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ABSTRACT: Neuronal migration constitutes one of the major processes by which the central nervous system takes 
shape. Detailed knowledge about this important process now exists for different brain regions in rodent and monkey 
models as well as in the human. In the human, distinct genetic, chromosomal and environmental causes are known 
that affect neuronal migration, often in a morphologically distinct pattern, but the underlying pathological mecha
nisms are largely unknown. This review is intended to integrate our basic knowledge of the field with the accumulated 
intelligence on a large number of disorders and syndromes that represent the human part of the story. 

RESUME: Pertubations de la migration neuronale La migration neuronale constitue un des processus les plus 
importants par lequel le systeme nerveux central est fa?onne. Nous possedons actuellement des connaissances 
d^taillees sur ce processus important dans diffeYentes regions du cerveau de modeles animaux (rongeurs et singes) 
ainsi que chez l'humain. Chez I'humain, des causes g6netiques, chromosomiques et environnementales distinctes 
sont connues comme affectant la migration neuronale, donnant lieu a des patterns morphologiques souvent distincts; 
les m6canismes pathologiques sous-jacents sont pour la plupart inconnus. Dans la presente revue, nous d6sirons 
int6grer nos connaissances de base dans ce domaine avec les donnees accumulSes au sujet d'un grand nombre 
d'affections et de syndromes representant leur contrepartie chez l'humain. 

Can. J. Neurol. Sci. 1987; 14:1-16 

After the closing of the neural tube and the formation of the 
telencephalic vesicles, neuronal migration is the main process 
by which topical differentiation within the brain is effected. By 
this process many billions of newly generated neural cells are 
addressed to their proper position mainly in nuclear masses or 
in the cerebral and cerebellar cortices. General or topical loss 
of control over this process is generally called neuronal migra
tion disorder (abbreviated NMD). NMD will result in either cell 
death or improper positioning of functional cell groups. This in 
turn will result in failing connections or improper wiring 
(misconnections) responsible for functional deficiencies and 
epilepsy. The clinical relevance of NMD is highlighted by an 
increasing body of literature on a number of specific clinical 
entities, either inherited or prenatally acquired, and by the 
increasing resolution of imaging techniques by which NMD can 
be detected or at least suspected. Basic understanding of neuro
nal migration, mainly by morphological observations on rodent 
embryos, either normal or belonging to strains harboring inher
ited NMD, has increased substantially over the past twenty 
years; the understanding of the process in biochemical terms is 
emerging. NMD in the human embryo-fetus may arise from 
monogenetic (metabolic), chromosomal, hypoxic-ischemic and 
toxic-environmental causes. The morphological patterns involved 
are not of a monotonous kind, but vary according to the cause 

or agent, the affected site and the gestational age when the 
abnormality takes effect. This review is concerned with NMD 
that affects the neocortex, the cerebellum and the brainstem. 
The neural crest and its disorders will not be included because 
extensive reviews on this topic have appeared elsewhere. 

THE PROCESS OF NEURONAL MIGRATION IN THE BRAIN 

Neocortex 

The ventricular and subventricular zones of the telencepha
lon provide the neuronal and glial stem cells and from here 
migration to the cortical plate, the future neocortex, starts in a 
radial centrifugal fashion. The migration of young neurons is 
guided from an early stage by a system of radial glial fibers that 
span the width of the thickening telencephalon.1 In the human 
fetus this process takes place for the greater part between 7 and 
16 weeks gestational age. The perikarya of the radial glial cells 
are in the ventricular and subventricular zones. Cells of glial 
and neuronal lineage (the former marked by GFAP-staining) 
could be separated as different proliferative lines within the 
ventricular epithelium in monkey fetus.2 The layers of the 
neocortex are generally laid down in an inside-out fashion,' e.g. 
layer III neurons arriving before layer II neurons which means 
that later migration waves have to pass earlier migration 
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waves.'3,4 As an exception to this rule it has been suggested 
that neurons of layer I, the giant Cajal-Retzius neurons and 
layer VIb, the lower part of layer VI are laid down as a single 
neuronal network, the primordial plexiform layer, in analogy to 
the amphibian neocortex and prior to the other layers in mammals. 
This primordial plexiform layer is thought to provide a frame
work for the successive migration waves as these become 
sandwiched between the upper and the lower part of this 
structure.5 

The radial glial system was described early in this century by 
Ram6n y Cajal, who used the Golgi technique.6 Revival of this 
technique combined with transmission electron microscopy7 

and the application of GFAP-staining8 facilitated the discovery 
and detailed description in the monkey fetus. By the use of the 
same methods demonstration was possible in the human fetus.910 

Choi and Lapham10 noted the persistence of radial glia in the 
human telencephalon beyond 16 weeks, raising the possibility 
that migration does not end sharply at this time. The date of the 
latest arriving neurons in the human neocortex has not been 
decided yet. However important the radial glial system may be 
in providing guidance to migrating neurons, other organizing 
principles cannot be excluded, such as the thalamo-cortical 
afferents, that already exist before migration to the cortical 
plate starts. 

Differentiation into neuronal classes characteristic of each 
cortical layer follows on the completion of migration. This 
differentiation effects both the shape of the perikaryon (pyramidal 
and non-pyramidal) and its connections. The commitment of a 
neuron to differentiate into a certain morphological class appears 
to depend mostly on the order in which it is generated, rather 
than on its final position within the neocortex. The best avail
able evidence is the murine reeler mutant that harbors an inher
ited NMD which specifically affects the intracortical part of the 
migration trajectory for pyramidal neurons. In the case of this 
mutant the perikaryal shapes characteristic of each layer are 
established in spite of faulty positioning.""15 After the comple
tion of the migration process the radial glia disappears. In part 
these cells appear to transform into astrocytes and ependymal 
cells.16 Evidence obtained from the study of fetal human spinal 
cord suggests that transformation into oligodendroglial cells is 
also a possibility.'7"19 One structure belonging to the emerging 
human neocortex, the subpial layer of Ranke,20 still awaits 
elucidation. It occupies the superior part of the molecular layer 
in the form of several layers of apparent germinal cells from the 
end of the fourth fetal month in the human until the end of 
gestation. It was described by Ranke20 who credits His with the 
discovery. The structure is only transiently present in some 
gyrencephalic mammals including man. 

The cerebellum 

In the cerebellum the mode of migration is different for 
Purkinje cells and granule cells. The former migrate at 9-10 
weeks, but the precise mode is unknown. The granule cells (and 
possibly the stellate- and basket cells as well) are derived from 
the external granule cell layer, emerging at 10-11 weeks from 
the edges of the rhombencephalic roof near the lateral recess of 
the fourth ventricle, a place where the proximity of the ventricu
lar zone, the starting place of neural cell generation, to the pial 
surface is very close. From here the future external granule 
cells start to cover the whole cerebellar surface under the pia. 
From here postmitotic external granule cells migrate inward 

and pass the Purkinje cells to form the internal granular layer.21 

In doing so they leave a neurite in the molecular layer that 
grows out to form the parallel fibers.' In this way the external 
granular layer (and the corpus pontobulbare to be described 
below) is an exception to the pattern of migration that usually 
proceeds from the center of the neuraxis in a centrifugal fashion. 
The guidance for the migrating granule cells in the cerebellum is 
provided by the vertically oriented Bergmann glial fibers that 
override the molecular layer with endfeet at the pial surface.22 

The glial cerebellar guidance system has been confirmed in the 
human fetus.23 The external granular layer is the latest germinal 
layer in the brain to disappear, involution starting at 9 months 
postpartum. 

Pontine and olivary nuclei 

An important role is played here by the corpus pontobulbare 
a transient structure near the lateral recess of the fourth ventricle. 
It represents an accumulation of dividing stem cells located 
ventrally and anteriorly to the lateral recess where the distance 
between the ventricular epithelium and the pia is minimal. 
From here postmitotic neurons destined for the olivary-, arcuate-
and pontine nuclei migrate to their final destinations. This 
represents another instance of a superficially located germinal 
center.24"27 The original site of the cells giving rise to the 
olivary nuclei is relevant to the location of olivary heterotopia 
to be described below. 

New developments 

Research on the process of neuronal migration at the molecu
lar level has only begun. Logic requires that cell-cell recogni
tion especially neuron-glia recognition forms an essential part 
of the story. Much has been gained already from the study of 
the autosomal recessive murine weaver mutant. In homozygous 
weaver granule cells in the cerebellum completely fail to reach 
the internal granule layer and Bergmann glia is severely deficient. 
Large numbers of arrested granule cells die. Heterozygous 
weaver shows mildly disturbed migration and abnormal Bergmann 
glial cells with thickened and irregular processes.28 To disentan
gle the respective role of granule cells and Bergmann glial cells 
chimaeras were produced carrying both heterozygous weaver 
and normal cell lines that could be distinguished by an enzy
matic histochemical marker.29 In this study it was shown that 
granule cells carrying the weaver gene were unable to migrate 
even in the presence of Bergmann cells, whereas the geneti
cally normal granule cells migrated normally. In another study 
dissociated cultures of weaver cerebellar cells showed both 
glial and granule cells to be abnormal compared to controls, the 
former showing stunted growth and the latter dying prematurely. 
The culture study further showed the existence of two types of 
astroglia, an extended type resembling Bergmann-glia and a 
stellate type reminescent of the internal granular layer. Aggluti
nation studies with a number of lectins demonstrated abnormal 
surface properties of the cerebellar cells of the weaver mutant.30 

Present evidence recently reviewed31 suggests that the tro
phic influence of neurons and astroglia is bidirectional. The 
experience with the weaver mutant highlights a relation between 
NMD and cell death that may have significance for the under
standing of human pathology. The coincidence of microencephaly 
and NMD in a high proportion of human cases might in part be 
explained by similar mechanisms. A recently discovered class 
of tissue specific glycoproteins called cell adhesion molecules 
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(CAM), some of them transiently present on the surface of 
embryonic cells, are now being explored for their role in embry
onic shaping processes including neuronal migration.32 Special 
interest is focused on a CAM that promote heterotypic (different 
cell type) adhesion between neuron and glial cell so-called 
Ng-CAM (neuron-glia), which has been isolated from chick 
brain. Beside CAM substrate adhesion molecules (SAM) have 
been studied intensively. These molecules that differfrom CAM 
include laminin, fibronectin and type IV procollagen. These 
molecules play a key role in the migration of embryonic cells 
outside the neuraxis such as neural crest cells but their role 
within the neuraxis has yet to be decided.33 The migration of 
cell processes (neurites) prior to the formation of synapses may 
have some relevance to the migration of whole cell bodies in 
terms of the process of cell-cell recognition. Studies with inver
tebrate species of grasshopper and drosophila have proved the 
existence of highly specific recognition markers on neuronal 
cell bodies that provide cues to the exploring growth cone and 
filopodia of an outgrowing neurite.34"36 

Another interesting field possibly related to neuronal migra
tion is polyamine metabolism. Polyamines are low-molecular-
weight amines, called spermine and spermidine and their precursor 
putrescine. These ubiquitous compounds are intimately linked 
to DN A synthesis and probably also to the synthesis of microtu
bules and microfilaments.37 A potent inhibitor of polyamine 
synthesis, a-difluoromethylornithine (DFMO) exists. When 
administered to rats between postnatal days 1-21 cerebellar 
hypoplasia results, combined with entrapment of migrating cer
ebellar granule cells in the molecular layer.38 

Clinical experience has focused attention on the possible 
roles of peroxisomal and mitochondrial fatty acid oxidation in 
the genesis of inherited NMD such as present in Zellweger 
(cerebro-hepato-renal) syndrome39 and warty dysplasia with 
multiple acyl-coA dehydrogenase deficiency,40'" to be dis
cussed below. Very recently somatomedin IGF II has become 
implicated in enhanced brain growth (megalencephaly) and 
NMD pointing to another field related to brain growth as well as 
neuronal migration.42 

CLASSIFICATION OF NEURONAL MIGRATION DISORDERS 
BY MORPHOLOGY 

A general classification of NMD is presented in Table 1. A 
relatively large number of cases with NMD harbors more as 
one type listed in Table 1. Some types of NMD listed are often 
seen together e.g. type I agyria and olivary heterotopia or 

Table 1: Classification of neuronal migration disorders by 
morphological criteria 

1. Agyria/pachygyria type 1 
type II 
unsettled 

2. Microgyria (s. polymicrogyria, s. micropolygyria) 
four layered 
unlayered 
fused microgyri 

3. Verrucous dysplasi of the neocortex 
4. Intra-axial neuronal heterotopia in the forebrain 
5. Leptomeningeal heterotopia of neural tissue 
6. Cerebellar cortical dysplasias and heterotopia 
7. Olivary heterotopia 
8. Schizencephaly and allied disorders 

warty dysplasia and leptomeningeal neural tissue collections. It 
is believed that this classification will help the reader to orient 
himself in the large spectrum of NMD encountered in clinical 
practice. 

Agyria/pachygyria 

Agyria, otherwise called lissencephaly denotes a smooth 
brain without secondary sulci. Pachygyria, a related condition, 
denotes a brain with a thickened neocortex and paucity of 
secondary sulci. Combinations of the two occur within the 
same brain. In purely descriptive terms two major types of 
agyria have been defined as well as a number of case reports 
that await definite classification. 

The first is an order type of migration arrest called classic 
lissencephaly. It is represented by an abnormal neocortex con
sisting of the components of the layers III, V and VI combined, 
separated by a cell sparse zone from radially aligned rows of 
non-migrated neurons, that often extend to the subependymal 
zone (Figure 1). The four layered sequence thus defined con
sists of layer 1, corresponding to the molecular layer, layer 2 
harboring neurons with the morphology of the normal layers 
III, V and VI, layer 3 which is cell sparse and layer 4 which 
contains heterotopic neurons.43"45 Other features regularly seen 
are decreased brain size, leading to microcephaly, widened 
ventricles representing a fetal stage in development rather than 
hydrocephalus and an uncovered Sylvian fossa, representing 
failure of opercularization. Together with the thickened cortex 
these macroscopic features allow detection of agyria/pachygyria 
by neuroradiological means (Figure 2). Additional microscopic 
features are olivary heterotopia, lodged anywhere between the 
corpus pontobulbare and their normal station, cerebellar gran
ule cell heterotopia and abnormally shaped dentate nuclei. 
Aberrant lateral corticospinal tracts in the spinal cord have 
been described.46 Purely pachygyric brain may lack accompa
nying olivary heterotopia.44 Beside various visceral and other 
malformations that may be associated a peculiar facial dysmorphia 
distinguishes a number of reported cases with classical lissen
cephaly. The phenotype consists of a high forehead, hollow 
temples, receding chin and vertical wrinkling of the forehead 
when crying. It has been identified as the eponym, the Miller-
Dieker syndrome47 in recognition of the first authors.4849 Famil
ial occurrence was documented in the original reports. In one of 
the involved families49 and in another series of classical 
lissencephaly44 an anomaly of the short arm of chromosome 17 
was suggested by unbanded karyograms. Further studies using 
high resolution chromosome banding revealed anomalies involv
ing the terminal segment of chromosome 17p (one ring chromo
some 17 and one unbalanced translocation resulting in monosomy 
17pl3) by Dobyns et al.50 Further karyotyping studies were 
performed by the same group of investigators51 on the parents 
of previously published familial cases,48-49-52 including the 
families originally reported by Miller and by Dieker. These 
studies revealed balanced translocations involving chromo
some 17 in one of the parents of each proband. Therefore a 
strong association between this syndrome and terminal I7p 
deletion has been established. It follows that karyotype analy
sis and even the use of high resolution banding is indicated in 
each case of the Miller-Dieker syndrome if genetic advice is 
sought. The finding of a balanced translocation in one of the 
parents allows new cases to be detected antenatally by amnio
centesis. Consanguinity of the parents of a case of classic 
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lissencephaly revealed by autopsy was reported by Norman et 
al.53 High resolution banding applied to the parents' karyogram 
was later reported to be normal.51 The patients' facial features 
related in another paper54 are different from Miller-Dieker syn
drome and another eponym, the Norman-Roberts syndrome, 
was proposed to classify the finding. According to a proposal 
by Dobyns et al ,54 syndromes representing classical lissencephaly 
are to be called type I lissencephaly. Macroscopical features 
allowing recognition by CT-scanning have been defined55 (Figure 
2). 

The second major type of lissencephaly was first described 
by Walker in 1942.56 It is characterized by an almost total 
disorder of cortical layer formation. Instead of horizontal layers 
the neocortex is represented by clusters and columns of neu
rons perpendicular to the surface (Figure 1). This type of 
lissencephaly has been documented as part of an autosomal 
recessive disorder under the mnemonic HARD ± E syndrome 
which stands for //ydrocephalus - /Igyria - Retinal dysplasia 
with or without Encephalocoele by Pagon et al.57 The eye 
anomalies that form part of this syndrome affect both the ante
rior and posterior segments. More or less regular features include 
microphthalmia (often one-sided), Peter's anomaly, angle 

Figure 2 — Pachygyria in a 7-month male with microencephaly from consan

guineous parents. Transverse high CT-section shows deep bilateral sulcus 

bordered by thickened cortex. Bar on right is 5 cm. Thickness of abnormal 

cortex is several cm and should be less as 0.5 cm. 

Figure I — Left. Cerebral hemisphere wall of a 14 week human fetus. Undifferentiated cortical plate is bordered inferiorly by migrating neurons. In the lower part 

of the picture migrating cells are seen arranged in vertical columns. The subventricular zone is seen in the lowest part. HE. bar 0.1 mm. Middle. Type I 

(classical) lissencephaly in a neonate. Neocortex is represented by a narrow ban of (pyramidal) cells, separated by a cell sparse zone from vertically arranged 

columns of neurons arrested during migration. Compare to previous panel. H + E. bar= I mm. Right. Type II (Walker-Warburg) lissencephaly in a neonate. 

The neocortex is disorganized into ectopic clusters of neurons. H + E. bar= 1 mm. 
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anomalies, cataracts, persistent hyperplastic vitreous as well 
as retinal detachment, retinal dysplasia and optic nerve 
hyopolasia.58 Characteristic features of the brain include glio-
mesenchymal proliferation in the leptomenges encroaching on 
the underlying neocortex forming septa and investing the 
mesencephalon. The cerebral cortex — just as in clinical 
lissencephaly — is not the only part of the brain affected by 
NMD. The cerebellar folia are fused and a severe layering 
disorder with Purkinje-cells and granule cells lying haphazardly 
are seen in every case of the syndrome. In addition, the cerebel
lum is hypoplastic with absence of the posterior vermis and a 
Dandy-Walker cyst. Another feature is hypoplasia of the ven
tral pons with severe reduction of its nuclei and a seemingly 
hyperplastic corpus pontobulbare. As distinct from classical 
lissencephaly the inferior olivary nucleus is in its usual place 
without heterotopic remnants. Encephalocele or occipital der
mal sinus are occasionally seen. Another characteristic feature 
of this disorder concerns white matter abnormalities with pau
city of axons and oligodendroglia and severe hypomyelination. 
The corpus callosum and septum are often absent. Hydrocephalus 
is usually present, and probably related to the leptomeningeal 
abnormalities affecting CSF-flow. Since Warburg59,60 was the 
first to draw attention to the genetic syndrome comprising 
retinal dysplasia and hydrocephalus her contribution was recog
nized by the proposed name Warburg syndrome,61 instead of 
the mnemonic HARD ± E. Others62 suggested calling it Walker-
Warburg* syndrome (WWS) in regard of Walker's original 
contribution. A number of papers have served to delineate the 
clinical, genetic and pathological featues.58,63"66 The cerebral 
pathology of WWS is reminiscent, though not identical, to 
anotherautosomal recessive syndrome called Fukuyama's con
genital cerebromuscular dystrophy (F-CMD). This syndrome 
is mainly though not exclusively seen in Japan. The muscular 
pathology is similar to congenital muscular dystrophy without 
cerebral involvement.67 The pathology of the brain is character
ized by microgyria with patches of agyria, the latter mainly in 
the temporal lobes, gliomesenchymal proliferation obliterating 
the subarachnoid space. Sparseness of myelinated axons, fused 
frontal poles and cerebellar cortical dysplasias and heterotopia 
are regularly seen. The disorder is inherited as an autosomal 
recessive trait68 and the patients may survive into adulthood, 
though severely handicapped. A survey of 24 Japanese autopsy 
cases lists 15 with partial agyria or pachygyria, 3 cases with 
cataract (unilateral in one patient). In one case all the features 
beside the muscular dystrophy were characteristic of WWS 
including retinal detachment and occipital dermal sinus.69 Descrip
tions of the neocortical dysplasia especially the agyric regions 
resemble WWS.70"72 This applies both to the mesenchymal 
obliteration of the subarachnoid spaces and the nodular arrange
ment of the neocortical neurons seen in WWS.62,64-73 

Description of muscle pathology is sparse in WWS. Normal 
muscle was described in one report.731 found changes in vari
ous muscles of a personal case of WWS consistent with congeni
tal muscular dystrophy (unpublished). A Dutch sibship74 has 
been neuropathologically studied with the main findings com
mon to both WWS and F-CMD. Beside congenital muscular 
dystrophy and cerebral findings characteristic of F-CMD and 
WWS the proband had eye anomalies. The latter anomalies not 
previously published consisted of persistent pupillary membrane, 
persistent hyaloid artery, small whitish optic nerve heads and 
pigment layer abnormalities. Other cases have been described 

that apparently compound WWS and congenital muscular 
dystrophy.7576 One feature shared by WWS and F-CMD is 
hypo- ordysmyelination which may be of considerable help in 
the diagnosis of both conditions.55,77 It is not yet certain whether 
the two conditions represent alleles of one autosomal recessive 
gene. The combined occurrence of rather unique features such 
as the rare type of neocortical dysplasia with gliomesenchymal 
proliferation, cerebellar cortical dysplasia and congenital mus
cular dystrophy may argue in favor of a single gene involved for 
both conditions with WWS representing a more severe and 
earlier onset of the disruptive dysembryonic process. The type 
of lissencephaly belonging to WWS has been proposed as type 
II lissencephaly by Dobyns et al.73 

Besides type I and type II lissencephaly other syndromes 
with lissencephaly await further studies. One is the exceedingly 
rare autosomal-recessive Neu-Laxova syndrome78 a lethal neo
natal disease with extreme microencephaly and lissencephaly 
as well as grotesque skin abnormalities with ichthyosis, collodium-
skin and subcutaneous edema. Extreme neopallial hypoplasia 
with agyria and almost vestigial cerebellum has been described 
in siblings.79 The neocortex was represented in the best pre
served places by two layers separated by a layer without recog
nizable neurons. The arrangement bore similarity to type 1 
lissencephaly with the upper neuronal layer probably represent
ing the true cortex and the lowest layer probably representing 
heterotopic (non-migrated) neurons, but the intralaminar disar
ray compared to type I lissencephaly was greater. Other cases 
with microencephaly, lissencephaly and severe underdevelop
ment of derivatives from the rhombic lips have been described. 
80,81 The designation "cerebro-cerebellar lissencephaly" has 
been proposed by Dobyns, although the homogeneity of this 
group remains to be established. For a comprehensive review 
on less established lissencephaly syndromes the reader is referred 
to recent papers.8'82 As a general feature it is interesting to 
note that the classical lissencephaly as well as cerebro-cerebellar 
lissencephaly are not only disorders of neuronal migration but 
also disorders of organ size. 

Microgyria, brain warts and nodular heterotopia 

Microgyri refers to small meandering gyri without interven
ing sulci or with intervening sulci apparently bridged by the 
fusion of the overlying molecular layers (Figure 3). Microgyria 

Figure 3 — Unlayered microgyria in microencephalic newborn with convul

sions and general hypertonia. HE. 87x. 
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is synonymous with polymicrogyria or micropolygyria, but 
should be distinguished from sclerotic microgyria or ulegyria, a 
pure encephaloclastic lesion resulting in atrophic small gyri and 
relatively broad intervening sulci. Early contributions and theo
ries concerning origin were discussed by Bielschowsky.83 The 
histological features of microgyria are not uniform. Layering 
abnormalities are the rule and mostly of two different kinds: 
four-layered and unlayered. The four-layered type shows the 
sequence: marginal layer (top) — neuronal layer — cell sparse 
layer with astrocytes- neuronal layer. In the unlayered type no 
cell-sparse zone is seen dividing upper and lower neuronal 
strata. A principal cause of microgyria is a circulatory disorder 
in utero. Frank destruction presenting as full-thickness cavities 
of the cerebral hemispheres (porencephalies in the classical 
sense of that term) are often surrounded by areas of microgyria. 
Microgyric regions in turn will be continuous with normal 
neocortical areas.84"86 Other causes of microgyria are genetic, 
chromosomal, infectious and toxic, to be discussed below. The 
mechanism that causes microgyria has not been fully settled. In 
one case-analysis87 it was concluded that the lower cell-sparse 
layer of the four-layered type represented neuronal loss and 
glial replacement similar to laminar cortical necrosis in the 
adult with hypoxic-ischemic cortical necrosis and that it repre
sented ipso facto a post-migration accident. The theory was 
backed up by Golgi analysis of neuronal subtypes in the microgyric 
cortex which indicated that neuronal classes present in the 
neocortex — apart from in situ inversions — were in their 
proper positions. 

Czech investigators88,89 produced local microgyria in new
born rats by coagulation of the upper half of the neocortex. In 
this animal neuronal migration to the neocortex is still ongoing 
at term birth and is completed by the fourth postnatal day. 
Lesions made on the fourth day failed to produce microgyria. If 
partial necrosis, e.g. necrosis with the vascular bed preserved 
was induced in the upper half of the developing cortex young 
neurons that arrived after the lesion would migrate through the 
zone of partial necrosis and settle on top of this zone in a 
disordered way. If necrosis was of sufficient depth a microsulcus 
would be produced similar to human microgyria. These elegant 
experiments led these investigators to explain the cell-sparse 
zone in four-layered microgyria as the result of necrosis and the 
upper cellular zone as distorted migration after the accident 
when appropriate guidance by radial glia has been lost because 
these fibers did not escape necrosis. 

Human fetal pathology is sparsely blessed with experiments 
by nature that provoke microgyria by a single accident of short 
duration. Two dated carbon monoxide accidents to pregnant 
mothers at 20 to 24 weeks90 and 24 weeks91 gestational age 
caused four-layered microgyria in the surviving fetuses. (This 
is far beyond the time at which proliferation of neuroblasts 
destined for the neocortex grossly ends: 16 weeks,1 but it may 
be kept in mind that considerable numbers of young neurons 
generated before that time still continue to migrate afterward.) 
In another case92 the dating of an accident causing microgyria 
was provided by parabiotic twins, of which one died in utero 
and the other after fullterm birth. In these monochorionic twins 
an accident, presumably feto-fetal transfusion, caused death in 
one and vascular brain damage with survival in the other. The 
longest survivor of the two had local microgyria (overlying 
nodular periventricular heterotopias) in a vascular distribution. 
Dating of the catastrophe was provided mainly by x-ray analy

sis of the skeleton of the fetus maceratus and was found to be 
13-16 weeks. The microgyria found was unlayered. A compara
ble case of early parabiotic twin syndrome with bilateral lesions 
in vascular distribution and "cortical looping" suggestive of 
unlayered microgyria and heterotopic nodules was reported 
with a macerated co-twin whose crown-rump length of 13 cm 
would be compatible with a fetal age of 16 weeks.93 If the four 
dated in-utero accidents can teach us anything it appears that 
early fetal accidents of 13-16 weeks may cause unlayered 
microgyria (together with periventricular nodular heterotopias) 
and late fetal accidents occurring between 20 and 24 weeks 
cause four layered microgyria. More observations of this kind 
will be needed to gain more insight in the matter. 

Anothercause of microgyria is intrauterine infection, particu
larly cytomegaly.94 Indirect evidence94,95 suggests that microgyria 
is not the result of direct viral attack but results from general 
perfusion failure. The extent of microgyria is quite variable 
from case to case. While severe cases may show signs of 
neurodevelopmental delay and often microcephaly, a mild 
microgyria restricted to limited neocortical areas may be associ
ated with milder deficiency. A particular case recorded by 
Galaburda, et al96 was that of a man with developmental dyslexia, 
mild learning disorder and epilepsy. A number of genetic or 
probably genetic disorders are known to produce microgyria 
such as Meckel-Gruber syndrome,97,98 thanatophoric dysplasia, 
99103 Fukuyama's cerebromuscular dystrophy,70"72 Bloch-
Sulzberger syndrome.104 

Microgyria also occurs in two well defined inherited disor
ders of metabolism related to peroxisomal dysfunction. In one 
of these, Zellweger's cerebro-hepato-renal syndrome, NMD 
results in periventricular, subcortical and intracortical hetero
topia. I05_108 The neocortex is often referred to as both microgyric 
and pachygyric, but differs from both these conditions. The 
microgyric aspect in Zellweger syndrome is apparently the 
result of fusion of distinct small gyri. The four layer pattern is 
not found and microgyri also line the bottom of sulci, a phenom
enon referred to as "cloverleaf microgyria".107 Regions that 
appear macroscopically pachygyric in Zellweger syndrome are 
histologically almost similar to the microgyric regions. Both 
neurons and glial cells show light microscopic and ultrastruc-
tural changes in Zellweger syndrome and an impressive storage 
of lipid material of various types is seen in macrophages and 
astrocytes.109"'" The mechanism of NMD in Zellweger syn
drome is yet unknown. Since a number of metabolic pathways 
are involved, all resulting from the absence or near-absence of 
peroxisomes'l2""5 no deficit can be singled out as the cause of 
NMD in this complex disorder. Another related autosomal 
recessive disorder called neonatal adrenoleukodystrophy (NALD) 
has deficient peroxisomes and NMD expressed as areas of 
microgyria"6 in addition to sudanophilic leukodystrophy and 
adrenal atrophy. The genetic relationship to Zellweger syn
drome has still to be ascertained in depth at this time.39 

Brainwarts (verrucose dysplasia, dysgenesie nodulaire de I'ecorce) 

Brainwarts present microscopically as tiny "herniations" of 
the second neocortical layer into the first layer, thereby reach
ing the surface (Figure 4). To the naked eye the abnormality 
presents as a flat, round, often dimpled disk seated on the 
crown of a gyrus, less often in the depth of a sulcus. The 
phenomenon was first described in 1873 by Simon'l7 and called 
brain wart by Jakob in 1940. " 8 It has a predilection for the 
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frontal lobes and the Rolandic areas. Mild warty dysplasia has a 
remarkably high incidence varying between 16% and 26% of 
routine autopsies if carefully looked for."8"'20 A common ori
gin with microgyria has been suggested. '20 In another study121 it 
has been shown that not just the upper layers but all the cortical 
layers may participate in the formation of the "wart". 

An apparently related phenomenon, often seen in autopsies 
of immature fetuses up to 24 weeks presents microscopically as 
fountains of cortical neurons apparently bursting into the first 
layer, that is still smooth (agyric) in accordance with fetal age. 
Larroche'22 believes that it represents a pathological phenome
non (status verrucosus simplex) related to microgyria. Specific 
associations with verrucose dysplasia are rare. One that deserves 
mention is neonatal glutaric aciduria type II or multiple acyl-
CoA dehydrogenase deficiency, a disorder that affects mito
chondrial beta-oxidation. The association with verrucose dysplasia 
has been described in male sibs.40,41 The neocortical dysgene
sis consisted of symmetrical reduction of the number of gyri of 
frontal, parietal and temporal lobes and an irregular surface 
with numerous warty protrusions. Microscopically these "warts" 
consisted of multiple small gyri that were partially fused as well 
as heterotopic neuronal clusters in the molecular layer and the 
subcortical white matter. In addition bile duct hypoplasia, 
cholestasis, siderosis and fatty degeneration were found in the 
liver of both infants as well as enlarged bilateral polycystic 
kidneys. 

Leptomeningeal heterotopias 

Heterotopic collections of astrocytes with or without admix
ture of ectopic neurons are often observed in conjunction with 
heterotopic invasions of the first neocortical layer. It appears 
that such heterotopia are provoked by discontinuities in the 
external limiting membrane that is made up by glial endfeet. 
Leptomeningeal heterotopia may be seen together with verru
cose dysplasia (Figure 4). Large glio-neuronal heterotopia in 
the leptomeninges have been described in cases of familial 
microencephaly, pachygyria and congenital nephrotic syn
drome.'23124 Leptomeningeal heterotopia are not rare. They 
may be seen in cases of holoprosencephaly, environmental 
causes of NMD (to be described below) and in vascular 
disruptions.92 Leptomengeal glial heterotopia may be seen 

Figure 4 — Verrucous cortical dysplasia in 6 weeks old premature (35 weeks) 
born infant with multiple congenital anomalies, with normal karyogram. 
Undiagnosed syndrome. HE. 95x. 

surrounding the brainstem e.g. the mesencephalon in cases of 
Walker-Warburg syndrome.73 Experimentally leptomeningeal 
heterotopia have been provoked in neonatal rat by application 
of the drug 6-hydroxydopamine which causes a breach in the 
barrier of glial endfeet formed in the cerebellum by Bergmann 
glial cells as well as the basal lamina. These breaches caused 
the appearance of external granule cells in the subarachnoid 
space between the folia as well as fusion of adjacent folia.125 

Nodular neuronal heterotopia in the cerebral hemispheres 

Heterotopic neuronal masses represent the clearest example 
of NMD (Figure 5). These can occur anywhere along the migra
tion trajectory. In the telencephalon they may occur mostly in 
the subependymal zone or just below the neocortex. Their 
degree of cytological maturation varies and may be quite 
impressive, to the extent that pyramidal and nonpyramidal 
neurons may be distinguished and both subtypes may carry 
abundant numbers of well developed dendritic spines in Golgi 
sections.126127 The maturation achieved is likely to result in 
biological activity of a false kind because of improper wiring 
due to ectopic positioning. Large heterotopic clusters are not 
likely to arise after the main bulk of migrating neurons has 
arrived at the cortical plate, that is after the 16th week of 
gestation.' The causes of nodular heterotopia are extremely 
varied and include genetic, chromosomal, vascularand environ
mental causes. These various causes are therefore described in 
the appropriate sections. The size of such heterotopia is usu
ally small, often below the resolution afforded by CT- or MRI-
scanning apparatus. Sizable masses may occasionally be picked 
up by either means (Figures 6, 7). Subependymal heterotopia 
may cause bulging of the ventricular wall, but this is not a 
reliable sign unless absorption characteristics (CT) or better T| 
weighted MRI images suggest grey matter. 

Schizencephaly and allied disorders 

Connatal clefts in the brain mantle may be accompanied by 
NMD. Full thickness defects that cause continuity between the 
arachnoid space and the lateral ventricles have been called 
porencephalies by Heschl (1859).'28 With respect to the areas 
surrounding such defects these may exhibit: (1) destruction of 
the adjacent neocortex and white matter without NMD (2) 
microgyric neocortex with the histopathological structure of 
the four-layered type84"86 (3) neocortical and heterotopic collec-

Figure 5 — Periventricular heterotopic nodular masses in a newborn with 
occipital encephalocele. HE. 12.7x. 
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tions adjacent to the deeper part of the cleft up to the ventricu
lar wall.129130 Yakovlev129 was the first to describe the third 
category under the name schizencephaly. He distinguished two 
types of schizencephaly. In the first type the lips of the cleft 
were apposed by a so-called pia-ependymal seam.129 In the 
second type the lips of the cleft were open. The latter type was 
associated with hydrocephalus.I3' Clefts were covered with 
ectopic grey matter. Yakovlev considered schizencephaly a 
true malformation. As such it has become a classic subdivision 
amongst fetal neurodevelopmental disorders. 

It remains difficult, however, to follow Yakovlev's concep
tion of such defects as a type of focal malformation. The absence 
of inflammatory or gliotic lesions noted by Yakovlev does not 
exclude an extrinsic origin since this absence is usual in early 
fetal disruptions. On the other hand no familial cases or cases 
associated with chromosomal disorders have been reported 
that would support a programming failure (true malformation) 
as the cause of schizencephaly. It may therefore be reasonable 
to consider Yakovlev's schizencephaly and Heschl's poren
cephaly128 with full thickness defect parts of a spectrum of fetal 
disruptions. At one end are the post-migration period accidents 
resulting in lesions without associated NMD. In the middle part 
are the full-thickness defects with adjacent microgyria. At the 
other end are the cases with full-thickness defects with neocorti-
cal abnormality bordering the external part of the cleft and 
heterotopic grey matter masses on the inside right up to the 
ventricular end of the cleft. The latter type would arise before 
the end of the 16th week. The etiology of schizencephaly remains 
unsolved for the moment. 

In Dekaban's series85 and in other cases reviewedl32 an asso
ciation with unwanted pregnancy and failed abortion is suggested. 
Finally the appearance of schizencephaly suggests a disruption 
rather than a primary malformation. Since no chromosomal or 
genetic basis has been established schizencephaly may be clas
sified as low-risk with respect to genetic counselling. On the 
other hand fetal vascular damage might be suspected as the 
underlying mechanism. One type of schizencephaly (poren
cephaly) described by Feld and Gruner130 has absence of the 
septum pellucidum and blunted lateral ventricular angles due to 
heterotopia. These features as well as occasionally the heterotopia 
rimming the cleft may be discovered by CT-scanning133 (Figure 
6). 

Cerebellar cortical dysplasias and heterotopia 

The usual type of heterotopia in the cerebellum is a sharply 
defined patch containing granule cells, molecular layer and 
Purkinje cells apparently thrown together in a more or less 
haphazard way. Small collections of this type or containing 
only granule cells as the neuronal component may be seen 
postmortem in normal infants, mainly in the floccular and nodu
lar lobes. Gross lesions of this composition, macroscopically 
visible within the white matter or continuous with normal adja
cent cerebellar cortex represent more serious malformations. 
In the case of continuity of the heterotopic cortex with the 
normal cortex the name cerebellar (poly)microgyria has been 
given. Because no excessive folding or small gyri are involved 
(as in the case of the cerebral counterpart) Friede134 has taken 
exception to that name and preferred the term cortical dysplasia, 
a practice that is followed here. 

Cerebellar cortical dysplasias and mixed heterotopia are seen 
in a large variety of disorders described elsewhere in this article 

such as Zellweger syndrome and chromosomal disorders. Corti
cal dysplasias and heterotopia may involve small parts of the 
cerebellum and be of no functional significance, or may involve 
the whole of the cerebellum as in Walker-Warburg syndrome. 
They are seen relatively often in Dandy-Walker syndrome.135 

Arrest of internal granule cell migration together with relative 
granule layer aplasia has been described in GM2-gangliosidosis.I34 

Subcortical nodules that contain only ganglion cells, whether 
related to Purkinje cells or to the roof nuclei represent another 
type of heterotopia. The latter has been described repeatedly in 
Joubert syndrome, an autosomal recessive disorder with 
hyperpnea/apnea, mental retardation and vermal aplasia.136"139 

Olivary heterotopia 

Heterotopia involving olivary components anywhere between 
the corpus ponto-bulbare and their normal station are a regular 
feature of the Miller-Dieker syndrome.44 Similar lesions have 
been seen occasionally in cases with Dandy-Walker syndrome 
without other distinguishing features, '40 and on one occasion in 
Coffin-Siris syndrome (Table II). 

DISEASE ENTITIES ASSOCIATED WITH NMD 

Associated telencephalic malformations 

Occipital encephalocoele,l4' holoprosencephalyl42 and agen
esis of the corpus callosum'42'43 may be accompanied by 

Figure 6 — Schizencephaly in a 13-year old menially defective male. Contrast 

enhanced CT-section shows full-thickness cerebral cleft on one side (other 

side similarly affected, not shown at this level), bordered by heterotopic 

grey matter. 
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Table 2: Syndromes with neuronal migration disorders 

Classification Genetics 

Abbreviations: ar = autosomal recessive; ad = autosomal dominant; 
xd = x-linked dominant; xr = x-linked recessive. 

Table 3: Maternal and environmental causes of neuronal migration 
disorder. 

Infection; cytomegalovirus^ 
Intoxications: carbonmonoxide! 

isotretinoic acid' 
ethanol181184 

methylmercury18 

Ionizing radiation* ibid.201 

""Limited evidence in man, but high probability in view of animal ex
periments; see text. 

NMD. The first two are outside the scope of this article. Dys
genesis of the corpus callosum is found relatively often in 
infants with grossly disturbed mental development and epi
lepsy especially infantile spasms. The association between dys
genesis of the corpus callosum and NMD — both microgyria 
and nodular neuronal heterotopia — is so close that it is found 
irrespective of etiology.'41'142 It is therefore very likely that 
similar mechanisms underlie both NMD and callosal dysgenesis. 
In most cases of callosal dysgenesis the origin of the corpus 
callosum is not absent, but represented by paired ectopic longi
tudinal bundles of Probst. Aberrant neurite outgrowth is there
fore an essential feature of callosal dysgenesis. 

The interrelation with aberrantly placed perikarya, the essence 
of NMD, is a tempting area for future research. Among the rare 
but specific causes of this association the Aicardi syndrome 
should be mentioned. A comprehensive recent review is 
available.144 In this syndrome which is exclusively present in 
the female sex, or at least in individuals having two X-chromo-
somes, chorioretinal lacunae, dysgenesis of the corpus callosum. 
vertebral anomalies and clinical patterns of severe developmen
tal retardation and infantile spasms are found. Neuropathological 
studies reviewed mention cortical lamination disturbance as 
well as subcortical and subependymal heterotopia. Other 
supratentorial brain abnormalities reported in Aicardi syndrome 
are "porencephaly", hemispheric cysts and anomalies of the 
choroid plexus including papilloma. In at least one autopsied 
case145 an interhemispheric neuroepithelial cyst was found. 
This suggests that some of the cysts seen on CT-scans of 
patients with Aicardi syndrome may be similar neuroepithelial 
cysts. Such cysts are believed to result from dislodged ventricu-
larepithelium early in development.I46 The association of callo
sal dysgenesis, NMD and neuroepithelial cysts may therefore 
be of more than incidental significance. 

In another syndrome that is probably X-linked dominant, the 
oral-facial-digital syndrome, NMD is found together with callo
sal dysgenesis and occasionally neuroepithelial cysts. In one 
report congenital coloboma in one retina and hypoplastic optic 
nerves were found as well, providing some interesting parallels 
with Aicardi syndrome.I4? A relationship that may exist between 
NMD and intraparenchymal neuroepithelial cysts has been 
found in experimental animals (rats), subjected to prenatal 
radiation.148 The cysts originate from "neuroblast" rosettes. 

Chromosomal disorders 

Severe mental deficiency is expressed in most of the known 
chromosomal disorders. This predicts a high association with 
structural brain defects. Unfortunately the harvest of neuro
pathological observations has been small compared with the 
huge body of literature dealing with these disorders. Even 
where abnormalities have been found such as dysgenesis of the 
corpus callosum, such findings often did not explain the sever
ity of neurological handicap. The elucidation of this problem 
had to await a more subtle technique such as the revival of the 
Golgi staining technique that revealed the abnormalities of the 
synaptic organisation of the neocortical neurons e.g. in trisomy 
13 and in Down's syndrome.'4 9 '5 0 Gross abnormalities such as 
holoprosencephaly in trisomy 13 and myelomeningocele in 
trisomy 18 are well known. NMD in trisomy 13 usually takes 
the form of heterotopic collections in the cerebellar white 
matter.151152 Many cases of trisomy 18 show periventricular 
heterotopia in the cerebral hemispheres.153"156 Periventricular 

Metabolic syndromes 
Zellweger s.105-"1 ar 
Neonatal adrenoleukodystrophy39"6 ar 
Glutaric aciduria II40,4' ar 
Menkes' disease204205 xr 
GM2gangliosidosis134 ar 

Neuromuscular syndromes 
Walker-Warburg s.56"66 ar 
Fukuyama syndrome67"77 ar 
Myotonic dystrophy207 ad 
Anterior horn arthrogryposis206,208 ? 

Neurocutaneous syndromes 
Incontinentia pigmenti104 xd 
Neurofibromatosis166 ad 
Ito's hypomelanosis168 ? 
Encephalocraniocutaneous lipomatosis169 ? 
Tuberous sclerosis167 ad 
Epidermal nevus s. (Jadassohn)'70 ? 

Multiple congenital anomalies-syndromes 
Smith-Lemli-Opitz s.16' ar 
Oligohydramnios tetrad (Potter s.)162 ? 
Cornelia de Lange s.163 ? 
Meckel-Gruber s.97,98 ar 
Oro-facio-digital s.'47 xd 
Coffin-Siris s.210 ? 

Chromosomal syndromes 
Trisomy 13 '

5 1
'
5 2 

Trisomy 18
153

"'
56 

Trisomy 21 '
6 0 

Deletion 4p'57"159 

Deletion I7pl3 (Miller-Dieker s.)44,47"52 

Skeletal dysplasias 
Thanatophoric dysplasia97"103 ? 

Nephrotic syndrome 
Pachygyria/nephr. s. (Robain)123,124 ar 

Other CNS-dysplasias 
Aicardi s.144 xd? 
Jouberts.136-'39 ar 
Type I lissencephaly, normal karyot. (Norman-

Roberts)53-54 ar? 
Cerebro-cerebellar lissencephalies79,81 ar? 
Hemimegalencephaly171"'76 ? 
Schizencephaly and allied s.1291"133 ? 

Twin-syndromes 
Parabiotic twin syndrome (early)92,93 nor 

Solitary reports 
Ehlers-Danlos s. with heterotopia209 ? 
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heterotopia are also known in the 4p- syndrome,157 beside 
abnormalities of gyration, microgyria, increased numbers of 
neurons in the molecular layer of the neocortex and Purkinje 
cell heterotopia.158159 Trisomy 21 (Down syndrome) is well 
known for a combination of developmental and regressive 
abnormalities. Occasonal mention has been made of nodular 
heterotopia in the cerebral white matter and mixed heterotopia 
of variable size in the cerebellar flocculus.'60 

Multiple congenital anomalies (MCA-syndromes) and NMD 

Beside chromosomal syndromes hereditary or genetically 
undetermined MCA-syndromes may carry a high incidence of 
NMD. Some of these have already been mentioned. In the 
genetic group autosomal recessive disorders include the Smith-
Lemli-Opitz syndrome with heterotopia in the cerebral and the 
cerebellar hemispheres, especially in those cases in which the 
full syndrome, including Polydactyly and renal polycystic dis
ease is expressed. '6I Cerebellar heterotopia have been described 
in infants with Potter syndrome (oligohydramnios tetrad),162 

and combined cerebral and cerebellar heterotopia in Cornelia 
de Lange syndrome.163 Furthermore NMD is seen in Meckel-
Gruber syndrome (autosomal recessive),97,98 Zellweger syn
drome,'05"'08 glutaric aciduria type II with brain warts and 
renal cysts.40'41 The oro-facio-digital syndrome has been men
tioned already. Besides the typical features of facial skull, 
extremities and cerebral malformation it may also feature 
polycystic kidneys.'64165 The association between NMD and 
renal dysplasias in otherwise widely different MCA-syndromes 
may be significant. 

NMD associated with neurocutaneous syndromes 

Von Recklinghausen neurofibromatosis is associated with 
frank mental retardation in a small number of cases. An autopsy 
study of patients with this phacomatosis revealed mild abnor
malities in cortical architecture, especially in those whose intel
ligence was subnormal. Gross malformation consisting of 
microgyria and nodular heterotopias was observed in a case 
withIQ39.'66 

Tuberous sclerosis, the second neurocutaneous syndrome is 
particularly associated with mental retardation in a high 
proportion. Important abnormalities found in autopsied patients 
include disturbances of glial differentiation and growth of a 
topical nature, including subventricular nodules and giant cell 
tumors. Although tuberous sclerosis has a well documented 
prenatal onset in many cases reported, NMD does not appear a 
significant part of the morphological abnormalities encountered. 
One report describes malpositioning of pyramidal neurons in a 
cortical tuber studied with the Golgi technique.'67 Of the rarer 
neurocutaneous syndromes grey matter heterotopia together 
with glial proliferation has been observed in Ito's hypome-
lanosis.'68 Microgyria has been reported in encephalocranio-
cutaneous lipomatosis'69 and leptomeningeal glioneural and 
white matter heterotopias, together with microgyria and 
gliomatosis in a newborn with severe epidermal nevus syn
drome. '70 Microgyria in Bloch-Sulzberger syndrome has already 
been mentioned.104 

NMD associated with hemimegalencephaly 

A number of pathological case reports exist on infants and 
young children with hemimegalencephaly,17'176 a condition 
with one hyperplastic cerebral hemisphere with gyral abnormali

ties (pachygyria), giant pyramidal neurons (restricted to the 
pathological side), beside subcortical'71"'73 and glioneural lep
tomeningeal heterotopia.I74 Cytomorphometric studies in some 
of these cases'72173 '76 proved increased nuclear volume172173 

and an apparently increased DNA content172173 in the affected 
neurons, which led to a suggestion of topical heteroploidy. The 
presence of giant neurons in the brainstem ipsilateral to the 
giant hemisphere in some cases'73174 and the presence of ipsi
lateral corporeal hypertrophy in some cases (reference list of 
Bignami, et al 1968)'72 would imply that the dysembryonic 
influence causing this growth disturbance is rather limited to 
one side of the main embryonic axis, and therefore may well 
originate during the earliest mitotic divisions of the embryo. 

The presence of glial nodules and giant glial cells in the 
absence of gross degenerative changes in some of the reported 
cases'72174175 is reminiscent of disorders affecting growth 
and proliferation in a topical nature, in other words the 
phacomatoses. The latter opinion concurs with the pathologi
cal findings in an autopsy case of the one neurocutaneous 
syndrome that causes hemimegalencephaly: the organoid nevus 
syndrome or epidermal nevus syndrome. 17° The hemimegalen
cephaly cases are also remarkable for they present rare exam
ples of brain malformations with NMD in which brain volume is 
increased rather than decreased. An MRI-example of hemime
galencephaly is shown in Figure 7. 

NMD associated with megalencephaly and elevated insulin-like 

growth factor II 

A single case report on congenital megalencephaly with grossly 
disturbed neocortical development and NMD with elevated 
levels of the growth hormone dependent insulin like growth 
factor II (IGF II) in CSF (at autopsy) and in postmortem brain 
samples appeared recently.42 This interesting study offers a 
new approach to cases of "intrinsic" disturbances of bulk 
growth whether associated with NMD or not. 

Figure 7 — Hemimegalencephaly in a 2 year old female demonstrated in 
transverse inversion recovery sequence MRI-section. The abnormal hemi
sphere seen on the right shows paucity of secondary sulci, deep parietal 
sulcus and masses of poorly delineated grey matter within the central 
white matter. 
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ENVIRONMENTAL CAUSES OF NMD 

Confirmed hazards to neuronal migration in the human fetus 
are isotretinoic acid, ethanol, methylmercury, radiation and 
radiomimetics. The effects of fetal hypoxia have already been 
mentioned. 

Isotretinoic acid 

Isotretinoic acid, an alcohol-soluble synthetic analogue of 
vitamin A prescribed as an oral medication for severe cystic 
acne has become associated with craniofacial, cardiac, thymic 
and central nervous system malformations in fetuses exposed 
during the first trimester. A spectrum of cerebral abnormalities 
have been described which includes hydrocephalus, micro
cephaly, holoprosencephaly (one case), vermal aplasia, cerebel
lar cortical dysplasia, dystopic corticospinal tracts in the 
brainstem, malformed inferior olivary nucleus, malformed 
allocortex, focal neocortical agyria. A consistent abnormality 
appears leptomeningeal neuroglial heterotopia that may affect 
both supra- and infratentorial structures.177"179 

Ethanol 

In utero exposure to ethanol produces the fetal alcohol syn
drome (FAS), a dysmorphic syndrome with intrauterine as well 
as postnatal growth retardation, a characteristic facial dysmorphia 
with prominent midfacial hypoplasia, microcephaly, mental 
retardation and often cardiac defects.I80181 Increased rate of 
stillbirth is another recognized hazard. Morphological brain 
abnormalities are variable and logically depend on time and 
degree of exposure and possibly on additional adverse condi
tions such as dietary deficiencies and other addictions includ
ing heavy smoking. A spectrum of neuropathological findings 
has been reported'81"184 in infants and fetuses, which includes 
microencephaly, hydrocephalus, arhinencephaly, callosal dys
genesis microdysplasias of cerebral and cerebellar cortices, 
dentate- and olivary nuclei, hydromyelia, porencephaly and 
spongy degeneration in diencephalic structures and optic nerves. 
NMD is mainly seen as leptomeningeal neuroglial heterotopia 
of various extent overlying both supra- and infratentorial parts 
of the neuraxis. Such neuroglial heterotopia appear to arise 
through thin bridges of neural tissue that connect the heterotopia 
with the underlying neuraxial structures. Neuronal hetrotopia 
within the cerebral hemispheres are occasionally found. The 
neuropathological series quoted undoubtedly are the most seri
ous part of the spectrum of sequelae. Moderate mental retarda
tion and microcephaly with behavioral disorders, characteristically 
present in long-term survivors may have other structural corre
lates than NMD. A large number of animal experiments involv
ing different species and different protocols of exposure all 
point to the potentially damaging effects of ethanol on the 
shaping process in various parts of the brain.185'187 

Methylmercury 

In the 1950's methylmercury was the cause of large scale 
industrial pollution around Minamata Bay (Japan) carried by 
consumption of poisoned fish from the bay. So-called Minamata 
disease caused severe neurological deficits. Also babies who 
were exposed in utero were affected by fetal Minamata disease.188 

Severe neuronal losses in the cerebral and cerebellar cortices 
were described, but also signs of NMD.188 Another epidemic of 
methylmercury intoxication in Iraq (1970-1971) was caused by 

consumption of homemade bread prepared from seed grain of 
wheat treated with methylmercury fungicide. Prenatally exposed 
babies suffered from psychomotor retardation even when the 
clinical symptoms in their mothers had been mild or absent.189 

The brains of two infants expiring soon after birth have been 
described in detail by Choi et al.190 They had been exposed 
between 6 and 8 and between 8 and 10 weeks fetal age. Mercury 
intoxication was confirmed by its determination in the blood 
and was found to be higher in the infants at delivery as in their 
mothers, confirming delayed fetal clearance. The babies were 
small for gestational age. Major findings consisted of neuronal 
heterotopia in the cerebral hemispheres and in the cerebellum, 
and leptomeningeal heterotopia. In the cerebral cortex, layer
ing abnormalities and undulating upper cortical layers resem
bling microgyria were apparent. Large numbers of gemistocytic 
astrocytes containing mercury were shown histochemically. A 
relatively large number of reports relate to the influence of 
methylmercury on experimental animal fetuses (for review see 
Choi 1983).191 The influence of methylmercury on migrating 
neurons has been studied in vitro by exposing human fetal 
explants containing migrating neurons to methylmercury. 
Methylmecury chloride caused abrupt cessation of active move
ment of cells in these cultures. The initial site of damage appeared 
to be the neuritic membrane in the vicinity of growth cones.192 

Electron microscopy suggested that the initial event was the 
disappearance of neurotubules necessary for structural support 
and for axoplasmic transport. Similar damage was observed in 
cultures of astroglial cells. Decreased DN A-synthesis probably 
resulted from interference with mitotic spindles.193 The out
come of these studies may have a bearing not only on public 
health policies surrounding organic mercury, but also on other 
agents and intrinsic processes that affect cytoskeletal proteins 
and in this way affect neuronal migration. 

Ionizing radiation and cytostatic drugs 

Pregnant rats subjected to roentgen irradiation between the 
14th and 16th day produce offspring with neuronal heterotopia 
in the cerebral hemispheres. If radiation is applied between the 
19th and 21 st day disordered cerebellar migration is found.u8, l94 

Other deficiencies observed were microencephaly, absent cor
pus callosum, hydrocephalus and rosette formations. Cerebel
lar granule cell ectopia were seen in rats after birth if radiation 
took place before migration from the external granule cell layer 
ended.195 Similar observations could be made with respect to 
the cerebral hemispheres in mice when irradiated between the 
10th and 14th day of gestation.196 

The experience in man has been summarized by the descrip
tion of the sequelae in survivors of prenatal exposure to the 
atornic bomb of Hiroshima197 and by the timetable of the effects 
of prenatal radiation injury obtained from a number of case-
reports on therapeutic pelvic irradiation during pregnancy.198 

In the case of the Hiroshima bomb microcephaly (below - 2 
S.D.) was the most obvious sequel and this was especially 
prevalent in cases that had been exposed between the 7th and 
15th week gestational age. Most though not all of the cases had 
learning disorders.197 Later analyses have confirmed this.199'200 

Fetal exposure to pelvic radiation, mainly due to the vogue of 
radiation for all kinds of purposes in the twenties and thirties 
has provided another source.198 A timetable constructed from 
these individual reports showed that radiation incurred between 
3 to 4 and 11 weeks caused microcephaly, mental retardation 
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and stunted growth, besides eye, skeletal, and genital abnor
malities. Between 11 and 16 weeks radiation resulted in 
microcephaly, mental retardation and stunted growth without 
associated injury. Similar effects though milder were encoun
tered in cases of radiation between 16 and 20 weeks. Cerebellar 
NMD has been described in a case where intrapelvic radium 
had been applied ending "near the seventh month" ,201 Through 
the sparsity of detailed neuropathological studies the results of 
experimental studies cited above find no confirmation or exclu
sion in man. Since the effects that can be observed in man 
during life such as eye abnormalities, stunted growth and micro
cephaly are closely similar to those that are encountered in 
animal experiments the likelihood of NMD being eventually 
found in surviving human cases through the use of magnetic 
resonance imaging or postmortem investigation is high. Animal 
experiments with cystostatic drugs e.g. cytosine arabinoside 
indicate similar results as those obtained with ionizing radia
tion.202203 
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