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We show that Landau theory for the isotropic (I), nematic (N), smectic-A, and smectic-C phases

generically, but not ubiquitously, implies ‘‘de Vries’’ behavior: i.e., a continuous A-C transition can occur

with little layer contraction while the birefringence increases significantly once the system moves into the

C phase. Our theory shows that 1st order A-C transitions are also possible. These transitions can be de

Vries-like, but in general need not be. Generally, de Vries behavior occurs in models with unusually small

orientational order and is preceded by a first order I-A transition. These results correspond well with

experimental work to date.

DOI: 10.1103/PhysRevLett.98.197801 PACS numbers: 64.70.Md, 61.30.Gd, 61.30.Cz

Recently, an unusual new class of liquid crystals known

as ‘‘de Vries smectic liquid crystals’’ [1] has drawn inter-

est. They possess two defining features. First, there is little

change with temperature T of the layer spacing d�T� upon

entry to the C phase, in contrast to the rapid geometrical

contraction d�T� / cos��T� expected if the molecules tilt

by a strongly temperature dependent angle ��T�. Second,

the birefringence increases significantly upon entering the

C phase from the A phase. In fact, for de Vries materials

with a 2nd order A-C transition, the birefringence is seen

[2,3] to decrease with decreasing temperature as the A-C
transition as approached, reaching a minimum at the A-C
transition. This is the first example known to us of decreas-

ing order as a lower symmetry phase is approached. For de

Vries materials with a 1st order transition, the birefrin-

gence increases moderately as the A-C transition is ap-

proached and then jumps significantly at the transition [4].

Generally, de Vries smectic liquid crystals exhibit the

phase sequence I-A-C, without a nematic phase. First order

A-C transitions are not always de Vries-like [4], contrary to

some recent speculations.

In de Vries’ ‘‘diffuse cone model’’ [5] of these materials,

the molecules ‘‘pretilt’’ in the A phase as the A-C transition

is approached, but in azimuthally random directions (hence

reducing orientational order), so that there is no long range

order in the tilting. Upon entering the C phase, the mole-

cules azimuthally order (hence increasing orientational

order) without the significant layer contraction that occurs

in conventional smectics whose molecules tilt at the A-C
transition.

In this Letter, we show that in a complete, nonchiral

Landau mean field theory for the isotropic (I), nematic (N),

A and C phases, in which all three order parameters (ori-

entational, layering, azimuthal tilt) and the layer spacing

are coupled, de Vries behavior occurs in a finite fraction of

parameter space, while other regions exhibit conventional

behavior. The mean field phase diagram for our model is

shown in Fig. 1. Here, ts and tn are Landau theory parame-

ters that control layering and orientational order, respec-

tively. We find that two main features are necessary for de

Vries behavior— an unusually weak coupling between

layering and orientational order and a virtually temperature

independent tn. This latter feature would correspond to

almost perfect excluded volume short range repulsive mo-

lecular interactions. Our theory also predicts that materials

exhibiting de Vries behavior will almost always follow the

phase sequence I-A-C. For 2nd order A-C transitions, we

show that systems with an athermal tn will exhibit the

unusual feature of a decreasing birefringence as the tran-

sition is approached from the A phase. In fact, we predict

 

FIG. 1. The phase diagram in ts-tn space for the I, N, A, and C
phases. 1st and 2nd order phase boundaries are shown as dashed

and solid lines, respectively. Three decreasing temperature paths

from the I to C phase are shown. Path (i) corresponds to a

conventional material that does not exhibit de Vries behavior.

Path (ii) corresponds to a material exhibiting de Vries behavior

and a 2nd order A-C transition. Path (iii) leads to a 1st order A-C
transition with de Vries behavior. The inset shows a possible

temperature dependence of birefringence (M) and layer spacing

(d) for path (ii).
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that in the A phase, some systems will exhibit a birefrin-

gence that has a nonmonotonic dependence on tempera-

ture, as shown in the inset of Fig. 1 [6]. Lastly, we also

show that 1st order A-C transitions can (but generally need

not) be de Vries-like.

Another result of our theory, unrelated to de Vries

behavior, is that this phase diagram predicts two distinct

smectic-A phases of identical symmetry, denoted A and A0,
separated by a first order phase transition. While 1st order

transitions between two smectic-A phases due to competi-

tion between two different layer spacings [7] have been

predicted, our result shows that even without such compe-

tition, A-A transitions occur quite naturally and should be

far more common than was previously thought.

Any experiment in which temperature is varied at fixed

concentration traces a path through this phase diagram. As

usual in Landau theory, we assume throughout this Letter

that ts and tn are monotonically increasing functions of

temperature; hence, as temperature is lowered, one moves

monotonically from upper right to lower left in Fig. 1.

Three qualitatively distinct paths of this type are shown.

Path (i) is a typical path for a material that does not display

de Vries behavior; along it, ts and tn both depend strongly

on temperature. Paths (ii) and (iii) correspond to de Vries

behavior with 2nd and 1st order A-C and A0-C transitions,

respectively. Both paths have strongly varying ts and

weakly varying tn; i.e, tn is virtually athermal. This would

be the case if the I-N transition is driven by a steric

mechanism for which tn depends strongly on concentration

and weakly on T. We find that de Vries behavior occurs in

this case, for sufficiently weak coupling between layering

and orientational orders. It should also be pointed out that a

path above (iii), away from the A-A0-C critical end point

(CEP), would exhibit a 1st order A0-C transition without de

Vries behavior.

This restriction to nearly horizontal paths implies that de

Vries systems should very rarely exhibit an N phase be-

tween the A and C phases, since to cross the I-N boundary,

a nearly horizontal path in Fig. 1 would have to be ‘‘fine

tuned’’ to start very close to the boundary. The most likely

paths to see de Vries behavior are those like (ii) or (iii),

showing phase sequence I-A-C or I-A0-C, in good agree-

ment with experimental work to date.

In this Letter, we focus on path (ii) and briefly discuss

path (iii) at the end. The inset in Fig. 1 shows predictions

for the layer spacing d�T� and birefringence M�T� as T is

varied along path (ii). The increase of the layer spacing in

the A phase as the A-C transition is approached, though

contrary to the de Vries picture of ‘‘pre- tilting’’ in the A
phase, is seen experimentally [2]. In the A-phase, our

Landau theory predicts

 MA�T� � Mmax �M2

�

ts�T� � ts�Tmax�
ts�Tmax�

�

2

; (1)

where Mmax ,M2, and Tmax are positive constants. We have

shown that if tn is completely athermal, TAC < Tmax, where

TAC is the A-C transition temperature, so that in systems

that follow a path like (ii), MA�T� will decrease as the A-C
transition is approached. A subset of such systems will

have Tmax < TIA, where TIA is the I-A transition tempera-

ture, so that MA has a maximum within the A phase, as

shown in the inset in Fig. 1. If ts is linear in T in the

A-phase (as expected for small TIA � TAC), then MA�T�
will be perfectly parabolic in T.

In the C phase near the A-C transition, the critical

temperature dependences of M and the tilt angle ��T�
predicted by our Landau theory are as follows: M linear

in T, and � / �TAC � T�1=2. When fluctuation effects are

included, we expect [8] � / �TAC � T��, where � � 0:35
is the order parameter critical exponent for the 3D XY

model. The layer spacing scales with temperature in our

Landau theory according to

 d � d0 � a�TAC � T� � b�TAC � T�3; (2)

where d0 is the value of the layer spacing at the A-C
transition and a and b are constants that depend on the

Landau theory parameters . Clearly, if a is sufficiently

small, which we find is the case in the C phase for suffi-

ciently weak coupling between layering and orientational

order, the layer spacing shows very little variation with

temperature near TAC. Significantly, we find that in cases

like path (ii), the criterion for de Vries behavior of d�T�
differs from that for M�T�. Hence, we predict that some

systems will exhibit de Vries behavior of the birefringence,

but not de Vries behavior of the layer spacing.

How do fluctuations affect our mean field Landau the-

ory? While our theory predicts that the I-A0 transition is

continuous, it is known [9] that fluctuations always drive

the I-A0 transition first order, albeit only weakly so if

fluctuations are small. Fluctuation effects will also shift

the positions of all of the transitions we have found. We

expect, however, that the topology and essential geometry

of the phase diagram Fig. 1 should occur in real systems.

The only qualitative difference we expect is that the I-A-A0

critical end point (CEP) predicted by Landau theory will be

replaced by an I-A-A0 triple point.

In other regions of parameter space, our model has an

N-A-C point; we will discuss this elsewhere [10].

In summary, de Vries behavior emerges quite naturally

from our Landau theory. Equally importantly, conventional

behavior (for both 1st and 2nd order transitions) also

generically occurs for different Landau parameters. Thus,

the model can accommodate all observed behaviors in all

systems, and also predicts new behaviors not yet seen

experimentally, like the first order A-A0 transition.

We will now briefly describe the formulation and analy-

sis of our theory. A Landau theory for all four phases (I, N,

A, C) must include order parameters for three types of

order: uniaxial orientational order, tilt (azimuthal) order,

and layering order. The first two are embodied in the usual

second rank tensor orientational order parameter Q. The

complex layering order parameter  is defined via the
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density � � �0 � Re� eiq�r� with �0 constant and q the

layering wave vector. Taking both  and Q to be spatially

uniform implies the Landau free energy density f � fQ �
f � fc, with the orientational (fQ) [11], layering (f ),

and coupling (fc) terms given by

 fQ � tnTr�Q2�
12

� wTr�Q3�
18

� un�Tr�Q2�	2
144

; (3)

 f� � 1

2
tsj�j2 � 1

4
usj�j4 � 1

2
K�q2 � q2

0
�2j�j2; (4)

 

fc �
1

2
��g1�q2�qiqjQij � g2qiqjQikQjk	j�j2

� h

4
�qiqjQij�2j�j4; (5)

where qi is the component of the layering wave vector in

the ith direction, and the Einstein summation convention is

implied. The constant q0 is the magnitude that the layering

wave vector would have in the absence of coupling be-

tween layering and orientational order. For weak coupling,

q � q0, and we Taylor expand g1�q2� � g10 � g0
1
�q2 �

q2
0
�, where g10 
 g1�q20� and g0

1

 dg1

d�q2� jq2�q20 . The rela-

tively large number of parameters in f is inevitable given

the fact that the theory incorporates three types of order.

Furthermore, this theory allows for the possibility of con-

ventional or de Vries behavior. However, we will show that

in general, any of the five possible phases shown in Fig. 1

can be accessed by allowing, at most, two of the above

parameters (tn and ts) to vary (with temperature). The

presence or absence of the two defining features of de

Vries behavior, small change in layer spacing and decreas-

ing birefringence, depend only on the size of g0
1

and the

athermal nature of tn, respectively. The remaining fixed

positive parameters are required to stabilize the phases

[12–14].

Choosing the arbitrary direction of the layer normals to

be z, we seek the configuration of  , Q, and q � qẑ that

minimizes f. The form of Q that does so [10] is given by

 Qij � ��S�
���

3
p
��e1ie1j � ��S�

���

3
p
��e2ie2j

� �2S�e3ie3j; (6)

where ê3 � c�
��������������

1� c2
p

ẑ is the average direction of the

molecules’ long axes (i.e., the director). Here, in either

smectic phase, ẑ is normal to the layers; in the N and I
phases, the direction of ẑ is arbitrary. The projection, c, of

the director onto the layers is the order parameter for the C
phase. The other two principal axes of Q are given by ê1 �
ẑ� ĉ and ê2 �

��������������

1� c2
p

ĉ� cẑ. S and � are proportional

to the birefringence and biaxiality of the system, respec-

tively. The A phase is untilted (c � 0) and uniaxial (� �
0), while the C phase is tilted (c � 0) and biaxial (� � 0).

It is convenient to make the change of variables S �
M cos��� and � � M sin���. In the A phase, M is propor-

tional to the birefringence.

We next minimize the free energy f over the variables

M, �, c, j�j, and q. Four qualitatively different types of

minima are possible, corresponding to the four different

symmetry phases (I, N, A, C). Specifically, the I phase has

M � 0; � � 0; theN phase has � � 0, c � 0, and � � 0,

but M � 0; the A phase has � � 0 and M � 0, but c � 0

and� � 0; and the C phase has all of the variablesM,�, c,

and � � 0. We render minimization analytically tractable

by assuming that the coupling term Eq. (5) is small and by

treating it perturbatively. Standard phase transition analy-

sis [15] leads to the phase diagram shown in Fig. 1.

Equations for the loci of the phase boundaries are given

in [16]. The minimization of our Landau free energy also

leads to predictions for the temperature dependences of M
and q. We find, in the A-phase,

 MA � M0�tn� �
q2
0
�2

0

�
��3g2M0�tn� � �	; (7)

 q2A � q2
0
�M0�tn�

K
��g2M0�tn� � g0

1
q2
0
� �	; (8)

where � 
 wM0�tn� � 2tn > 0 and M0�tn� � �w�
������������������������

w2 � 4untn
p

�=2un is the ‘‘bare’’ value of M, i.e., its value

in the absence of coupling. Likewise, �0 �
���������������

�ts=us
p

is the

bare value of �. For strongly T dependent ts and athermal

tn, the quantity � is most usefully expressed as

 ��ts; tn� 
 ��ts � tACs �; (9)

where � � �2hq2
0
M0�=us, and tACs � ��g10 � g2M0�=� is

the value of ts where � vanishes and the 2nd order A-C
transition occurs. In the A phase, � > 0 and in the C phase

� < 0. In the C phase, we find

 MC � M0�tn� �
q2
0
�2

0

�

�

�3g2M0�tn� �
g2

2hq2
0
�2

0

�

�

; (10)

 q2C � q2A�tACs � � g0
1

2Kh�2
0

�; (11)

where a decrease in layer spacing requires g0
1
< 0. Finally,

in the A0-phase, we find

 M0
A � q2

0
�2

0
g10

tn
; (12)

 q02A � q2
0

�

1�
2g2

10
�2

0

Ktn

�

: (13)

These results imply de Vries behavior for both birefrin-

gence and layer spacing. For a nearly horizontal experi-

mental locus like path (ii) through the A phase, the T
dependence of M (and hence birefringence) in Eq. (7)

comes from the linear ts- dependence of each of �2
0

and

� in the correction due to the coupling of layering and

orientational orders. From Eq. (7), we see that nonmono-

tonicity ofMA is due to a competition between the layering
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order, �2
0

and the coupling � which increase and decrease,

respectively, as the A-C transition is approached. This

happens because, as the system moves deeper into the A
phase, the layering order increases, thereby augmenting the

weak orientational order due to the coupling between the

two. However, as the A-C transition (where at the director

tilts away from the layer normal) is approached, this cou-

pling necessarily decreases and, hence, so does MA, which

means the birefringence decreases as the A-C transition is

approached. Once in the C phase, the birefringence begins

to increase with decreasing ts. It is straightforward to show

that if g10 > 4g2M0, then MA exhibits a maximum inside

the A phase, as shown in the inset in Fig. 1.

As the A-C transition is approached within the A phase,

qA monotonically decreases and hence d monotonically

increases. This is typical of both conventional and de Vries

smectics although, as discussed above, it is somewhat

contrary to the diffuse cone picture. The T dependence of

the layer spacing at the transition depends crucially on the

size of the parameter g0
1
. In systems where the coupling

of the layering and orientational order depends weakly

on layer spacing and jg0
1
j is unusually small, the

T-dependence of q is almost flat. We have shown that if

g0
1
� 0, then the change in layer spacing scales like �TAC �

T�3 and hence varies very weakly in the C phase near the

A-C transition. Systems with larger values of jg0
1
j will have

conventional behavior of the layer spacing.

Since this de Vries behavior of q has a different criterion

than the de Vries behavior of M (which relies on tn being

athermal), it should be possible to find systems which

exhibit de Vries behavior of the birefringence, but not de

Vries behavior of the layer spacing.

For systems that approach the C phase from the A0

phase, along path (iii), the birefringence will increase

monotonically before jumping substantially (on the order

of M0) at the transition. From Eq. (13), we see that the T
dependent piece of q0A is second order in the coupling g10
which we treat perturbatively in our analysis. Thus, this T
dependent piece is very small in the A phase. Upon entry

into the C phase, the T dependence of the layering spacing

will be weak if g0
1

is small. At the A0-C transition, there will

be a jump in q but Eqs. (8), (11), and (13) can be used to

show that this jump will be small when g0
1

and g2 are small.

For such a system, a transition just above the CEP will

exhibit an almost continuous change in tilt angle, a weakly

varying layer spacing, a substantial jump in birefringence,

and a latent heat. Systems entering the C phase well above

this CEP will exhibit jumps in all of the above quantities

and thus not be de Vries-like.

The requirement of near T-independence of tn for de

Vries behavior severely restricts the possible experimental

loci in Fig. 1 that can display such behavior: namely, nearly

horizontal ones. A significantly sloped path like (i) will not

exhibit de Vries behavior. In this case, the growth of the

bare (i.e., coupling-free) birefringence M0�tn� as T is low-

ered swamps the effects due to the coupling terms, and

makes the behavior of both the birefringence and the layer

spacing conventional. Thus, our model can accommodate

either conventional behavior or de Vries behavior, if tn is

thermal or athermal, respectively.
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