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Disorders of mitochondrial function
François-Guillaume Debraya,b, Marie Lamberta and Grant A. Mitchella

Introduction
Mitochondrial diseases are a groupof inheriteddisorders of

energy metabolism associated with a vast range of pre-

sentations, symptoms, severity and outcome. Combined,

they form one of the commonest groups of inherited

metabolic diseases, with a minimum birth prevalence

estimated at approximately 1/5000 [1�,2�,3]. Because oxi-

dative phosphorylation (OXPHOS) is necessary for nearly

all cells, any organ can be affected in mitochondrial dis-

eases. Mitochondrial diseases may present to numerous

pediatric subspecialists and are included in the differential

diagnoses of a large number of clinical situations. As yet,

few affected patients have a definite molecular diagnosis.

The present review concentrates on recent advances of

clinical importance in pediatrics. The challenges for the

pediatrician are as follows: which patients should be

investigated? The answer to this question requires

knowledge of the clinical spectrum of mitochondrial

diseases. How? Among several specialized, often invasive

tests, which is best, when, and in which tissue? How will

diagnosis and treatment help the patient?

Mitochondrial genetics and biology
About 10–15% of mitochondrial diseases are caused by

mutations in mitochondrial DNA (mtDNA) [1�], a

16 596-base pair circular DNA that contains 13 genes

encoding subunits of the respiratory chain and 22 trans-

fer-RNA and two ribosomal-RNA genes for mitochon-

drial RNA translation. Genetically, mtDNA shows high

mutation rate, high copy number (thousands per cell) and

exclusively maternal transmission between generations.

In some individuals, only a fraction of mtDNAmolecules

are mutant (heteroplasmy); random distribution at cell

division during development and selection for or against

cells with high levels of mutant mtDNAs may lead to
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Purpose of review

Mitochondrial diseases are a major category of childhood illness that produce a wide

variety of symptoms and multisystemic disorders. This review highlights recent clinically

important developments in diagnostic evaluation and treatment of mitochondrial

diseases.

Recent findings

Major advances have been made in understanding the genetic bases of mitochondrial

diseases. Molecular defects have recently been reported in mitochondrial DNA

maintenance, RNA translation and protein import and in mitochondrial fusion and fission,

opening new areas of cell disorder. Diagnostic testing is struggling to keep pace with

these fundamental discoveries. The diagnostic approach to children suspected of

mitochondrial disease is rapidly evolving but few patients have a molecular diagnosis. A

better notion of the prognosis of affected children is emerging from studies of long-term

outcome. Some therapeutic successes are reported, such as in coenzyme Q deficiency

conditions.

Summary

Mitochondrial diseases can present with signs in almost any organ.Well planned clinical

evaluation is the key to successful diagnostic work-up of mitochondrial diseases. An

approach is presented for further testing in specialized laboratories. Mitochondrial

diseases can be caused by mutations in mitochondrial DNA or, more commonly in

children, in nuclear genes. Mitochondrial DNA mutations pose special challenges for

genetic counseling and prenatal diagnosis. Supportive treatment and avoidance of

environmental stresses are important aspects of patient care. Specific treatment of

mitochondrial diseases is in its infancy and is a major challenge for pediatric medicine.
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different mutation loads in different cells and organs.

Mitochondrial dysfunction occurs beyond a certain level

of mutant mtDNA; this threshold presumably depends

on the energy requirement of each tissue.

Most pediatric mitochondrial diseases are caused by

defects of proteins encoded by nuclear genes that are

transported into mitochondria [2�]. These mitochondrial

diseases are inherited in Mendelian fashion. Proteomic/

bioinformatic analyses predict more than 1 000 such

proteins [2�,3]. Although complete inactivation of many

of themmay be prenatally lethal [4], they form a rich pool

of potential candidate genes for mitochondrial diseases.

For this review, we define mitochondrial diseases as

genetic conditions of the respiratory chain or preceding

steps of pyruvate oxidation and the Krebs cycle (Fig. 1).

The main function of mitochondria is ATP synthesis.

Proteins of mitochondrial and nuclear origin are

assembled in four of the five respiratory chain complexes.

Only Complex II contains exclusively nuclear-encoded

proteins. The respiratory chain receives energy-rich

hydrogen atoms from nicotinamide adenine dinucleotide

(NADH) or flavin-adenine dinucleotide (FADH), pro-

duced mainly in the Krebs cycle and from fatty acid

oxidation. Electrons from the hydrogen are passed

between complexes in the chain. Complexes I, III and

IV extrude protons from the mitochondrial matrix. Com-

plex IV (cytochrome oxidase) consumes oxygen to form

water. Complex V couples ATP synthesis to proton

reentry, powered by the electrochemical gradient.

Mitochondria are deeply integrated in cell biology, with

roles in urea, porphyrin [5] and steroid hormone synthesis

[6], apoptosis [7], calcium homeostasis [8] and free radical

production [9,10��]. Changes in mitochondrial shape by

active fusion and fission are vital for cell function [11�].

Secondary mitochondrial dysfunction occurs in diverse

situations like neurodegeneration [12,13] and aging

[14�].

The expanding clinical picture of
mitochondrial disease in children
Clinical evaluation is the key to decision making in chil-

dren with suspected mitochondrial disease. Clinical scor-

ing systems exist [15–17,18�]. Some presentations alone

are strong indications for further testing for mitochondrial

disease (Tables 1 and 2A), as is the otherwise unexplained

coexistence of multiple compatible but less specific find-

ings (Table 2B). The known spectrum of mitochondrial

diseases in children, different from that in adults, has

regularly expanded in unexpected ways. The maxim

‘any tissue, any symptom, any age’ [19] is supported by

recent pediatric series [20,21�]. A high level of suspicion is

necessary in patients with compatible findings, even if

accompaniedby signsnotpreviouslydescribed inpediatric

mitochondrial diseases. Web-based catalogues listing

mitochondrial diseases and mutations include Online

Mendelian Inheritance in Man (OMIM) (http://

www.ncbi.nlm.nih.gov/sites/entrez?db=omim) and

mitomap (http://www.mitomap.org/); the latter has useful

links to patient organizations and research laboratories.

The child with increased lactate
Lactic acidemia, a hallmark of mitochondrial dysfunction,

may be absent in proven mitochondrial disease or present

only during stress, and is highly variable in individual

patients [22�]. Hyperlactatemia can also be caused by

hypoxia, hypoperfusion, shock, sepsis, cardiac failure

and inborn errors of metabolism, including some organic

acidemias, glycogen storage diseases, disorders of gluco-

neogenesis and of fatty acid oxidation, treatment of which

differs from that for mitochondrial diseases. Elevated

blood lactate is a common artefact if a tourniquet is used

for phlebotomy, causing venous stasis and lactate accumu-

lation from erythrocyte glycolysis, or if the child struggles

during sampling. In children with elevated lactate, but

otherwise at low clinical risk for mitochondrial disease, we

sample on several occasions, if possible before and after

meals and through an indwelling catheter, permitting

blood sampling at rest and determination of other energy

substrates (pyruvate, glucose, amino acids including ala-

nine, ketone bodies). Cerebrospinal fluid (CSF) lactate

level is amore reliable diagnosticmarker formitochondrial

disease than is blood, especially in patients with brain

involvement [23,24]; proton magnetic resonance spec-

troscopy [25��] allows noninvasive detection of elevated

cerebral lactate and other relevant compounds.

Tools for further investigation
In patients strongly suspected of mitochondrial disease,

further investigation involves biochemical assays of the

respiratory chain [25��] and/or molecular studies.

Direct measures of respiratory chain function include

polarographic studies of mitochondrial respiration on

fresh tissue and spectrophotometric assays of the respir-

atory chain complexes, feasible on small samples of

frozen tissue. Both mtDNA and nuclear-determined

respiratory chain defects may be tissue-specific; hetero-

plasmy of mtDNA mutations and tissue-specific levels of

nuclear gene products [26,27] partially explain this

phenomenon. Study of clinically affected tissues provides

the highest yield of informative results. Careful attention

to rapid freezing or, wherever available, to rapid testing of

fresh tissue, reduces artefactual decreases of respiratory

chain activities.

In blue native polyacrylamide gel electrophoresis (BN-

PAGE) of respiratory chain complexes [28–30], the five
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mitochondrial respiratory chain complexes are resolved

electrophoretically but remain intact and catalytically

active. Histochemical staining and immunodetection of

respiratory chain subunit proteins allows detection of

both defective enzyme function and reduced amounts

of respiratory chain complexes. BNG-PAGE may be less

influenced than functional studies by suboptimal tissue

conservation and has substantial diagnostic yield [21�,31].
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Figure 1 Schematic diagrams of mitochondrial morphology and energy metabolism
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(a) Mitochondrial morphology. The left side of the figure shows the structural features of normal mitochondria, including the two membranes and an
inner matrix. The outer membrane is quite permeable. The inner mitochondrial membrane has a distinct chemical composition. Its folds (cristae)
protrude into the matrix, increasing the surface area. This membrane is less permeable but contains many metabolite transporters (not shown) and
houses the respiratory chain. In mitochondrial disease (right), the changes are highly variable and are shown in composite. Mitochondria may proliferate,
change in size (megamitochondria) or shape (elongated, branched), have hypertrophied or bizarrely-shaped cristae, or may contain crystal-like
(paracrystalline) inclusions within the matrix. (b) Energy metabolism can be divided into circulating, cytoplasmic and mitochondrial compartments;
mitochondrial metabolism is further divided into pre-Krebs, Krebs and respiratory chain components. The degradation products of fatty acids and of
glucose enter the Krebs cycle at different sites, which are used therapeutically in some pre-Krebs cycle mitochondrial diseases [e.g. a high-fat,
ketogenic diet in some cases of pyruvate dehydrogenase (PDH) deficiency]. For simplicity, amino acids are not shown; different amino acids enter the
Krebs cycle at various points. In mitochondrial diseases, there is a paradoxical increase of energy metabolites and of reduced nucleotides
[(nicotinamide adenine dinucleotide (NADH), flavin-adenine dinucleotide (FADH)] but a deficiency of ATP production, despite normal oxygen
availability. The cytoplasmic NADH/NAD ratio, a measure of redox potential, can be roughly estimated from the ratio of circulating lactate to pyruvate;
intramitochondrial redox potential, from the plasma 3HB/AcAc ratio. High ratios are frequent in mitochondrial diseases. Circulating ketone bodies are
derived mainly from liver, by unidirectional hepato-specific ketogenesis, but may also arise from other tissues which have a high concentration of
AcCoA, by reversal of the enzyme that normally activates AcAc for intracellular metabolism; this may be substantial in some mitochondrial diseases.
Some NADH and FADH are produced from glycolysis (not shown) and beta oxidation (b-ox), but the Krebs cycle is the cell’s main source of these
compounds. The three Krebs cycle steps discussed in the text are shown. Distinct isozymes of succinate-CoA ligase (SUCL) catalyze the synthesis of
either guanosine triphosphate (GTP) or ATP. The respiratory chain is composed of five multisubunit complexes as shown and is the main site of cellular
oxygen consumption, ATP synthesis and (not shown) oxygen radical production. Electrons fromNADH are donated to Complex I, which passes them to
coenzymeQ. FADH-containing molecules include succinate dehydrogenase (SDH, that is Complex II) and electron transfer flavoprotein (ETF) and ETF
dehydrogenase (ETFDH). They donate electrons directly to CoenzymeQ (CoQ). Electrons pass to Complex III, cytochrome c (c) and finally to Complex
IV (cytochrome oxidase), the main site of cellular oxygen consumption, forming water. Electron transport is accompanied by the extrusion of protons
(Hþ) from the matrix by complexes I, III and IV, creating an electrochemical gradient that is used by Complex V to catalyze most of cellular ATP synthesis.
The direct relationship between oxidation, proton gradient formation and ATP synthesis is termed ‘coupling’. AcAc, acetoacetate; BNG, blue native gel;
Dx, diagnosis; MD, mitochondrial disease; RRF, ragged red fibers.
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Most patients with mitochondrial disease do not cur-

rently have a precise molecular diagnosis. Molecular

testing as an initial step has low yield because of the

large number of different mitochondrial diseases; this

may change asmolecular tests incorporate large numbers

of genes. If there is clinical suspicion of a disease fre-

quently caused by readily testable mutations [mitochon-

drial myopathy, encephalopathy, lactic acidosis, and

stroke (MELAS), maternal inherited Leigh syndrome

(MILS), etc.] or if the patient is from an ethnic group

with a strong founder effect and has suggestive signs,

molecular testing is indicated. Testing for common

mutations and complete mtDNA sequencing are clini-

cally available. For mtDNA mutations not previously

known as pathogenic, it may be difficult to distinguish

between true causal mutations, functionally neutral

variants and technical artefacts [32�].

Fasting and dietary loading tests have limited diagnostic

usefulness and can precipitate crises in some patients.

They are useful in selected patients to determine and

monitor diet and other treatments. Exercise testing in

patients with myopathic mitochondrial disease character-

istically reveals low endurance and low oxygen utilization

[33��], but requires a level of collaboration rare in children

with mitochondrial disease.

Current protocols of investigation
Our current approach to further investigation is summar-

ized in Fig. 2. In deciding whether to investigate a patient,

we consider clinical phenotype, biochemical findings

(mean plasma lactate and pyruvate, urinary organic acids,

including lactate and Krebs cycle metabolites, plasma

amino acids, etc.). CSF lactate and pyruvate levels and

neuroimaging, includingmagnetic resonance spectroscopy

[34�], are obtained in childrenwith neurological symptoms

and suspected mitochondrial disease.

Clinical suspicion of a specific mitochondrial syndrome

calls for testing in an appropriate sample obtained by the

least invasive means. For example, common MELAS,

Leber’s Hereditary Optic Neuropathy (LHON) and

neurogenic weakness, ataxia and retinitis pigmentosa

(NARP)/MILS mtDNA mutations are detectable in leu-

kocyte DNA. mtDNA deletions are detectable in blood

in Pearson syndrome, but otherwise are tissue-specific,

for example, muscle in Kearns–Sayre syndrome. Infan-

tile liver failure suggests hepatic mtDNA depletion; liver

mtDNA quantification is a logical first step.

Muscle biopsy is performed in myopathic patients.

The presence of ragged red fibers in a mosaic pattern,

Disorders of mitochondrial function Debray et al. 475

Table 2 Clinical and biochemical findings of mitochondrial disease in children

(A) Signs and symptoms highly suggestive of a mitochondrial diseasea,b (B) Signs and symptoms compatible with mitochondrial diseaseb

Neurologic General
Episodic or progressive mental regression Failure to thrive; short stature
Episodic neurological symptoms of unknown cause Fatigue
Cerebral stroke-like episode with nonvascular distribution of lesions Neurologic
Unexplained brainstem dysfunction (rapid onset,
hypoventilation or hyperventilation, drooling, oculomotor
changes, altered level of consciousness, hypothermia or
hyperthermia, hypotension or hypertension)

Progressive or static developmental delay; encephalopathy
Cerebral atrophy
Seizures, especially myoclonic
Peripheral (usually axonal) neuropathy; unexplained spinal muscular
atrophy

Cerebellar ataxia
Extrapyrimidal movement disorders
Hypotonia or progressive spasticity
Leukodystrophy
Exercise intolerance with or without rhabdomyolyis
Migraine

Other
Ophthalmologic (optic atrophy, cataracts), pigmentary retinal
degeneration

Sensorineural hearing loss; aminoglycoside-induced deafness
Sideroblastic anemia
Dermatological (hypertrichosis, pili torti, subcutaneous lipomas)
Endocrine (hypoparathyroidism, glucose intolerance, diabetes)
Dilated cardiomyopathy
Recurrent vomiting
Unexplained liver disease (fatty liver, hepatocellular lysis, cirrhosis)
Pancreatic insufficiency
Renal (tubular acidosis; renal Fanconi syndrome; unexplained
glomerulopathy; nephrotic syndrome)

Brainstem (� basal ganglia) involvement in MRI (Leigh syndrome-like)
Muscular
Myopathy with presence of ragged red fibers

Cardiovascular
Unexplained hypertrophic cardiomyopathy
Arrhythmia of unknown cause: heart block,
Wolff–Parkinson–White, and others

Ophthalmologic
External ophthalmoplegia with or without ptosis
Sudden or insidious optic neuropathy

Gastroenterologic
Unexplained liver failure (especially if valproate-related),
Reye-like syndrome

Severe intestinal dysmotility, chronic pseudoobstruction
Clinical biochemistry
Persistent elevation of blood lactate
Episodes of acidosis, ketosis or hyperlactatemia, exceeding
the expected physiological concentration; postprandial ketosis

Characteristic MRS spectra (lactate); e.g. succinate in succinate
dehydrogenase deficiency

MRS, magnetic resonance spectroscopy.
aThe unexplained occurrence of one or more of these signs places mitochondrial disease high on the list of possible diagnoses.
bThe suspicion of a mitochondrial disease increases with the presence of each additional unexplained sign from Table 2B, especially if they arise from
different organs (multisystemic), or if one or more signs from Table 2B occur with sign(s) from Table 2A.
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juxtaposed with normal-appearing fibers, strongly

suggests mtDNA disease. Frozen tissue obtained at

biopsy can be used for mutation detection. If ragged

red fibers are not observed, respiratory chain spectropho-

tometry and BN-PAGE are performed. Coenzyme Q

(CoQ) is assayed in both cases.

Skin biopsy for fibroblast culture is performed in all

patients. We obtain pyruvate dehydrogenase (PDH)

and pyruvate carboxylase assays, biochemical respiratory

chain studies and BN-PAGE analysis. Skin biopsy is

minimally invasive and yields can reach 50% when

spectrophotometry and BN-PAGE are combined

[21�,30,35]. In some patients without molecular diag-

nosis, markedly decreased fibroblast activity may pro-

vide a marker for prenatal diagnosis (after discussion in

advance with an experienced laboratory) and for gene

discovery [36]. If fibroblast studies are inconclusive,

muscle and/or liver biopsies are performed according

to clinical judgement.

In acute or rapidly progressive illness, the intensity of

investigations is accelerated. The potential risk that the

stresses associated with imaging or biopsies may

occasionally precipitate neurological or acidotic crises is

weighed against the need for rapid diagnosis.

Other metabolic diseases, including congenital disorders

of glycosylation, overlap clinically with mitochondrial

diseases and should be excluded in the absence of a

conclusive diagnosis.

Biochemical and clinical phenotypes and molecular

causes do not always correlate. For example, Leigh

syndrome (MIM 256000) can occur in isolated

deficiencies of any of the respiratory chain complexes,
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Figure 2 Diagnostic evaluation in children suspected of mitochondrial disease is governed by clinical parameters
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It is impossible to summarize the investigation of the entire spectrum of patients with mitochondrial disease in a single algorithm, but the approach to
most patients with mitochondrial disease who are not acutely ill resembles this. (a) Clinically distinct syndromes (see Table 1) or compatible signs in
patients from ethnic groups with strong founder effects and known mutations [e.g. Leigh disease in French Canadians (LRPPRC), dilated
cardiomyopathy and cerebellar ataxia in Hutterites (DNAJC19), encephalomyopathy in patients from the Faroe islands (SUCLA2), liver disease
and neuropathy in Navajo Indians (MPV17), infantile spinocerebellar ataxia in Finns (Twinkle), etc.]. (b) The most clinically affected tissue (muscle, liver)
is chosen for biopsy; studies involve light and electron microscopy, spectrophotometry and blue native gel (BNG), CoQ10 assay (particularly in
patients with ataxia or nephrotic syndrome) and possibly mtDNA quantification if clinically suggested or if multiple complex deficiencies are found on
spectrophotometry or BNG. (c) Further testing depends on whether single or multiple complex deficiencies are found and is individualized in
collaboration with an experienced diagnostic laboratory. 3HB, 3-hydroxybutyrate; AcAc, acetoacetate; b-ox; beta oxidation; ETF, electron transfer
flavoprotein; ETFDH, ETF dehydrogenase; GDP, guanosine 5’-diphosphate; GTP, guanosine triphosphate; NADH, nicotinamide adenine dinucleotide;
PDH, pyruvate dehydrogenase; SDH, succinate dehydrogenase.
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pyruvate carboxylase, PDH or CoQ synthesis. Conver-

sely, complex I-deficient or IV-deficient patients, for

instance, can also present with encephalomyopathy,

cardiomyopathy, neonatal acidosis or in other fashions.

Different mutations in a single gene can cause divergent

symptoms (e.g. some BCS1L mutations can cause

encephalopathy–tubulopathy [37], neonatal lactic

acidosis–liver hemosiderosis [38]; others cause isolated

deafness–brittle hair with pili torti (Björnstad

syndrome)[39�]). In general, siblings with nuclear-

encodedmitochondrial diseases tend to have similar types

of symptoms.

Molecular bases of mitochondrial disease in
pediatrics: unraveling the genetic complexity
of mitochondrial disease
Current rates of discovery are unprecedented in mito-

chondrial biology and mitochondrial diseases (Table 3).

Mitochondrial diseases are now classified not only as

nuclear or mtDNA-related, but also by pathophysiology.

Respiratory chain deficiency can arise from deficiency

of structural respiratory chain proteins or accessory

molecules like CoQ, or abnormalities of respiratory

chain complex assembly, mtDNA replication or main-

tenance, mtRNA translation or mitochondrial dynamics

(fusion/fission; mobility). Other mechanisms may be

discovered.

Deficiencies of respiratory chain components and

cofactors

Many mutations in the 13 structural mtDNA-encoded

respiratory chain subunits are well known to cause

LHON and NARP/MILS (Table 1); other mutations

are regularly being identified. At least 74 nuclear genes

encode respiratory chain subunits; mutations in only 15 of

them are described in mitochondrial diseases.

Deficiencies of complex I [40] or complex IV [41] are

the commonest isolated defects, perhaps because of the

many structural and assembly peptides required by these

complexes. Mutations in NDUFA1, the first X-linked

gene associated with complex I deficiency, were

described in boys with Leigh syndrome or myoclonic

epilepsy [42�].

CoQ funnels electrons from complexes I and II to com-

plex III. CoQ deficiency, primary or secondary, may

respond to replacement therapy. Mutations in APTX

[43,44�] and ADCK3 [45,46�] were recently found in

CoQ deficiency with ataxia. Mutations in three genes

of CoQ biosynthesis, COQ2 [47], PDSS2 [48] and PDSS1

[49] were reported in patients with severe infantile mito-

chondrial syndromes and tissue CoQ10 deficiency.

Nephrotic syndrome has been reported in several

patients with COQ2 mutations [50�].

Respiratory chain complex assembly deficiencies

Mutations in assembly factors are the commonest cause

of isolated complex I deficiency [51]; three were recently

described in patients with infantile encephalopathy and

lactic acidosis [51,52,53�]. Assembly factor defects are

also the main cause of complex IV deficiency (SURF1,

SCO1, SCO2, COX10, COX15; possibly LRPPRC) [31,54])

and are reported for complexes III [37] and V [55].

Disorders of mtDNA replication and maintenance

In these ‘disorders of intergenomic communication’ [56],

nuclear gene defects cause mtDNA abnormalities. These

are detected in affected tissues as mtDNA depletion and/

or accumulation of multiple different mtDNA deletions,

resulting in deficiency of multiple respiratory chain com-

plexes. Mitochondria possess a complete DNA replica-

tion/maintenance system, including DNA polymerase

gamma (POLG), a helicase (Twinkle) and other

enzymes, requiring a continuous supply of deoxynucleo-

tides. mtDNA depletion/multiple deletions syndromes,

initially reported in adults with progressive external

ophthalmoplegia (PEO) or cerebellar ataxia [57,58], are

now recognized as major causes of neonatal/infantile liver

failure and infantile encephalomyopathy [59�].

Causal mutations are documented in 12 nuclear genes.

Three of these genes are directly implicated in mtDNA

replication: POLG (both subunits) [58,60] and Twinkle

[61]; POLG1 mutations cause Alpers–Huttenlocher syn-

drome (autosomal recessive infantile hepatic failure, epi-

lepsy and encephalopathy). Seven genes are implicated

in regulating mitochondrial deoxynucleotide pools

[27,62–65,66�,67,68�,69], and two genes function by

unknown mechanisms: MPV17, which causes isolated

liver failure [69] and OPA1 (see below).

mtRNA translation defects

The genetic code, tRNAs and rRNAs of mitochondria

differ from those of the cytosol. mtDNA tRNA mutations

cause mitochondrial disease (Table 1). There are over 50

knownnuclear-encodedmitochondrial ribosomal proteins,

tRNA maturation enzymes and translation initiation,

elongation and termination factors. In seven (three in

the last year), mutations have been identified in human

mitochondrial diseases: three translationelongation factors

[70–72], two ribosomal proteins [73,74�] and two enzymes

of tRNA maturation [75,76�]. Clinical presentations

include fulminant neonatal lactic acidosis, infantile

encephalopathy, hypertrophic cardiomyopathy with ence-

phalomyopathy, and leukoencephalopathy with brain

stem and spinal cord involvement and lactic acidosis.

Defects of mitochondrial protein import

Two known mitochondrial diseases are attributable

to abnormal protein import. In Mohr–Tranebjaerg

(X-linked deafness–dystonia) syndrome, deafness is

Disorders of mitochondrial function Debray et al. 477
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followed by progressive neurological troubles, including

dystonia and optic atrophy [77,78]. Mutation of

DNAJC19, encoding a putative mitochondrial import

protein, causes autosomal recessive dilated cardiomyo-

pathy with ataxia [79].

Mitochondrial biogenesis, fusion, fission and mobility

Dynamin-type guanosine triphosphatases are essential

for mitochondrial mobility and exchange. Mutations in

dynamin-like genes were first described in autosomal

dominant optic atrophy (OPA1) and Charcot-

Marie-Tooth neuropathy types 2A and 4A [11�,80–82].

Mitochondrial fusion defects exert general effects on

mitochondrial function. The mitochondrial fusion-

related gene OPA1 is implicated in apoptosis [83,84]

and oxidative phosphorylation [85], andmultiplemtDNA

deletions are found in muscle of some patients [86],

suggesting that the OPA1 protein also influences mtDNA

maintenance [87�].

In an infant with lactic acidosis and increased very long

chain fatty acids, Waterham et al. [88��] demonstrated a

combined defect of mitochondrial and peroxisomal fis-

sion, due tomutation inDLP1, which encodes a dynamin-

like protein. Despite severe lactic acidosis, respiratory

chain assays were normal in muscle and fibroblasts. The

authors proposed examination of mitochondrial

morphology in cultured cells as a new diagnostic tool.

Krebs cycle
Three successive steps of this intramitochondrial path-

way provide unexpected phenotypes. Deficiencies of the

guanosine 5’-diphosphate (GDP)-specific and ADP-

specific succinate-CoA ligase (SUCL) enzymes are clini-

cally distinct (Table 3). Succinate dehydrogenase (Com-

plex II) subunit A deficiency can cause typical autosomal

recessive mitochondrial disease, including Leigh disease

[89], whereas mutations of subunits B, C and D predis-

pose to pheochromocytoma in a dominant fashion [90–

92]. Fumarase deficiency can cause autosomal recessive

encephalopathy or autosomal dominant tumors (uterine

fibromas, renal cancer) [93], the latter possibly by affect-

ing hypoxia-inducible factor metabolism [94].

Prognosis and management
Prognostic counseling is difficult because of high inter-

patient variability. Empirical data clearly show higher risk

for symptomatic LHON and Alpers disease in men [95]

and for valproate hepatotoxicity in mitochondrial disease

in general and Alpers disease in particular [95,96]. Inter-

esting research has identified modifier loci for LHON in

mtDNA [97�] and on the X chromosome [98], but as yet

does not allow for precise counseling. Reproductive

genetic counseling is challenging for heteroplasmic

mtDNA disorders because marked, unpredictable differ-

ences of mutantmtDNA load occur betweenmothers and

offspring [99�]. Empirical figures are available for trans-

mission and prognosis in some mtDNA-related diseases

[100,101]. Preimplantation diagnosis [102] and other

reproductive technologies hold promise for the future

[10��,33��].

Two recent studies [21�,103] addressed long-term out-

come in pediatric mitochondrial diseases, showing that,

despite high mortality and morbidity, some patients with

mitochondrial disease can become clinically stable and

that prognosis is not uniformly poor. A scale for severity of

disease course has been proposed [104].

Nonetheless, effective management of mitochondrial

diseases is a major challenge in pediatrics. Few con-

trolled therapeutic trials exist [105]. Many pediatric

mitochondrial diseases, like Leigh disease, predispose

to acute acidotic or neurologic crises that often but not

always coincide with periods of physical, nutritional or

infectious stress. We have a strong clinical impression

that avoidance of extremes of nutrition (fasting, exces-

sive consumption) or physical exertion, and rapid sup-

portive treatment of intercurrent illness can improve

outcome. We avoid invasive or stressful testing during

and immediately after crises, during which patients

seem to be particularly susceptible to further episodes.

Many physicians use ‘mitochondrial cocktails’ of unpro-

ven efficiency, containing vitamins and other com-

pounds [10��,33��]. Importantly, primary or secondary

[106�] CoQ deficiency can respond to oral CoQ10

supplementation [107��,108], though some patients

progress despite treatment [109]. CoQ10 may also sca-

venge free radicals [10��]. PDH-deficient patients may

benefit from thiamine supplementation, a ketogenic

diet or dichloroacetate administration [110–112]. The

lactic acidosis of biotinidase deficiency is cured by biotin

administration. Peripheral neuropathy limits chronic

dichloroacetate use [113]. Dichloroacetate can lower lac-

tate level nonspecifically in mitochondrial disease [114]

and may be useful for short treatment of severe acidotic

episodes. Recent observations in a small number of

patients have suggested that defective ATP-dependent

cerebral folate transport may result in reduced CSF

5-methyltetrahydrofolate levels in some patients with

mitochondrial disease, with detectable clinical improve-

ment with oral folinic acid supplementation [115,116].

Potential future approaches tomitochondrial disease treat-

ment have recently been reviewed [10��,33��].

Conclusion
In the past year, there has been an unprecedented pace of

gene discovery for mitochondrial disease. With a high

level of clinical alertness and an organized diagnostic
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approach, most mitochondrial diseases can be confirmed

early in their course and many can benefit from precise

molecular diagnosis. Supportive treatment and genetic

counseling are important. Few specific treatments for

mitochondrial diseases are available and their develop-

ment is a major challenge for research.
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