allosteric ef-
fects of LCFA-CoA on purified hepatic enzyme preparations,
including an inhibition of glucokinase (329), inhibition or
stimulation of glucose-6-phosphatase (330), inhibition of gly-
cogen synthase (279), and stimulation of glycogen phosphor-
ylase (331), have been described; however, the physiological
importance of these effects in vivo is uncertain. LCFA-CoAs
stimulate PKC in hepatocytes (332). Phosphorylation by PKC
can directly influence enzyme activity [for example, PKC
reduces hepatic glycogen synthase activity (286)] and impair
hepatic insulin signaling. Accordingly, hepatic triglyceride
content, which is proportional to cytosolic LCFA-CoA, seems
to correlate with hepatic insulin resistance (333). Our recent
data show that in liver, FFAs increase glucose production in
the basal state and induce hepatic insulin resistance. The
increase in basal glucose production is not progressive over
time and is associated with increased hepatic citrate content
(334). Hepatic insulin resistance is progressive over time and
is associated with a progressive increase in PKC� membrane
translocation (335).

Little is known about the role of the hexosamine pathway
and of oxidative stress in the FFA-induced insulin resistance
in the liver. However, transgenic mice with selective over-
expression of glutamine-fructose amidotransferase in the
liver (the rate-limiting enzyme for increasing flow through
the hexosamine pathway) show hepatic insulin resistance
(336). Furthermore, studies in collaboration with Dr. I. G.
Fantus (299) suggest that the antioxidant NAC partially pre-
vents FFA-induced hepatic insulin resistance in rats.

In the liver as well as in muscle, FFAs induce enzymes of
FFA oxidation, including CPT-1 (337), an effect mediated by
PPARs (338). In addition, in the liver, polyunsaturated fatty
acids repress ACC gene expression by inhibiting SREBP-1
(338). This could also contribute to the establishment of a
chronic Randle cycle by decreasing malonyl-CoA, which in-
hibits CPT-1. PPAR response elements have been shown on
genes of enzymes that are not involved in the Randle cycle,
such as phosphoenolpyruvate carboxykinase (339) and glu-
cokinase (327). In addition, glucose-6-phosphatase mRNA
and protein are induced by Intralipid infusion in vivo, an
effect that may be PPAR dependent (340). Paradoxically,
however, the predominant effect of PPAR activation is to
increase rather than decrease hepatic insulin sensitivity, pre-
sumably by limiting fat accumulation. In the liver, PPAR-
independent effects account for the repression of glycolytic
and lipogenic enzymes by n-3 and n-6 fatty acids (the mech-
anism is through inhibition of SREBP-1) and by fatty acyl-
CoA [the mechanism is through inhibition of hepatocyte

nuclear factors (338)]. These effects may also improve hepatic
glucose metabolism by limiting fat overload.

D. Effects of FFA on insulin resistance: concluding remarks

In summary, increased provision of FFAs in a setting of
increased energy availability leads to insulin resistance, thus
preventing further intracellular accumulation of energy sub-
strates. It is unclear whether this response is entirely mal-
adaptive or also provides some advantage in terms of avoid-
ance of massive obesity and perhaps avoidance of cell
toxicity from tissue fat overload, at least in cardiac muscle
(341) and liver (230). The trade-off is a tendency to increased
circulating energy substrates (fat and glucose) and compen-
satory hyperinsulinemia. Hepatic insulin resistance and hy-
perinsulinemia in a setting of elevated FFA influx to the liver
lead to increased production of VLDL particles (reviewed in
Ref. 159), which are also a source of FFA for peripheral cells
and contribute to the fat overload (Fig. 2).

VI. Effect of FFA on Hepatic Insulin Extraction

In insulin-resistant states, peripheral hyperinsulinemia is
caused both by insulin hypersecretion and by reduced he-
patic extraction of insulin (342). Because approximately 50%
of the insulin secreted by the pancreas is removed on first
pass by the liver before reaching the peripheral circulation,
a reduction in hepatic insulin extraction would lead to a
substantial increase in peripheral insulin levels.

One of the factors that may account for the impaired he-
patic insulin extraction in obesity is elevated circulating FFA
levels. In the in situ-perfused rat liver, physiological FFA
concentrations caused a decline in hepatic insulin extraction
(343). We have found that an elevation of circulating FFA
from an Intralipid plus heparin infusion decreases hepatic
insulin extraction in vivo in dogs (265). In further studies, the
impairment in hepatic insulin extraction appeared to be
greater when equimolar oleate infusion was given portally
vs. peripherally to selectively elevate the hepatic FFA levels
and thus mimic visceral obesity (310). In agreement with our
findings, Hennes et al. (344) showed in humans that In-
tralipid plus heparin decreased whole-body insulin clear-
ance (which includes both hepatic and peripheral insulin
extraction) during hyperglycemic clamps. We have obtained
similar findings in humans (345) but only after prolonged
Intralipid plus heparin infusion. On the contrary, others
failed to show changes in hepatic insulin extraction after 48 h
of Intralipid plus heparin infusion performed during a 48-h
hyperglycemic clamp (346). The reason for the discrepancy
between these studies is unclear but may be related to the
experimental protocol, as 48 h of hyperinsulinemia/hyper-
glycemia in the latter study might have been sufficient to
decrease hepatic insulin extraction independent of FFA.

The majority of studies in humans did not show differ-
ences in peripheral insulin levels when hyperinsulinemic
euglycemic clamps were carried out with or without In-
tralipid plus heparin infusion (see, for example, Refs. 269,
280, and 317). Because insulin was infused peripherally in
these studies, however, the impact of the liver on the result-
ant peripheral insulin levels was less than with physiological

214 Endocrine Reviews, April 2002, 23(2):201–229 Lewis et al. • Fat Metabolism in IRS and Type 2 Diabetes

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/23/2/201/2424219 by guest on 20 August 2022



portal insulin delivery. Furthermore, in most of these studies
the duration of the Intralipid plus heparin infusion was not
long. In rats, the reduction in insulin clearance that we ob-
served during a hyperinsulinemic clamp was greater after 7 h
than 2 h of the Intralipid plus heparin infusion (334).

Hepatic insulin extraction depends on insulin binding to
its receptor. In isolated rat hepatocytes, low physiological
concentrations of FFA reduced insulin binding and degra-
dation in proportion to a decreased receptor number (347,
348). Fatty acid oxidation may partly mediate the effect of
FFA on insulin binding (349) by increasing the rate of insulin
receptor internalization and/or decreasing the rate of recep-
tor recycling (Table 1). In addition, FFAs may activate PKC
(Ref. 332; in this study �- and �-isoenzymes were analyzed
by hydroxyapetite chromatography and the �-isoenzyme
was found to be preferentially translocated), which can in-
crease insulin receptor internalization (350). In our prelim-
inary studies on isolated rat hepatocytes, PKC inhibition
abolished the FFA-induced reduction in insulin binding
(351). We are currently determining the isoform of PKC in-
volved. In vivo in rats, the progressive reduction of insulin
clearance induced by Intralipid and heparin was associated
with a progressive increase in PKC� translocation (334, 335).
Interestingly, PKC activation has also been implicated in
FFA-induced insulin resistance, which would explain the
association between impaired insulin extraction and sensi-
tivity (265). The FFA-mediated reduction in hepatic insulin
extraction may be viewed as an adaptive mechanism to gen-
erate peripheral hyperinsulinemia, and thus, to partially
overcome the peripheral insulin resistance induced by FFAs.
This adaptive mechanism could relieve, in part, the stress on
pancreatic �-cells imposed by insulin resistance (352).

VII. Effects of FFA and Islet Triglyceride Stores on
Pancreatic �-Cells

A. Acute effects of FFAs on insulin secretion

Fatty acids are actively taken up and metabolized by
�-cells and can regulate �-cell enzymes, ion channels, and
genes (353, 354). It has long been recognized that FFAs
acutely (�6 h) increase glucose-stimulated insulin secretion
[GSIS (345, 355–357)], and it has recently been demonstrated
that this increase is proportional to the FFA chain length and
degree of saturation (358). In the latter study (358), it was
demonstrated that more saturated animal fat was far more
potent in acutely facilitating insulin secretion in vivo and that
the insulinotropic effects of individual fatty acids in a per-
fused rat pancreas model increased and decreased dramat-
ically with chain length and degree of unsaturation, respec-
tively. Acute lowering of plasma FFAs with nicotinic acid
results in a reduction in basal plasma insulin in both nono-
bese and obese healthy fasted individuals (359, 360) and in
patients with type 2 diabetes (360). The prevailing FFA con-
centration also appears to play an important role in main-
taining �-cell responsiveness to glucose during fasting (359).

The precise mechanisms responsible for the acute effects
of FFAs on insulin secretion are still debated. Intracellular
FFAs are rapidly converted to fatty acyl-CoA, which can be
oxidized to produce ATP. However, contrary to glucose,

ATP generation followed by closure of the K-ATP channels
is not the main mechanism of the acute stimulatory effect of
FFAs on insulin secretion. Instead, the key factor appears to
be accumulation of cytosolic LCFA-CoA when FFA oxida-
tion is inhibited by glucose-derived malonyl-CoA (353, 354,
361). This cytosolic accumulation of LCFA-CoA could then
stimulate the K-ATP-independent insulin secretory pathway
through activation of PKC (362, 363) and/or more directly by
increasing the secretory granule fusion process (364). Of note,
the acute effect of FFAs on insulin secretion does not appear
to be specific for a glucose stimulus, which suggests that final
common events in stimulus secretion coupling may be in-
volved (365). Some of these mechanisms (PKC activation)
may be operational in both �-cells and peripheral tissues and
thus link insulin resistance and hyperinsulinemia at the cel-
lular level. Another of these mechanisms may be increased
hexosamine flux. Recent findings in transgenic mice with
selective overexpression of glutamine-fructose amidotrans-
ferase in the �-cell suggest that increased hexosamine flux
may lead to insulin hypersecretion with secondary insulin
resistance (366).

B. Chronic effects of FFAs on insulin secretion

In contrast to the stimulatory effect of acute exposure to
FFAs, Sako and Grill (367) have shown that prolonged In-
tralipid infusion (�24 h) results in reduced GSIS in the per-
fused rat pancreas at high glucose concentration, suggesting
that chronic FFA elevation inhibits GSIS. Several in vitro
studies in �-cell lines and in rodent and human islets have
subsequently confirmed that insulin secretion at high glu-
cose concentrations is impaired in a time-dependent fashion
by exposure to FFAs (368–375). Islets from prediabetic
Zucker diabetic fatty (ZDF) rats and from fructose-fed in-
sulin-resistant rats appear to be more susceptible to this
FFA-mediated desensitization of GSIS (370, 374). Under the
same conditions, however, basal insulin secretion at low
glucose concentrations was elevated in normal rodent islets
and islet cell lines in most studies (367, 368, 370–374, 376), but
not in human islets (377). Furthermore, insulin secretion at
low glucose concentration is either unchanged or decreased
by FFAs in islets from ZDF prediabetic rats or prediabetic
Otsuka Long-Evans Tokushima fatty rats (370, 373).

The precise mechanism responsible for this “�-cell lipo-
toxicity”, a term coined by Unger (378) in 1995, has been
debated. This term has been applied to describe FFA-induced
functional impairments in GSIS as well as reduction in �-cell
mass. The functional effect of chronically elevated FFAs on
insulin secretion, in contrast to the acute enhancing effect,
appears to be specific for glucose in vitro (368) and in vivo
(379), and at least part of the effect requires FFA oxidation
(367, 368, 377). An early hypothesis was that chronic expo-
sure of �-cells to FFAs may result in diminished glucose
oxidation [via a “Randle-like” effect (367, 368, 377)]. Pro-
longed exposure to FFAs may also lead to decreased GLUT2
and glucokinase expression, thereby decreasing the glucose-
sensing capacity of the �-cell (373, 380). Other studies, how-
ever, have shown that prolonged exposure to FFAs does not
decrease and may even increase glucose utilization and ATP
generation, and reduces glucose oxidation only slightly in
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�-cells (370, 372, 381), casting doubts on FFA-mediated im-
pairment of glucose metabolism as an important mechanism
for the �-cell lipotoxic effect.

Several other potential mechanisms have been proposed to
explain the functional �-cell defect induced by FFAs, such as
direct activation of the ATP-sensitive K� channels (382),
down-regulation of PKC (372), or inhibition of specific PKC
isoforms (363), induction of uncoupling protein 2 [UCP2
(383)], induction of oxidative stress (296, 375) and perhaps
iNOS (384), and increased synthesis of ceramides (385). In
addition, FFAs decrease insulin biosynthesis (368, 376, 377,
380, 386), alter proinsulin processing (387), and decrease
insulin gene transcription (324, 327) by unclear mechanisms.
Furthermore, reduced �-cell mass may be caused by FFA-
induced stimulation of apoptosis, which has been repeatedly
demonstrated in in vitro studies and has been linked to FFA-
mediated induction of iNOS, increase in ceramide synthesis,
and perhaps oxidative stress (296, 388–391). Some of the
biochemical mechanisms of �-cell lipotoxicity have also been
implicated in the FFA-induced impairment in insulin action
(Table 1) and may be common to glucotoxicity as well. Most
of these lipotoxic mechanisms appear to be linked to fatty
acid esterification rather than oxidation. For example, palmi-
tate-induced reduction of rat islet insulin mRNA levels was
shown to depend on induction of fatty acid esterification
pathway at high glucose levels (392, 393). Interestingly, pro-
longed in vitro exposure of �-cells to FFAs, triglycerides, or
glucose leads to induction of lipogenic genes and/or to in-
creased fatty acid esterification and intracellular fat deposi-
tion (373, 381, 393–395), which have been associated with the
development of �-cell dysfunction in animal models of type
2 diabetes (370). These intracellular triglycerides can be hy-
drolyzed by HSL, which is expressed and active in �-cells
(396) and, therefore, may constitute an in situ reservoir of
long-chain fatty acids.

Furthermore, depletion of intracellular triglycerides in
ZDF rat islets by activating intracellular FFA oxidation using
leptin receptor overexpression with leptin treatment or tro-
glitazone treatment restores the FFA-induced defects in cel-
lular ultrastructure, mitochondrial integrity, glucose sens-
ing, insulin biosynthesis, and GSIS (397, 398). UCP-2 has been
implicated in the functional secretory defect chronically in-
duced by FFAs and can decrease insulin secretion by de-
creasing ATP production from glucose (399). Paradoxically,
however, adenovirus-mediated transfer of UCP-2 in pancre-
atic �-cells from Zucker diabetic rats has been shown to
increase fatty acid oxidation and improve insulin secretion
(400).

C. Effect of chronically elevated FFAs on insulin secretion
in vivo

The question of whether chronically elevated plasma FFAs
actually impair GSIS in vivo, particularly in humans, remains
controversial, with some groups showing an impairing effect
of FFAs, whereas others claim that chronically elevated FFAs
actually facilitate insulin secretion. As we will discuss, it is
possible to explain the apparently discrepant findings from
the various studies that have been reported in humans.

In vivo insulin secretion needs to be interpreted in relation

to concurrent changes in insulin sensitivity and perhaps also
insulin clearance. There is a well-described hyperbolic rela-
tionship between insulin secretion and insulin sensitivity
(SI), implying that the product of insulin secretion and SI is
a constant [called the disposition index (DI); Ref. 401]. In
individuals with normal �-cell function, a decline in SI
should be followed by a compensatory increase in insulin
secretion, thus maintaining the body’s ability to dispose of
glucose (401). This relationship suggests that insulin sensi-
tivity and insulin secretion are linked through a negative
feedback loop and/or that common biochemical mecha-
nisms link insulin resistance and �-cell hypersecretion. In
situations, such as in type 2 diabetes, in which �-cell function
is defective and cannot fully compensate for the decline in SI,
there is a decline in DI but not necessarily in absolute insulin
secretion. Because elevation of plasma FFAs results in a re-
duction in SI (269, 274, 345), it is critical to take this effect into
account in interpreting any FFA-mediated change in insulin
secretion. The FFA effect on insulin clearance (345) should
also be taken into account, as this is expected to decrease, in
part, the need for insulin secretion. Finally, when examining
the in vivo data on the action of prolonged elevation of
plasma FFAs, one has to keep in mind that iv infusion of
triglyceride emulsion could also modulate autonomic ner-
vous system activity, which can in turn affect both insulin
sensitivity and insulin secretion (402).

The paper of Boden et al. (346) was the first to study the
effect of prolonged elevation of plasma FFAs on insulin se-
cretion in humans. These investigators found higher absolute
insulin secretion during a 48-h hyperglycemic clamp with
concurrent iv infusion of Intralipid plus heparin. They did
not, however, examine insulin secretion in relationship to the
FFA-mediated change in SI, which was reduced with infu-
sion of Intralipid plus heparin in this study. In contrast to the
above findings, Paolisso et al. (357) reported that a 6-h ele-
vation of plasma FFAs results in an absolute increase in GSIS,
as assessed by the first phase insulin response to an iv glucose
tolerance test, but that prolonged FFA elevation for 24 h
results in an absolute reduction in the acute insulin response
to glucose. The impairment in GSIS was reversible, impli-
cating a functional defect. The same group also showed, in
first-degree relatives of patients with type 2 diabetes in
whom FFAs were lowered for 1 wk using the nicotinic acid
analog acipimox, that there was a 50% increase in first phase
insulin secretion during an iv glucose tolerance test (403).

Our group (345) assessed insulin secretion in lean, healthy
men after an iv infusion of Intralipid and heparin resulting
in a 2-fold elevation of fasting plasma FFAs. We found that
acute elevation of FFAs for 1.5 h before a two-step hyper-
glycemic clamp of 4-h duration resulted in elevated GSIS and
reduced SI without a change in DI, showing that, acutely, the
�-cell precisely compensates for the FFA-induced reduction
in insulin sensitivity. In contrast, the FFA-mediated poten-
tiating effect on GSIS was completely lost after 48 h of ele-
vation of plasma FFA, and there was a concomitant signif-
icant decrease in insulin sensitivity, and consequently, a
significantly lower DI. In other words, prolonged elevation
of FFAs disables the �-cell’s ability to appropriately increase
its secretion in response to a reduction in SI. We also found
that obese nondiabetic subjects had an absolute reduction of
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insulin secretion after prolonged elevation of plasma FFA,
whereas diabetic subjects displayed a slight but significant
absolute increase in insulin secretion (404). These findings
suggest that individuals at risk for developing type 2 dia-
betes may be more susceptible to FFA-mediated �-cell de-
sensitization than healthy insulin-sensitive individuals, but
that those who already have type 2 diabetes may have no
further FFA-induced deterioration in �-cell function. Our
findings in humans are supported by similar findings in rats
(405). In addition, our studies in rats suggest that the type of
fatty acid is an important determinant of the effect of pro-
longed plasma FFA on GSIS. Both oleate and Intralipid/
heparin (405), but not lard oil/heparin (406), decreased the
absolute rate of GSIS at high glucose concentrations, with a
much greater impairing effect of oleate than Intralipid and
heparin. At low glucose concentrations, Intralipid/heparin
actually increased insulin secretion, which is consistent with
other studies in rats (402). In our studies, all types of fat
appeared to disable the �-cell-compensatory response to
FFA-induced insulin resistance (the latter is less in rats than
in humans, probably accounting for the findings of a small
absolute reduction of GSIS by Intralipid in rats but not in
humans), perhaps to a different extent (406). Furthermore,
our studies suggest that prediabetic rat models of type 2
diabetes (407), and perhaps also type 1 diabetes (408), may
be particularly susceptible to the fat-induced impairment of
GSIS. As to the mechanism of this effect, our preliminary
experiments (in collaboration with Dr. I. G. Fantus) in normal
rats suggest that oxidative stress may be involved, as iv
infusion of NAC, an antioxidant, prevented the decrease
in GSIS induced by prolonged oleate or Intralipid/heparin
infusion (409).

In contrast to the impairing effect of a prolonged elevation
of FFAs on GSIS, we recently failed to demonstrate a similar
effect on arginine-stimulated insulin secretion (379). These
findings are in keeping with in vitro studies that have sug-
gested that the impairment of �-cell insulin secretion medi-
ated by prolonged exposure to FFAs may be specific for GSIS
(368, 383, 410, 411). Because arginine is believed to stimulate
insulin secretion distal in the insulin secretion cascade of
events, primarily by inducing depolarization of the �-cell
membrane (412, 413), the absence of a significant effect, com-
bined with our previous observation of a FFA-induced re-
duction of GSIS, would suggest that prolonged FFA expo-
sure may alter GSIS primarily by interfering with the
metabolism of glucose, leaving relatively intact the exocy-
totic machinery.

D. Summary of the effects of FFAs on insulin secretion

From the above discussion, the following conclusions can
be drawn: 1) The effects of fatty acids on �-cells are complex
and probably involve multiple direct metabolic interactions
as well as delayed modulation of gene expression, resulting
in time-dependent differential effects on insulin secretion in
vitro. 2) In states of caloric deprivation, fatty acids have an
important role in maintaining basal insulin secretion, but
whether this regulation is independent of FFA-mediated
change in insulin sensitivity has yet to be answered. 3) Acute
elevation or lowering of plasma FFAs clearly results in po-

tentiation and blunting, respectively, of GSIS in vivo. 4) The
bulk of evidence both from in vitro and in vivo studies sug-
gests that chronic exposure of �-cells to elevated fatty acids
results in blunting of GSIS, particularly when insulin secre-
tion is appropriately assessed in relation to concomitant
changes in insulin sensitivity. Furthermore, based on our
results in humans, it is possible that individuals at risk for
developing type 2 diabetes may be more susceptible to the
�-cell lipotoxic effect of fatty acids. FFAs, therefore, appear
to be an important link between obesity, insulin resistance,
fat intolerance, and the development of �-cell dysfunction
and type 2 diabetes. The challenge for investigators is to
better define the molecular basis for the �-cell lipotoxic or
glucolipotoxic effect, and to further delineate the metabolic
phenotypes and genetic factors that interact with fatty acids
in vivo, placing individuals at risk of developing �-cell
dysfunction.

VIII. Inhibition of Fatty Acid Flux from Adipose
Tissue: Is it Effective in Ameliorating the

Manifestations of IRS and Type 2 Diabetes?

Theoretically, a sustained reduction in FFA flux from ad-
ipose tissue would be predicted to result in improvement in
the metabolic abnormalities discussed throughout this re-
view. Therapies that directly or indirectly improve insulin
sensitivity, such as weight reduction, exercise, oral hypogly-
cemic agents, and insulin, are indeed associated with a re-
duction in FFAs and improvement in many of the metabolic
disturbances of IRS and type 2 diabetes. It has not, however,
been possible to prove the link between FFA reduction and
improvement in these other parameters in response to such
therapies, due to the multiple metabolic effects of such ther-
apies. Drugs that target adipose tissue lipolysis per se have
been associated with only partial and inconsistent clinical
success, as discussed below, partly due to their inability to
produce a sustained reduction in plasma FFAs over a pro-
longed period of time.

The agent that has been used most frequently to investi-
gate the metabolic and clinical effects of reducing fatty acids
is the antilipolytic, long-acting nicotinic acid analog, acipi-
mox (414, 415). Acute administration of acipimox has been
shown by numerous investigators to reduce plasma FFAs,
fatty acid oxidation, and gluconeogenesis and to increase
glucose oxidation rates, with some but not all studies show-
ing suppression of endogenous glucose production, in-
creased insulin-mediated suppression of glucose production,
and insulin-mediated glucose uptake (416–428). In addition,
large VLDL particle (VLDL1) production has been shown to
be reduced (240), as LDL particle size shifted from the
smaller, dense particles to larger particles, a change that may
be associated with less atherogenicity (429), and insulin se-
cretion was potentiated with 1-wk acipimox treatment (403).
There is a rebound elevation of FFAs that occurs with longer-
term acipimox treatment, which may limit its potential ther-
apeutic benefit (419, 423, 430, 431). Diabetic patients treated
with acipimox have shown variable but generally disap-
pointing clinical improvement in glycemic control (419, 432–
436), whereas the triglyceride-lowering and high density
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lipoprotein-raising effects of acipimox in hyperlipidemic pa-
tients have been more impressive (433–441). Acipimox has
also been used with some success to reduce LDL in patients
with hypercholesterolemia (442) and combined hyperlipid-
emia (443–445).

We speculate that drugs whose principal mechanism of
action is to inhibit adipose tissue lipolysis are unlikely to
prove totally effective in ameliorating the metabolic distur-
bances associated with IRS and type 2 diabetes. Firstly, they
are destined to produce a rebound increase in adipocyte
triglyceride lipolysis due to the mass effect of greater adi-
pocyte triglyceride stores that occurs secondary to the drug-
induced inhibition of lipolysis. Secondly, they fail to correct
the fundamental defect of insulin-mediated fatty acid re-
esterification in adipose tissue and are therefore unlikely to
effectively reduce the postprandial diversion of FFAs from
adipose tissue to other tissues of the body. On the other hand,
agents such as PPAR� activators that overcome insulin re-
sistance of adipose tissue by improving adipocyte FFA es-
terification are postulated to more effectively reduce the
deleterious metabolic effects of fat dysregulation. Unfortu-
nately, the trade-off of therapies designed to improve FFA
uptake and deposition in adipose tissue and to limit FFA
efflux may be weight gain, unless accompanied by a reduc-
tion in total daily calorie intake and/or an increase in energy
expenditure. Possibly the only truly effective therapies will
be those designed to reduce positive net energy balance. At
present, however, the most important of these therapies are
lifestyle changes.

IX. Summary

Dysregulation of fat metabolism occurs very early in the
development of insulin resistance and well before the onset
of hyperglycemia in type 2 diabetes. The mechanism for this
dysregulation remains to be determined; however, there are
suggestions that it might be related to decreased oxidative or
fat oxidative capacity (154), with a tendency toward a pos-
itive energy balance and tissue triglyceride accumulation.
There is general agreement that elevated FFA flux from an
expanded adipose tissue to nonadipose tissues has a dele-
terious effect on insulin regulation of carbohydrate metab-
olism, is an important cause of the hypertriglyceridemia of
IRS and type 2 diabetes, aggravates cytosolic triglyceride
accumulation in nonadipose tissues, and may have other
direct adverse effects, such as effects on endothelium, myo-
cardium, and cell proliferation. More controversial is the role
of chronic elevation of FFAs on pancreatic �-cell function and
the role of fatty acids in the conversion of compensated
insulin resistance to type 2 diabetes, but the bulk of evidence
suggests that they may play a role.

There is little question that abnormal fatty acid metabolism
is an important component of IRS and type 2 diabetes. A
major question that remains to be answered is precisely how
important a role fatty acids play in the cross-talk between
adipose tissue and extraadipocyte insulin-sensitive and in-
sulin-secretory tissues. Are fatty acids the dominant signal
between these tissues, or will other factors such as peptides
and cytokines prove to play a more important role?
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