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The cell biology of cholesterol

The evolution and functions of sterols

Sterols are a group of primarily unsaturated solid steroid alcohols found in the membranes 

of all eukaryotic cells. Phylogenetically distinct organisms synthesize characteristic sterols; 

for example, cholesterol is the predominant sterol found in terrestrial vertebrates, ergosterol 

in fungi, and phytosterols in plants. The evolution of sterols has been the subject of much 

debate as they are absent from prokaryotes (although rare exceptions have been documented 

(63)), but are ubiquitously expressed in eukaryotes (81). One hypothesis to explain this 

phylogenic divide is that sterol evolution was driven by the increase in atmospheric oxygen 

levels, which coincided with the prokaryote / eukaryote transition (16; 34). Consistent with 

this idea, sterols are totally dependent on oxygen for their biosynthesis (81) as the 

biosynthesis of one molecule of cholesterol consumes 11 molecules of O2, where as 12 are 

needed for ergosterol biosynthesis (105; 116). Sterols have also been proposed to have the 

capacity to serve as oxygen sensors in yeast (22; 49), which may have been another selective 

pressure that drove their evolution. For the remainder of this article we will focus on the 

mammalian sterol cholesterol, reviewing the complexities associated with cholesterol-related 

inherited metabolic disorders and their novel unanticipated inter-relationships.

Cholesterol

Cholesterol was first isolated from gallstones and has been intensively studied since its 

discovery in 1789 in France (35). It is a highly regulated amphipathic lipid (36) that plays 

important roles in a variety of homeostatic systems (25; 35; 50; 73; 87; 104; 114). 

Cholesterol is essential for the normal growth and development of mammals and in 

membranes, where it regulates membrane fluidity and is a key constituent of lipid rafts (94; 
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102). These dynamic signalling platforms are implicated in a number of cellular processes 

but their physiological relevance is still the subject of debate (65; 78; 102). Cholesterol is 

also essential for myelin formation (56; 127) and in developmental signalling via the 

hedgehog (HH) pathway (10; 104) in which active HH proteins are covalently modified with 

cholesterol, and sterols also play multiple other roles in this signalling pathway (10; 104). 

There is also growing evidence that sterols and sphingolipids are co-regulated, although the 

details of the underlying mechanisms and biological significance of this remain to be fully 

elucidated (40; 41).

In addition to functions in membrane biology, cholesterol and it’s biosynthetic intermediates 

also serve as key metabolic precursor for the synthesis of corticosteroids, vitamin D, bile 

acids (106) and steroid hormones including neurosteroids (Fig. 1) (5; 26; 120). These in turn 

interact with nuclear receptors (e.g. FXR, PXR and VDR nuclear receptors for bile acids and 

ER, PR, AR, GR and MR the steroid nuclear receptors) thereby regulating other aspects of 

cell function (141). With the exception of the liver and steroidogenic tissues, mammalian 

cells do not metabolise cholesterol but instead modulate cholesterol content in their 

membranes by regulating cholesterol biosynthesis, cholesterol uptake and cholesterol export 

from the cell via ABC transporters (90).

In view of the complex regulation and diverse functions attributable to sterols it is perhaps 

not surprising that inherited defects in genes involved in cholesterol metabolism lead to a 

number of particularly severe and complex human diseases (99). Before discussing these 

diseases, aspects of cholesterol homeostasis will be reviewed to provide a framework for 

understanding the consequences of cholesterol metabolism/transport defects in human 

disease.

Sources of cholesterol

Most mammalian cells can acquire cholesterol from two independent sources. The first is de 
novo biosynthesis by a multi-enzyme catalysed pathway (Fig. 1). The second is from the 

uptake of exogenously derived cholesterol associated with plasma low-density lipoprotein 

(LDL) from the circulation (Fig. 2A). The balance between these two pathways depends on 

cell type and the availability of LDL-derived cholesterol. The de novo biosynthetic pathway 

can be manipulated pharmacologically using statins, which inhibit 3-hydroxy-3-

methylglutaryl-coenzyme A (HMG-CoA) reductase (Fig. 1). There are inherited diseases 

associated with defects in both pathways (de novo synthesis and exogenous uptake/

intracellular trafficking) and we will briefly review what is known about each pathway to 

provide the context for understanding the unexpected links between the different diseases 

involving defects in cholesterol homeostasis.

Cholesterol biosynthesis

All nucleated cells have the capacity to generate cholesterol de novo, with the liver being the 

most significant source. Cholesterol biosynthesis occurs in two distinct stages, the pre- and 

post-squalene pathways (81). The pre-squalene pathway contributes to sterol and isoprenoid 

synthesis, whereas the post-squalene pathway is essential for cholesterol and vitamin D 

biosynthesis (Fig. 1). Cholesterol contains 27 carbons that are all derived from acetyl coA 

Platt et al. Page 2

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2018 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(81). The first step in the pathway involves the condensation of three acetates to form the 

six-carbon intermediate, mevalonate. The next stage of the pathway converts mevalonate to 

activated isoprenes, these are then polymerised to form a 30 carbon linear molecule, 

squalene. Squalene then cyclises to form the classical four ring steroid nucleus and the final 

generation of cholesterol involves oxidation reactions and methyl group modifications (81). 

The cholesterol biosynthetic pathway is detailed schematically in Fig. 1.

LDL-derived cholesterol

LDL-derived cholesterol originates primarily from dietary sources via the liver. The major 

route by which exogenously derived cholesterol is taken up into cells is through the low-

density lipoprotein receptor (LDL) receptor (Fig. 2A). Additional receptors that can mediate 

the uptake of modified LDL include scavenger receptors (75; 115), but for the purposes of 

this review we will focus exclusively on the LDL receptor pathway. The significance of the 

LDL receptor (LDLR) was first appreciated through the pioneering work of Goldstein and 

Brown who were studying familial hypercholesterolemia (FH). Carl Muller originally 

described FH in 1938 (77) as an autosomal dominant trait with affected individuals 

exhibiting high levels of cholesterol in their blood that resulted in myocardial infarctions at a 

relatively early age. Two forms of the disease were later described by Khachadurian, the 

severe homozygous form and the milder heterozygous form (57). Goldstein and Brown 

showed the existence of the LDL receptor (37) and found that it was internalised by a 

clathrin-dependent mechanism (1; 2). They also discovered that the cholesterol taken up via 

this route mediates key regulatory functions, including feedback inhibition of cholesterol 

biosynthesis (11). A defect in the gene encoding the LDL receptor was subsequently shown 

to be the cause of FH (139). This is an excellent example of how the study of a rare inherited 

metabolic disease identified a fundamental cellular pathway and furthermore provided the 

conceptual framework for the concept of receptor-mediated endocytosis (1). LDL-derived 

cholesterol undergoes a complex intracellular trafficking itinerary, which facilitates its 

utilisation by the cell. Remarkably, the details of how cholesterol traffics within cells and in 

particular how it leaves the lysosome still remains the subject of investigation.

Cholesterol trafficking

Most cells express cell surface LDLR that binds apolipoprotein B (ApoB) proteins in the 

phospholipid layer of LDL particles (11; 139). It can also recognise apolipoprotein E 

(ApoE) in chylomicron remnants and VLDL remnants (115). The cholesterol rich particles 

bound by LDLR are internalised via clathrin-coated vesicles (2). As the endosomes acidify, 

LDL dissociated from its receptor and LDLR recycles back to the plasma membrane for re-

utilisation (115). When free LDL reaches the LE/Lys compartments cholesterol esters are 

hydrolysed by the action of acid lipase (115). The free cholesterol generated is then available 

for transport to other sites in the cell e.g. plasma membrane, mitochondria and the ER. There 

is evidence that the Rab11 GTPase is involved in vesicular transport of cholesterol to the PM 

and MLN64 facilitates cholesterol movement to steroidogenic mitochondria (15). However, 

how cholesterol reaches the ER remains unclear. One possibility is that it involves direct 

transfer via lysosome:ER contact sites. Another possibility is cholesterol is effluxed from 

lysosomes by the action of a cholesterol transporter to an as yet unidentified sterol transfer 

protein located in the cytosol or on the cytosolic face of the limiting membrane of the 
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lysosome. The potential role of a cholesterol transport pathway gained support based on two 

lysosomal storage diseases (LSDs), Niemann-Pick Disease, type C1 (NPC1) and Niemann-

Pick Disease, type C2 (NPC2)(125). They both involve the storage of multiple lipids 

(cholesterol and sphingolipids) in peripheral tissues and the brain, with cholesterol a 

prominent storage lipid in non-CNS tissues such as the liver (125). NPC1 is a multi-

membrane spanning protein localised to the limiting membrane of the LE/Lys (14), whereas 

NPC2 is a soluble mannose-6-phosphate targeted soluble cholesterol binding protein found 

in the lysosol (80) and also had previously been found at high levels in epididymal fluid 

where it was first described (termed HE1 in that context) (64). One hypothesis that has been 

proposed is that NPC2 transfers cholesterol to NPC1, which then through an unknown 

mechanism facilitates its egress from the lysosome (52). Deficiency of NPC1 or NPC2 

causes accumulation (storage) of unesterified cholesterol in Le/Lys, preventing its delivery 

to the ER and subsequent esterification. This in turn, leads to impaired regulation of 

cholesterol homeostatic genes including LDLR and HMG-CoA reductase and impairs 

oxysterol generation (33). NPC disease therefore paradoxically has features of storage and 

deficiency (129).

Reverse cholesterol transport

Cholesterol can leave cells by a process termed reverse cholesterol transport (88). ABC 

transporters are the key players in this process, particularly the ubiquitously expressed 

ABCA1 (118). Inherited defects in ABCA1 lead to Tangier disease (84) (discussed in detail 

below). When ABCA1 is knocked out in mice virtually no HDL is detectable in the 

circulation, illustrating that the function of ABCA1 is a pre-requisite for HDL formation and 

maintenance of circulating HDL levels (39). Tangier patients are also characterised by low 

plasma HDL levels (47; 58). The primary apolipoprotein of HDL is ApoA-1 and when this 

binds to ABCA1 it triggers cholesterol and phospholipid efflux via a poorly understood 

mechanism (118). These lipids are then transferred to ApoA-I to form discoidal HDL 

particles (Figure 2A). ABCG1 and ABCG4 then transfer additional cholesterol to nascent 

HDL and also to other acceptors (114; 126). Lecithin:cholesterol acyl transferase (LCAT) is 

an enzyme found in plasma and this esterifies cholesterol leading to the maturation to 

globular HDL particles (114). ABCA1 traffics between the late endocytic system and the 

plasma membrane and has been implicated to play a role in late endocytic trafficking. (82; 

83).

Cholesterol Homeostasis: the role of “active” cholesterol

An unanswered question is how cells sense cholesterol levels and how they regulate 

cholesterol levels in their membranes. New evidence has recently emerged which focuses 

attention on “active” or “free” cholesterol. It has been known for many years that plasma 

membrane sterols complex with polar lipids, such as sphingolipids (6; 87). Once the binding 

capacity of the polar lipids is saturated the excess uncomplexed cholesterol is in an “active” 

or “free” state (114). These active molecules are dispersed in the membrane and have an 

increased ability to spontaneously escape the membrane or be chemically modified. This 

suggests that in this active state, cholesterol becomes exposed from the membrane and thus 

accessible to acceptor proteins (114). Experiments that increase PM cholesterol levels 

revealed enhanced transfer of cholesterol to other membranes or increased extractability by 
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β-cyclodextrins. This then suggests the intriguing possibility that “basal” cholesterol levels 

in cells are equivalent to the total binding capacity of cholesterol in a given membrane, such 

that there is minimal active cholesterol. If excess active cholesterol is present it will 

equilibrate down a concentration gradient leading to changes in homeostatic gene 

expression. The point of this model is that it is not total cholesterol levels that are sensed, 

just the fraction above the binding capacity of the membrane lipids. In support of this model 

is experimental evidence that has been recently reviewed (114). It has also been proposed 

that in reverse cholesterol transport the function of the ABC transporters, such as ABCA1, is 

to increase exposure of cholesterol at the PM (not fully efflux it) to facilitate collisional 

transfer to protein acceptors (122). This is supported by the observation that addition of 

ceramide to membranes displaces cholesterol and stimulates ABCA1 mediated cholesterol 

efflux, where as the reverse is true if sphingomyelin levels are elevated (114).

Cholesterol metabolism in the brain

As diseases of cholesterol metabolism frequently present with central nervous system (CNS) 

pathology it is important to consider some of the unique aspects of brain cholesterol 

metabolism. Unesterified cholesterol is an important component of the plasma membrane of 

all cells, but is present at particularly high levels in cells of the brain. It is a major 

component of compact myelin, which is a specialised form of the plasma membrane of 

oligodendrocytes. Brain cholesterol accounts for some 23% of the sterol content of the 

mammalian body, despite the brain being only about 2% of total body weight (25). It is 

distributed between myelin and the plasma membranes of neurons and glia. The main barrier 

to movement of metabolites into or out of the CNS is the blood-brain barrier. Based upon a 

variety of experimental approaches, in multiple species, there is no evidence of cholesterol 

moving from the plasma into the CNS, even during development when sterol levels in the 

brain undergo dramatic expansion (25). Instead, cholesterol is synthesised locally within the 

brain and, most importantly, the differential rates of synthesis mirror rates of sterol 

accumulation in regions of the brain measured (25). Although neurons can synthesise 

cholesterol they require a significant additional source of cholesterol for their function that is 

derived primarily from glial cells (25; 43; 72; 93). Although the details of cholesterol 

metabolism in the brain remains relatively poorly understood, it is, however, known that 

cholesterol egress from the CNS into the plasma does occur, but only in the form of 24-

hydroxy cholesterol (25).

Disorders of cholesterol biosynthesis

Amongst the approximately 7000 inborn errors of metabolism are a family of diseases that 

result from defects in genes involved in sterol metabolism. We will focus on disorders of 

post-squalene cholesterol biosynthesis. All of these disorders are rare in nature, with Smith-

Lemli-Optiz syndrome (SLOS) being the most common disorder with an average incidence 

of 1 in 50,000. In 1993 SLOS was recognized as the prototypic cholesterol biosynthesis 

disorder (53; 119). Many of these syndromes have corresponding mouse models; some are 

spontaneous mutants while others have been generated by genetic manipulation. 

Interestingly, all these disorders, although distinct, have overlapping phenotypes suggesting 

some common pathological mechanisms. We will provide a brief clinical description here 
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for each disease, but we refer the reader to Porter and Herman (99) who recently reviewed 

this topic in considerable detail.

Antley-Bixier Syndrome

Antley-Bixier Syndrome (ABS, OMIM #207410) falls in a grey zone, as there is debate as to 

whether pathology of this disorder is due to impaired cholesterol synthesis or impaired 

steroidogenesis. The gene mutated in this disorder is a cytochrome P450 oxidoreductase 

(POR). The protein acts as an electron donor to numerous P450 enzymes. One of these 

enzymes is the cholesterogenic C14 lanosterol demethylase. Dysregulation of this enzyme 

leads to the storage of 4,4-Dimethylcholesta-8(9),14-dien-3β-ol, and 4,4-

Dimethylcholesta-8(9),14,24-trien-3β-ol. ABS patients present with severe craniofacial 

abnormalities, skeletal defects including radiohumoral synostosis, and frequently ambiguous 

genitalia (99).

Hydrops-Ectopic Calcification-Moth-eaten skeletal dysplasia

Hydrops-Ectopic Calcification-Moth-eaten skeletal dysplasia (HEM dysplasia OMIM 

#215140), also referred to as Greenberg dysplasia is a lethal skeletal dysplasia that is a 

potential disorder of cholesterol biosynthesis although there is debate as to whether this is a 

laminopathy due the dual role of lamin B receptor (LBR) (130). Initially HEM dysplasia was 

noted to have trace elevations of 14-diene-3β-ol, and cholesta-8(9),14,24-trien-3β-ol. (Fig. 

1). The accumulation of these sterols indicated a defect at the level of the sterol delta 14 

reducatse. Interestingly, within this region of the pathway this is the only enzymatic step in 

which redundancy exists i.e. the sterol delta 14-reductase ((TM7SF2,SR-1) and the lamin B 

receptor (LBR). The first case was identified as a homozygous mutation in LBR (134). A 

subsequent study identified 8 additional cases of HEM dysplasia(89).

Congenital Hemidysplasia with Ichthyosiform nevus and Limb Defects syndrome (CHILD) 
and CK syndrome

Congenital Hemidysplasia with Ichthyosiform nevus and Limb Defects syndrome (CHILD, 

OMIM #308050) and CK syndrome are two distinct yet related disorders and are commonly 

referred to as NSDHL-Related Disorders. Both disorders are caused by mutations in the 

NADH steroid dehydrogenase-like gene (NSDHL), while CHILD syndrome presents, as an 

X-linked male lethal disorder CK syndrome. NSDHL is part of a three-enzyme complex 

responsible for the C-4 demethalization of the sterol ring structure. Biochemically elevated 

levels of 4,4-dimethylcholesta-8-en-3β-ol and 4,4-dimethylcholesta-8,24-en-3β-ol (Fig. 1) 

have been reported with the highest aberrant sterol concentrations detected in cultured 

fibroblast from the affected skin lesions grown in lipoprotein deficient media. The traditional 

clinical presentation of CHILD syndrome is the presence of unilateral skin lesions and 

ipsilateral limb reductions (45). A second member of the C-4 demethalization complex, 

sterol C4 methyloxidase (SC4MOL) has been found disrupted in an autosomal recessive 

fashion in one human patient to date. The patient presented with low serum cholesterol and 

elevated levels of 4α-methyl-5α−cholest-8(9)-en-3β-ol; dihydrolanosterol; 4α-methyl-5a-

cholest-7(8)-en-3β-ol; 4,4′-dimethyl-5α-cholesta-8(9)-en-3β-ol; 4,4′-dimethyl-5α-

cholesta-8(9)-en-3β-ol; and 4,4′-dimethyl-5α-cholesta-8(9),24-dien-3β-ol all consistent 

with impairment of this complex. Clinical presentation began at the age of two as 
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ichthyosiform erythroderma around her umbilicus that has progressed to cover her whole 

body, sparing her palms (44).

Conradi-Hunermann syndrome

Conradi-Hunermann syndrome (CDPX2, OMIM #302960) is a second X-linked disorder 

that was thought to be male lethal as well although there are scattered reports of affected 

males presenting with mutations that preserve some enzymatic function (74). CDPX2 is 

caused by mutations in the gene encoding the Emopamil Binding Protein (EBP). This gene, 

while named for its ability to bind Emopamil, a drug developed as a calcium channel 

blocker, is in fact the sterol Δ7-Δ8 isomerase. As would be expected, mutations in this gene 

lead to the increase levels of cholesta-8(9)-en-3β-ol and Zymosterol (Fig 1). Clinical 

manifestations of this disorder in females involve predominantly the skin and skeleton. The 

skeletal findings include rhizomelic shortening, epiphyseal stippling, short stature, and 

scoliosis, while the skin phenotype presents as hyper or hypo pigmentation, dry scaly skin 

that frequently follows the lines of X-inactivation.

Lathosterolosis

Lathosterolosis (OMIM #607330) is an autosomal recessive disorder caused by mutations in 

the sterol 5-desaturase (SC5D) gene. SC5D is responsible for conversion of lathosterol to 7-

dehydrocholesterol (Fig. 1) accomplished by desaturating the bond between C5 and C6 of 

the B-ring of cholesterol generating a double bond (Fig. 1). To date only 4 patients have 

been reported in the literature. The first case was originally misdiagnosed as a case of 

atypical SLOS with nonneuronal mucolipidosis (12). Subsequent biochemical and molecular 

testing revealed elevated levels of lathosterol and a homozygous missense mutation p.Y46S 

confirming the correct diagnosis of lathosterosis (59). Two patients were siblings and the 

forth was just reported (12; 46). All 4 patients presented with multiple malformations, 

several of which are also present in Smith-Lemli-Opitz syndrome (SLOS, see below) such as 

ptosis, congenital cataracts, anteverted nares, micronathia, postaxial polydactyly, ambiguous 

genitalia, cutaneous toe syndactyly, and cognitive impairment (46). Interestingly, cultured 

fibroblasts from all three patients under certain growth conditions developed lamellar 

lysosomal inclusions, similar to those seen in NPC disease. Targeted disruption of the Sc5d 
gene in mice generated a mouse model of this disease (59). Consistent with the human 

disorder, these mice had elevated levels of lathosterol, craniofacial malformations, postaxial 

polydactyly, and fibroblasts derived from these mice mimic the lamellar lysosomal 

inclusions seen in the human lines (59). There is no specific therapy for this disease.

Desmosterolosis

Desmosterolosis is another rare autosomal recessive disorder of cholesterol biosynthesis 

caused by mutations in the sterol 24-reductase (DHCR24) gene (19). It is believed that this 

side chain reduction can occur at many places within the Kandutsch-Russell cholesterol 

biosynthesis pathway (Fig. 1). These mutations lead to an increase in desmosterol levels in 

all tissues. Three cases of desmosterolosis have been published to date, all with divergent 

clinical presentations (3; 19; 29; 110; 135). DHCR24 was initially cloned as Selective 

Alzheimer disease indicator-1 (seladin-1). DHCR24/seladin-1 has two distinct roles in the 

cell. First in the endoplasmic reticulum (ER) as a member of the cholesterol biosynthetic 
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machinery, and second in the cytoplasm and nucleus where it serves as a hydrogen peroxide 

scavenger, protecting the cell from oxidative stress (60). More patients will need to be 

identified to determine if mutations in one region of the gene result in one phenotype versus 

the other. Pharmacological models of desmosterolosis have been generated using either 

U18666A or triparanol (7; 30). Interestingly, varying the dose of U18666A generates models 

of 2 distinct and yet potentially related disorders, desmosterolosis and NPC. The phenotype 

of the desmosterolosis mouse model however, does not replicate that of the Npc1−/− mouse 

model. As with lathosterolosis there is currently no specific therapy for this disease.

Smith-Lemli-Opitz Syndrome

Smith-Lemli-Opitz syndrome (SLOS, OMIM #270400) is the prototypic disorder of 

cholesterol biosynthesis first described in 1963 by Smith, Lemli and Opitz (112). SLOS is 

biochemically characterized by the abnormal accumulation of 7-dehydrocholesterol (7DHC) 

(Fig. 1) (53). The causative gene defect is in 7-dehydrocholesterol reductase (DHCR7) 

which functions to reduce 7DHC to generate cholesterol in the final step of the Kandutsch-

Russell biosynthetic pathway (98) (Fig. 1). Three groups independently cloned DHCR7 in 

1998 and mutations within the gene were proven to be the molecular basis for SLOS (28; 

131; 136) (119). SLOS is more common than lathosterolosis and desmosterolosis with an 

incidence estimated to be between 1 in 25,000 to 1 in 60,000 (98). The carrier rate for this 

disease is high in the general population but does not lead to the high frequency of cases 

predicted based on this carrier frequency (86). This is because, at the severe end of the 

spectrum, SLOS can be a lethal disorder with major congenital anomalies and may indeed 

account for a significant number of miscarriages in the general population (86). However, 

mild cases combine minor physical stigmata with behavioral and learning disabilities. 

Typical physical manifestations include second and third toe syndactyly, microcephaly, 

micrognathia, cleft palate, polydactyly, cardiac malformations, pyloric stenosis, and genital 

malformation (4; 85; 101). Advancements in clinical management of this disorder has 

increase the life expectancy of these patients, however, there is currently little data to predict 

what additional clinical issues may arise later in the lives of these patients.

Currently, the only treatment for SLOS is dietary cholesterol supplementation (117). While 

there is anecdotal evidence that cholesterol supplementation benefits growth through 

improving overall general health of individuals with SLOS and reducing serum levels of 7-

DHC, cholesterol therapy has significant limitations (98). 7DHC level elevation persists, 

which is not without consequence. 7DHC may have toxic effects and has been shown to 

substitute for cholesterol within various membranes (38) and processes, such as oxysterol 

production, bile acid formation (79), membrane raft formation and steroid production (71; 

111) One significant limitation of cholesterol therapy is the inability of cholesterol to cross 

the blood-brain barrier in any appreciable amounts (24). Treating the brain in SLOS is of 

paramount importance as SLOS individuals present with a myriad of behavioural and 

learning deficits, including autistic characteristics (23; 32).

Three mouse models of SLOS have been generated to date. The first two models are null 

mutations, one deleting exons 3 to 5 (133) and the second deleting exons 4 to 8 (128). Both 

of these models recapitulate the biochemical phenotype of the SLOS patients presenting 
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with elevated levels of 7DHC and decreased levels of cholesterol in all tissue and serum 

(20). These effects are most prominent in the CNS due to the closure of the blood-brain 

barrier to cholesterol early on in embryonic development (70). The peripheral organs do not 

reach as high a level of dehydrocholesterol (combination of 7DHC and 8DHC) to cholesterol 

ratio as a result of some maternal cholesterol being supplied by the yolk sac and additional 

small amounts of cholesterol transported across the placenta (54). Both models die within 

twenty-four hours of birth. The mice present with cleft palate, an abnormal suck-swallow 

response cause by impairment of the NMDA receptors, intrauterine grow retardation and 

reduced mobility (128; 133). The third mouse model is a hypomorphic “knock-in” mouse 

model (20) where the human T93M mutation has been replicated in the mouse Dhcr7 gene. 

At birth these mice also mimic the human syndrome with elevated levels of 

dehydrocholesterol with mild reduction in cholesterol. These mice are viable and reproduce. 

Phenotypically they present with two-three-toe syndactyly, the most common physical 

finding in SLOS, as well as minor growth retardation, and approximately one third of the 

mice develop ventricular dilatation by three months of age (20).

Disorder of Cholesterol Trafficking

Niemann-Pick Disease, type C

Niemann-Pick Disease, type C (NPC) is an autosomal recessive lysosomal storage disease, a 

feature of which is cholesterol mistrafficking (125). Free cholesterol is “stored” in Le/Lys 

with minimal escape of cholesterol from the acidic compartment to the ER. In addition to 

defects in cholesterol transport, several other lipid species are stored, including 

glycosphingolipids (GSLs), sphingomyelin (SM) and spingosine (generated from ceramide 

catabolism in LE/Lys) (124). In addition to this biochemical complexity, NPC disease is 

unusual in that it is caused by mutations in two independent genes, NPC1 or NPC2 (14; 80). 

NPC disease occurs at a combined frequency of 1:120,000 live births with about 95% of 

cases resulting from mutations in the NPC1 gene (125). Apart from a small group of patients 

who die within the first months of life from hepatic or pulmonary failure, most patients 

present with neonatal cholestatic jaundice, which usually resolves spontaneously. 

Hepatosplenomegaly occurs in some cases. Relentless neurodegeneration then dominates the 

clinical course of the disease leading to cerebellar ataxia, dysarthria, dysphagia, dementia 

and premature death, typically around the end of the second decade of life (51). Juvenile and 

adult onset variants also occur (125).

The NPC1 gene encodes a thirteen trans-membrane spanning protein of the limiting 

membrane of late endosomes/lysosomes whereas NPC2 is a soluble lysosomal cholesterol 

binding protein(138). At the cell biological/biochemical level two key features of this 

disease make it unique: 1) it has a complex profile of lipid storage 2) late 

endosome:lysosome fusion is profoundly impaired (123). This disorder has therefore 

brought to light a previously unknown cell biological pathway, the NPC pathway. As 

mentioned above, because unesterified cholesterol is stored in NPC disease and NPC1 and 

NPC2 bind and exchange cholesterol, it has led to the prevailing view that the primary 

function of this pathway is to facilitate cholesterol egress from the lysosome to the ER. 

However, an alternative hypothesis is that NPC1 functions in lysosomal sphingosine 
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transport (68). When NPC1 is inactivated in healthy cells the first metabolite to accumulate 

is sphingosine (68). Sphingosine is generated in the lysosome from the catabolism of 

ceramide via the action of acid ceramidase. It is protonated at acidic pH and requires a 

transporter to leave the lysosome. The sphingosine derived from sphingolipid catabolism in 

the lysosome either enters the sphingolipid salvage pathway or becomes phosphorylated to 

generate sphingosine-1-phosphate (S1P), a key pro-survival signaling molecule (42). There 

is evidence in the NPC1 mouse and in NPC patients suggesting that S1P dependent cell 

lineages, such as NK cells, are altered in this disease (113).

Sphingosine storage has another profound effect on cells, which is to directly or indirectly 

cause a defect in the filling of the acidic compartment with calcium (68). The lysosome is a 

regulated calcium store that is uniquely mobilized via the endogenous second messenger 

NAADP (18; 76). Fusion and vesicular trafficking in the endocytic pathway are calcium 

dependent processes and the calcium is derived from the lysosomal compartment itself (68). 

Failure to release sufficient calcium in NPC disease leads to a block in trafficking/fusion 

essential for the functioning of the endosomal/lysosomal system, causing the secondary 

storage of cholesterol, GSLs and sphingomyelin (68). This study of the temporal 

relationship of the multiple metabolites stored in NPC suggests cholesterol is a secondary 

storage metabolite in NPC and is not central to triggering the pathogenic cascade (68; 69).

Disorder of reverse cholesterol transport

Tangier disease

Frederickson reported the first case of Tangier disease in 1961 where he examined two 

siblings from Tangier Island located in the Chesapeake Bay in the USA (31). Both patients 

had typical symptoms now associated with the disease: orange-colored tonsils, enlarged 

spleen, liver, and lymph nodes, and decreased high-density lipoprotein (HDL) cholesterol 

levels (31; 100). While orange coloured tonsils have been described as the presenting 

symptom in almost all children with Tangier disease, peripheral neuropathy is a common 

presenting symptom in adults with Tangier disease (100). Tangier disease has been reported 

in approximately 100 patients worldwide (100) and is caused by mutations in the ATP 

binding cassette transporter protein 1 (ABCA1) (103; 107). Patients have little to no 

circulating HDL and accumulate cholesterol leading to the formation of foam cells, an early 

marker of atherosclerosis, and patients develop cardiovascular disease later in life (100; 

109).

The ABC transporters are the largest known membrane transport family, consisting of 49 

members divided into seven subfamilies – A through G (48; 121). The membrane associated 

protein ABCA1, which is defective in Tangier Disease, regulates cellular cholesterol and 

phospholipid homeostasis by functioning as a cholesterol efflux pump (67; 108). ABCA1 

mediates the transfer of lipids across the plasma membrane to apolipoproteins, apoA-1 in 

particular, to form HDL particles (58), hence the low levels of HDL in Tangier disease 

patients. In addition to regulating cholesterol efflux, ABCA1 has also been proposed to have 

anti-inflammatory functions (67). ABCA1 expression is regulated at multiple levels 

throughout the body, with highest protein expression found in the liver, brain, adrenal glands 

and macrophage foam cells. Interactions between apolipoproteins and ABCA1 activate 
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multiple signalling pathways, including the JAK/STAT, PKA and PKC pathways (67). The 

c-terminus of ABCA1 contains a PDZ domain responsible for mediating protein-protein 

interactions, in addition to a VFVNFA motif (13). Several mutations in the ABCA1 c-

terminal domain have been identified in Tangier disease patients suggesting it has a crucial 

function. Deletion of the VFVNFA domain also results in diminished apoA-1 binding and 

lipid efflux (13). Tangier disease patients have structurally abnormal late endocytic vesicles 

in addition to impaired motility and trafficking, which is also observed in NPC disease 

patient cells (8). Previous studies have shown that while ABCA1 and NPC1 may interact in 

the cell, the NPC1 protein is not required for delivery of LE/LY cholesterol to ABCA1 to 

form HDL (8). Additionally, the ABCA1 transporter may convert pools of lipids, which 

otherwise might associate with NPC1, to pools that can associate with apoA-1 to form HDL 

particles(83).

The majority of NPC patients have low HDL-cholesterol, suggesting diminished ABCA1 

activity (17). NPC is the first disease to have low HDL levels as a consequence of impaired 

ABCA1 regulation, rather than a mutated ABCA1 protein as seen in Tangier disease (17). It 

is likely that the sequestration of cholesterol in LE/Lys in NPC, which leads to impaired 

sterol-response gene expression, is responsible for a failure to up regulate ABCA1 despite 

the storage of cholesterol (8). Interestingly, cholesterol mobilisation by ABCA1 is critically 

dependent on NPC2 but not NPC1 function (9). There is currently no specific treatment for 

patients with Tangier disease.

Unexpected mechanistic links between NPC, SLOS and Tangier disease

As discussed above, SLOS, NPC and Tangier are three unique inherited disorders involving 

very different defects in cholesterol homeostasis. SLOS is the prototypic disorder of 

cholesterol biosynthesis, Tangier a reverse cholesterol transport disorder and NPC a disease 

involving defective cholesterol trafficking, associated with an acidic store calcium defect. 

However, a recent serendipitous discovery has highlighted an unanticipated mechanistic link 

connecting these three disparate diseases, notably the presence of perturbations in the NPC 

pathway in all three disorders. This discovery is shedding light on convergent pathogenic 

mechanisms and suggesting novel approaches to therapeutic interventions in these three 

severe human disorders.

NPC and SLOS

The first evidence of a potential mechanistic link between NPC and SLOS came from 

studies with SLOS fibroblasts. In principle, SLOS cells should be correctable with 

cholesterol replacement therapy, as this would bypass the genetic defect in the conversion of 

7DHC to cholesterol (Fig. 1). However, when SLOS patient fibroblasts were cultured in 

lipid-depleted medium to induce de novo cholesterol synthesis and by the nature of the 

defect elevate 7DHC, these cells exhibited a significant cholesterol trafficking defect leading 

to accumulation of unesterified cholesterol in LE/Lys (132). Sequestration of intracellular 

cholesterol in the endolysosomal compartment would decrease bioavailability of cholesterol 

for other cellular functions in SLOS cells (132), a cellular phenotype that superficially 

mimics the fate of LDL-derived cholesterol in NPC disease cells. The question posed by this 
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study was did this superficial similarity between these two apparently unrelated disorders 

suggest mechanistic convergence? The cholesterol precursor 7DHC, while structurally very 

similar to cholesterol has a nonplaner B ring. Could, for example, the increased levels of 

7DHC be inhibiting NPC1 or NPC2 function causing exogenous cholesterol to be mis-

trafficked in SLOS? It is conceivable that 7-DHC could interfere with this process by acting 

as an inhibitor, analogous to U18666A, a drug that induces NPC cellular phenotypes (66). If 

this hypothesis is correct the cell biological and biochemical features of NPC disease cells 

should also be present in SLOS cells, in addition to the SLOS specific accumulation of 

7DHC. We therefore investigated this possibility by analyzing the cellular and biochemical 

hallmarks of NPC disease in SLOS patient fibroblasts that spanned the phenotypic spectrum. 

We found that the accumulation of 7-DHC in SLOS led to lysosomal storage of cholesterol, 

sphingomyelin and multiple GSLs, all hallmarks of NPC disease (69)(Table 1 and Fig. 3). 

Furthermore, SLOS cells had the lysosomal calcium defect identified as a unique feature of 

NPC disease, induced by sphingosine storage (68). This was responsible for defective 

transport of cholesterol out of the endocytic system (Wassif et al, In preparation). These 

defects are all down-stream of 7-DHC accumulation and this combination of phenotypes had 

only previously been reported in NPC disease (68). These data suggest a potential 

interaction between 7-DHC and the NPC1 protein or NPC2 proteins. We found an inverse 

correlation between residual enzyme activity (DHCR7) and levels of GSLs and sphingosine 

storage (Wassif et al, In preparation). Indeed, sphingosine levels in SLOS patient CSF were 

elevated 2 fold compared to controls, as was replicated in the brain from the full null mouse 

model at embryonic day 18.5. GSL’s were 2.5 fold higher in SLOS CSF compared to 

controls but did not correlate with severity or residual enzyme activity (Wassif et al, In 
preparation).

NPC and Tangier Disease

There are several published studies linking ABCA1 expression/function to the NPC disease 

pathway (8; 9). These findings are consistent with the general homeostatic network that 

exists to regulate cholesterol trafficking and cholesterol levels in cells. If one element is 

perturbed it will have an impact on other pathways in the regulatory network. However, a 

very recent and unanticipated finding has arisen that suggests a specific mechanistic link 

between NPC and Tangier disease. Interestingly, this link came to light not in the laboratory 

but from a clinical observation following a diagnostic error. A female patient presenting with 

thrombocytopenia, splenomegaly, and neurological symptoms that included dysphagia and 

gait ataxia, was misdiagnosed as Niemann-Pick Type C (NPC) and put on the current EU 

approved treatment for NPC, miglustat (92; 137). After 4 months of treatment with 300 

mg/day of miglustat the patient demonstrated improvement with respect to neurological 

symptoms (Sechi et al, In Preparation). The patient was subsequently diagnosed with 

Tangier disease after molecular testing of NPC1 and NPC2 failed to support the NPC 

diagnosis. Although the neurological symptoms in Tangier disease can be relapsing and 

remitting, the correlation of symptoms with miglustat therapy was intriguing and suggested 

a potential mechanistic convergence between Tangier disease and Niemann-Pick Disease, 

type C. This potential convergence was further explored. NPC disease is characterised at the 

cellular level by storage of GSLs, fatty acids, cholesterol, sphingomyelin and sphingosine. 

NPC cells also have low levels of calcium in LE/Lys. All of these cellular hallmarks were 
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found in the Tangier disease patient cells (Colaco et al, In Preparation) (Table 1) suggesting 

that a consequence of the loss of function of ABCA1, through an as yet unknown 

mechanism, inhibits the NPC pathway. When gene expression levels of NPC1 and NPC2 
were investigated in Tangier disease fibroblasts NPC2 was found to be upregulated two fold 

suggesting that its function may be in some way impaired in response to ABCA1 

dysfunction (Colaco et al, In Preparation).

An expanded application of miglustat from NPC to SLOS and Tangier?

Miglustat is an imino sugar drug that inhibits glucosylceramide synthase, the enzyme, which 

catalyses the first step in GSL biosynthesis (95; 96). This orally available drug can therefore 

be used to pharmacologically inhibit the biosynthesis of GSLs for treating lysosomal storage 

diseases that store GSLs as primary or secondary metabolites (95). Miglustat was approved 

by the EMEA in 2002 and by the FDA in 2003 for treating type 1 Gaucher disease(21; 61). 

Gaucher disease results from an inherited defect in glucocerebrosidase leading to the storage 

of glucosylceramide in the lysosome. Miglustat reduces the number of GSL molecules 

synthesised by cells so fewer require degrading in the lysosome, allowing the rate of 

biosynthesis to better match the impaired rate of catabolism (62; 95). As the drug crosses the 

blood-brain barrier it also has the potential to treat CNS manifestations of LSDs involving 

GSL storage (27; 55; 97). Miglustat was tested in a mouse model of NPC1 disease and 

efficacy was demonstrated (140) and was subsequently approved by the EMA for treating 

NPC disease, following efficacy being demonstrated in an international clinical trial (92). 

Indeed it is now approved in most countries world-wide, with the exception of the USA (91).

Our findings that SLOS and Tangier disease involve secondary inhibition of the NPC 

pathway (Table 1) suggest that miglustat could be a potential therapy for these diseases, in 

addition to NPC. Images of wild type, NPC1, SLOS and Tangier disease patient fibroblasts 

are shown in Fig. 3 to illustrate cholesterol storage in the late endocytic compartment is a 

common feature of all three diseases. To date miglustat treatment of cultured SLOS cells 

caused a normalisation of cholesterol trafficking with cholesterol being delivered to the ER. 

In SLOS there are both fixed developmental abnormalities and functional deficits due to 

altered sterol membrane composition. Functional abnormalities in SLOS result from both a 

cholesterol deficiency and toxicity of elevated dehydrocholesterol levels. Current therapeutic 

approaches involve dietary provision of cholesterol and upregulation DHCR7 activity to 

increase endogenous cholesterol synthesis. Intracellular endolysosomal sequestration of 

cholesterol in SLOS will further compound the functional cholesterol deficiency and by 

limiting the intracellular bioavailability of cholesterol the NPC-like cellular phenotype may 

limit therapeutic efficacy of potential therapies. Miglustat treatment of SLOS may therefore 

provide correction of the NPC phenotypes allowing cholesterol trafficking to normalise, thus 

providing potentially more benefit from cholesterol supplementation. In addition, as 

miglustat crosses the blood-brain barrier it has the potential to improve cell biological 

defects associated with inhibition of the NPC pathway that may improve CNS function. 

Regarding Tangier disease, patient cells treated with miglustat showed biochemical and cell 

biological correction suggesting that partial correction of the defective NPC pathway may be 

of therapeutic benefit consistent with a case report suggesting that miglustat may have 

improved symptoms in a Tangier patient (Colaco et al, In Preparation).
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Concluding Remarks

Inborn errors of cholesterol metabolism have provided many fundamental insights into 

normal cholesterol homeostasis and cell biology over several decades. They have been 

viewed as discreet diseases with their own unique genetic, biochemical and cell biological 

consequences that are in turn responsible for the clinical spectrum of symptoms associated 

with each disease. What has been surprising is that at least three of these diseases; SLOS, 

NPC and Tangier, share a common pathological hallmark at the cellular level, namely 

inhibition of the NPC pathway. The precise mechanism causing inhibition of the NPC 

pathway in SLOS and Tangier remain to be fully elucidated. However, these findings are 

suggesting novel therapeutic approaches to treating SLOS and Tangier using drugs such as 

miglustat that modify the cell biology of NPC disease. Miglustat has already been 

“inadvertently” tested in one case of Tangier disease suggesting that this may represent a 

novel therapeutic approach for this currently untreatable disease. Clinical trials of miglustat 

in SLOS are currently being planned based on the convergent mechanism of pathogenesis 

shared with NPC and Tangier disease. It remains to be determined whether other human 

diseases also involve NPC pathway dysfunction. This is currently under investigation as it 

may pave the way for novel approaches to therapy for diseases that currently lack effective 

treatments using approved NPC disease therapeutics.
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Figure 1: 
Schematic depicting cholesterol biosynthesis and associated diseases.

Platt et al. Page 22

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2018 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Cartoon summarising the cellular consequences of NPC, SLOS and Tangier disease on 

cholesterol homeostasis and common involvement of the NPC pathway. Panel a) WT cell, b) 

NPC cell and SLOS and c) Tangier disease cell.

Platt et al. Page 23

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2018 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Cholesterol storage (filipin staining) in late endocytic compartment is a common feature 

observed in NPC, SLOS and Tangier patient fibroblasts relative to a healthy control cells. 

Filipin (blue), nuclear strain (red).
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Table 1:

Biochemical and cell biological phenotypes shared between NPC, SLOS and Tangier disease.

Cellular Phenotypes NPC SLOS Tangier

Glycosphingolipid storage + + +

Cholesterol storage + + +

Sphingomyelin storage + + +

Sphingosine storage + + +

Sphingolipid mistrafficking + + +

Reduced acidic store calcium levels + + +

Response to miglustat +
In clinical use, EMA approved)

+
Corrects SLOS cells

+
Corrects Tangier cells and improved 
symptoms in one patient
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