
Disparity between the Programmatic Views and the
User Perceptions of Mobile Apps

Nahida Sultana Chowdhury
Department of Computer and Information Science
Indiana University-Purdue University Indianapolis

Indianapolis, IN, USA
nschowdh@iupui.edu

Rajeev R. Raje
Department of Computer and Information Science
Indiana University-Purdue University Indianapolis

Indianapolis, IN, USA
rraje@cs.iupui.edu

Abstract— User perception in any mobile-app ecosystem, is
represented as user ratings of apps. Unfortunately, the user
ratings are often biased and do not reflect the actual usability of
an app. To address the challenges associated with selection and
ranking of apps, we need to use a comprehensive and holistic
view about the behavior of an app. In this paper, we present and
evaluate Trust based Rating and Ranking (TRR) approach. It
relies solely on an apps’ internal view that uses programmatic
artifacts. We compute a trust tuple (Belief, Disbelief, Uncertainty
– B, D, U) for each app based on the internal view and use it to
rank the order apps offering similar functionality. Apps used for
empirically evaluating the TRR approach are collected from the
Google Play Store. Our experiments compare the TRR ranking
with the user review-based ranking present in the Google Play
Store. Although, there are disparities between the two rankings, a
slightly deeper investigation indicates an underlying similarity
between the two alternatives.

Keywords— Subjective Logic; Online Marketplace; Apps; User
Rating; Trust; Evidences

I. INTRODUCTION

The numbers of smart computing devices and their users
have increased at a fast pace in the global market. This
proliferation has led to an incredible growth in the number of
apps for these devices. For example, in March 2017, the
number of apps available for download in leading two app
stores (Android and Apple’s app store) was 5 million [1]. This
number is expected to increase in the future. As there are
many apps offering similar services, the users carry out
manual attempts made to select the “best” app for their
specific needs. Such a manual exploration makes the selection
process laborious and challenging. Some apps (e.g.,
WhatsApp), which do not have good peer alternatives, are
easy to choose. However, for many other categories (e.g.,
photography), there are very few systematic approaches that
assess and help the users to choose the best app for their
needs. These approaches include the monitoring the top lists,
read reviews, and experiment with features. In most cases, the
features associated with an app are the number of downloads,
installs/updates, number of ratings, average rating score,
content and sentiment analysis of reviews. At present, Android
and Apple’s app stores both use the rating numbers to make
decisions about promoting an app.

A typical user considers the textual reviews and rating
scores as the only measures while selecting an app;
unfortunately, the user ratings are often biased do not reflect
the actual usability of an app. As indicated in [2], the sole
reliance on reviews and ratings is not suitable due to the
various reasons such as: ratings suffer from self-selection bias;
poorly written reviews; self-promotion of apps by the
companies and developers’ requesting friends to give poor
ratings to competing apps. To address these challenges
associated with selection and ranking of apps, we need to use
a holistic view about the behavior of an app. past, we have
defined the trust of an app (or a software service)1 as its
conformance to its specification [3] and proposed two views
of a service: an internal view or the programmatic view2 that
uses programmatic artifacts (e.g., system source code,
specifications, etc.), and an external view that uses the non-
programmatic artifacts (e.g., user ratings and reviews in public
marketplaces). In our past work ([4, 5]), we have focused on
the external view to quantify the trust of an app using
evidence-based techniques (such as theory of belief [6], and
associated NLP schemes [7]). The trust of an app is
represented as a tuple of belief, disbelief and uncertainty (B,
D, U). In this paper, we explore the internal views of
publically available apps by applying the principles of static
code analysis (via the FindBugs tool) and generate internal-
evidences of apps. These evidences then are used to create an
internal trust tuple (B, D, U). We use these internal tuples to
rank order apps offering similar functionality and compare our
ranking with the ranking offered by the app stores.

This rest of the paper is organized as follows: Section 2
covers the related literature on different approaches used to
quantify the trust of mobile apps before or after their
development. Section 3 explains the proposed approach in
detail. Section 4 discusses the experimental results. Section 5
summarizes the insight gained and concludes with future work
plan.

II. RELATED WORKS

There are many approaches for predicting bugs inside a
mobile application via testing techniques – e.g., functional
testing. Espresso [8], provided by Google, is capable of
solving the concurrency issues. However, it runs on an
emulator resulting in limited performance issues (such as

1 In this paper, we have used the words “app” and “service” interchangeably.
2 In this paper, we have used the words “internal view” and “programmatic
view” interchangeably.

This is the author's manuscript of the article published in final edited form as:
Chowdhury, N. S., & Raje, R. R. (2017). Disparity between the programmatic views and the user perceptions of mobile apps. In 2017 20th International
Conference of Computer and Information Technology (ICCIT) (pp. 1–6). https://doi.org/10.1109/ICCITECHN.2017.8281774

https://doi.org/10.1109/ICCITECHN.2017.8281774

memory constraint, display screen size, etc.). Another useful
tool is Monkey [9], which comes with the Android
developers’ toolkit. It can only generate UI events where users
have to specify the desired number of events. An automated
testing tool (Bug Rocket) provided by Ma et al. [10] associates
distributed testing environments with testing automation based
on reverse engineering techniques. Other tools to test mobile
applications include Dynodroid [11], EvoDroid [12] and
SwiftHand [13].

Static code analysis tools are capable of detecting possible
runtime errors (e.g., dereferencing null pointer), logical
inconsistency, and security violations (e.g., SQL injection) in
an app. This analysis can take place at different levels such as
the source code level, the binary code level, and the bytecode
level. FindBugs [14] and Jlint [15] are open-source static
bytecode analyzers for Java. FindBugs is capable of covering
more bug types than Jlint (e.g., unreachable code). Hammad et
al. [16] used FindBugs to determine which categories of bugs
occurred more frequently in low rated apps rather than in high
rated apps by examining the relationships between each
category of bugs in an app and the corresponding app rating.
In our work, we have used FindBugs to identify different
categories of bugs in terms of bug ranks (1-20) and bug
confidence levels (such as high, medium and low). The bug
rank represents the severity of the bug and the confidence
level indicates confidence of the tool regarding the bug
existences.

Several efforts have quantified the trust of a service based
external views. In [17], authors present a study that
investigates to what extent NLP, Sentiment Analysis [18] and
Text Analysis features support to identify app store reviews
relevant for the maintenance and evolution of mobile apps.
Palomba et al. [19] reveal how developers address user
reviews to improve their apps’ success in terms of ratings.
Gallege et al. ([4, 5]) have quantified trust values of services
using publically available external evidences in forms of user
reviews. In our proposed approach, we have used a similar
quantification using internal evidences generated by
FindBugs.

III. PROPOSED APPROACH

When an Android user needs an app, usually she searches
the Google play store; where there are plenty of choices
offering similar functionality. In most cases, she would simply
choose the highest rated app (using the in-built star rating)
from the suggested list. This five star rating system is
questionable, as in the most of the cases a user provides either
a five star or a one star rating [20] based on a positive
experience or any problems encountered during installation or
usage. Such a process may not reflect the quality and the trust
of an app accurately. Therefore, to select a good quality app
will require more details than the user ratings. Below we
discuss our approach that collects internal evidences about an
app by using FindBugs. First we briefly present background
about FindBugs, principles of Subjective Logic, and prevalent
rank ordering practices – all of which are used in our
approach.

A. Static Analysis Tool: FindBugs

While there are many open-source static analysis tools, we
chose FindBugs as it is capable of reducing the number of
false positive warnings [21]. Moreover, FindBugs can
perform its analysis on bytecode rather than source code. As
we do not have an access to the unpackaged source code of
published apps, we can easily run this tool on Jar files to
detect occurrences of bug patterns. FindBugs is capable to
identify over 400 possible bug patterns. These bug patterns are
categorized into the following list: Bad Practice, Malicious
Code Vulnerability, Multithreaded Correctness, Dodgy Code,
Correctness, Performance, Internationalization, Experimental
and Security [14]. FindBugs also assigns different priorities
(from 1 to 20) to each bug related warning; where 1 represents
the top priority bug and 20 represents the lowest priority bug.
The priority level of the warnings is dependent on how
confident (high, medium, and low) the tool is regarding the
presence of that bug. High confidence means that the
identified bug is certainly a real bug. Low confidence bugs are
ideally false positives and medium confidence bugs lie in
between these two extremes. As FindBugs has a relatively low

Download APK file
and store data

related user rating

Decompile the APK
file to java bytecode

file

Run FindBugs on the
class filesApp Store

Customize the bug
list based on their

Rank [1-20] and tool
confidence (high,
medium and low)

Mapped the number
of bugs into 20 <B, D,

U> tuple values

Aggregate
<B, D, U >

tuple values
into one

Generate
rating out of 5

Fig. 1. Our Approach

percentage of false positives, most of the bugs it finds are
valid bugs [22].

B. Subjective Logic

Subjective logic is a form of probabilistic logic, created by
Jøsang [23], has been used extensively in trust management,
and system evaluation. In this model, trust is seen as a balance
between belief, disbelief and uncertainty and is represented as
a tuple of <B, D, U>; (belief, disbelief, uncertainty). For a
single opinion about a proposition, the sum of b, d, and u is 1.
There are three special tuples in the model: full belief, B =
(1,0,0); full disbelief, D = (0,1,0); and full uncertainty, U =
(0,0,1). Each evidence can be used to compute the <B, D, U>
tuples. For our study, each internal evidence is generated by
FindBugs is used to compute the trust tuples associated with
that app. Presence of well-defined operators (e.g., conjunction,
disjunction, negation, recommendation, ordering, and
consensus [24]) is the main strength of Jøsang’s model. These
operators are used to evaluate, aggregate, and compare trust
values. In our approach, we have used the consensus and
ordering operators.

C. Popular practices for App Ratings

Five most popular app-stores (Apple’s App Store, Google
Play Store, Amazon Appstore, Windows Phone Store, and
Blackberry AppWorld) use simple rating mechanisms known
as the store rating. The store rating of an app is represented as
a number of stars from 1 to 5, and is aggregated from
individual user ratings. For example, in the Google Play Store,
the store rating of an app is the cumulative average of all
individual user ratings over all the versions.

D. Proposed Approach

Our approach, shown in Figure 1, encompasses different
phases. First, we picked the Google Play Store as the target
app store. In addition to its popularity, we chose the Google
Play Store as most of the android apps are developed in Java
and their bytecode can be analyzed by FindBugs. Then we
identified the top 10 categories in Google Play – which are
education, lifestyle, entertainment, business, personalization,
tools, music & audio, books & reference, travel & local, and
puzzles [25]. From each category, we selected three apps and
stored their related data such as APK (Android Package Kit)
file and the corresponding user rating. Then we decompiled
the APK files to retrieve the Java bytecode files (class files).
We, then, passed the class files to FindBugs as input to
analyze the existence of bugs inside an app. Finally, we used
these evidence to compute the <B, D, U> tuples and order
apps.

1) Evaluation of <B, D, U> tuples: As indicated earlier,
we define trust of an app as its ability to deliver its
functionality as indicated by its specification. Any evidence
that suggests such as conformance is a positive evidence and
one that suggests a violation is a negative evidence. In our
approach, we consider the presence of high confidence bugs
(indicated by FindBugs) as negative evidences and the low
confidence bugs as positive evidences. The medium
confidence bugs are considered as uncertain evidences, which
are equally distributed between the positive and negative

evidences. More precisely, the computations of B, D, U
values, to quantify the internal view of the trust of an app, are
carried as follows [26]:

b = (number of positive evidences)/ (total evidences + n) (1)
d = (number of negative evidences)/ (total evidences + n) (2)
u = n/ (total evidences + n) (3)

Here ‘n’ indicates the number of possible outcomes. In our
case, n is 2, as a bug is either present or absent. For example,
if for a particular bug rank, we received 41 high confidence
bugs, 6 medium confidence bugs and 256 low confidence bugs
then using the above formulae, the trust tuple will be <0.144,
0.85, 0.006>.

2) Aggregate tuple values into single <B, D, U>: As
indicated earlier, FindBugs produces twenty possible
categories of evidences for an app where each category
indicates a different bug priority. Using the above mentioned
formula, for each app, we compute twenty <B, D, U> tuples.
As these tuples indicate different opinions about the trust of
the same app, these can be combined by the use of the
consensus operator to create a single <B, D, U> tuple. The
default consensus operator, suggested by Jøsang, treats fused
opinions equally, which makes it difficult to deal with the
weighted opinions. Zhou et al. [27] have proposed two fusion
operators (cumulative weighted fusion operator and averaging
weighted fusion operator) that are capable of dealing with
fusing opinions according to their weights in a fair way. As in
our approach, all the opinions are independent, we have
applied the cumulative weighted fusion operator to combine
individual tuples into a single tuple. Once we have such single
tuples for similar apps, these apps can be ordered using the
ordering operator, which uses the notion of probability
expectancy. Our algorithm is described below. Please note that
we normalize our rating to be out of 5 to match the rating used
by the Google Play Store – such a normalization allows the
comparison of our rankings with the Play Store’s rankings.

Trust rating and ranking (TRR) algorithm

Input: Evidences generated by FindBugs
For each App{
 For each Evidence (1 to 20){

 Calculate <B, D, U> tuples using formulae 1 to 3;
 }

Aggregate trust tuples by the use of the weighted
consensus operator and generate a Single <B, D, U> tuple;

}
Use ordering operator to generate the app rating and
normalize the rating to be out of 5;

Based on the rating order them 1 to N;

Output: Ordered Ranking based on internal evidence-based
rating Apps

IV. RESULTS AND DISCUSSION

We empirically evaluated this approach by applying it to
the Android Marketplace. We picked 60 free apps from top 10
categories of the Google Play Store (six apps from each

category). Based on their functionality, we split these 60 apps
into two groups of 30 app each. The first group contained
“homogeneous apps” (i.e., apps offering very similar
functionality) and the second group consisted of
“heterogeneous apps” (i.e., apps belonging to the same top-
level category, such as puzzles, but offering different puzzle
games). We applied FindBugs to both these groups; collected
internal evidences and fed them to our algorithm. We also
used a Java decompiler to reproduce Java source code from
bytecode. Using a static code analysis tool, we extracted the
total number of source code lines (excluding comment lines).
The total number of bugs for each app, identified by
FindBugs, and the number of lines extracted were used to
compute BUGS/KLOC (KLOC = thousands of lines of code)
for each app. This ratio, along with the Store ranking based on
user reviews, provide us with two traditional ways of ranking
apps. The rankings generated by our algorithm were
compared, using the Kendall Tau Distance method [28], with
store’s default rakings based on user reviews and the
traditional rakings based on the number of bugs per KLOC.
Distances of 0% and 100% indicate identical and opposite
rankings respectively. Below we discuss the results of our
experiments.

A. Heterogeneous Apps

Table I indicates the differences between the orderings
based on user ratings and traditional approach for
heterogeneous apps. Only in one case, the orderings are same
while in two cases, the orderings are opposite.

Table II indicates the differences between the orderings
based on the user ratings and our approach for the same
heterogeneous apps. For three categories, the ordering is
opposite; while for two categories, it is same. In four of the
remaining five categories, the ranking is closer (33%
mismatch) to the user-based ratings, while for the last
category, it is farther (66%) from the user-based ratings.

B. Homogeneous Apps

Table III indicates the results in case of homogeneous
apps. Unlike the heterogeneous case (Table II), the
dissimilarity is more prominent in the user review-based
ratings and the TRR approach. Eight rankings are dissimilar
between the two schemes, while only two rankings are similar.

C. Discussion

For 30 homogeneous apps from top ten categories, we
found six apps that have opposite orderings (based on the user
ratings) when compared with the ordering using our TRR
method. These six cases are grouped into two following
categories:

Good to Bad: In this case, the users rated the app as the
topmost and the TRR algorithm ranked it last. A few sample
supportive (first two comments) and critical user comments
(last two comments) for such a case from the category of
Education include:

 “Its totally free and awesome app...it provide a lot of
information and is add free.. The challenges are one of
best thing.”

 “This app is very easy, interactive, user friendly and
resourceful. Thank you developer.”

 “Shortcut quizzes are not working, quite frustrating
as I already know another programming language, and
yet I need to waste time on basics. Another poor thing
is that questions asked are extremely basic and poorly
test actual knowledge learnt. This app is only good if
you already know what you are approximately doing.”

 “Nice app... I absolutely liked it until Data types,
arrays and pointer option started evoking unknown
errors... Whenever I click on it, app suddenly closed..
Kindly resolve it... Thank you.”

As seen from above, the supportive reviews seem to focus
on non-functional aspects (e.g., being free or user friendly-
ness), while the critical reviews seem to highlight the issues

with the inability of the app to deliver the necessary
functionality (e.g., evoking unknown errors) – a view enforced
by the TRR ranking scheme. Using an online sampling
calculator (www.surveysystem.com/sscalc.htm), we randomly
selected a sample of 42 reviews for further analyses. We
found, in this sample, 30 reviews were supportive, while 12
reviews were critical. The numbers of positive reviews are
much more than the critical reviews, thus, providing a high
rating for the app under consideration. Hence, at least in the

Table III: DISTANCE BETWEEN ORDERING BASED ON USER RATING AND

TRR APPROACH – HOMOGENEOUS APPS
App category Distance

Education 66%

Entertainment 66%
Business 66%

Books & References 66%
LifeStyle 66%

Music & audio 33%
Personalization 66%

Puzzles 66%
Tools 33%

Travel & local 66%

TABLE II: DISTANCE BETWEEN ORDERING BASED ON USER RATING AND

TRR APPROACH – HETEROGENEOUS APPS
App category Distance

Education 100%

Entertainment 33%
Business 66%

Books & References 33%
LifeStyle 33%

Music & audio 33%
Personalization 100%

Puzzles 0%
Tools 0%

Travel & local 100%

Table I: DISTANCE BETWEEN ORDERING BASED ON USER RATING AND

TRADITIONAL APPROACH
App category Distance

Education 100%

Entertainment 33%
Business 33%

Books & References 33%
LifeStyle 33%

Music & audio 66%
Personalization 100%

Puzzles 66%
Tools 66%

Travel & local 0%

case of this particular app, although there is a disparity
between the user rankings and the TRR ranking, an
experienced user would tend to agree with the TRR ranking.

Bad to Good: In this case, the users rated the app as the
last and the TRR algorithm ranked it as the best. A few sample
supportive (first two comments) and critical user comments
(last two comments) for such a case from the category of
Entertainment include:

 “I love this app! If you guys could just make it so that
there's a messenger fake call setup, then it would be 5
stars!”

 “I loooove dis app!! I totally created fake messenger
profiles of celebs and showed them to my friend who
does not have Facebook or Messenger and Lol it
actually worked she fell for it sooooo harddd!!! Thx for
making this great app I love dis app!!!”

 “Please add an insta account option in which there
should be a fake insta account i can show my bio and
also other feature and prank a person that i hacked your
account.”

 “This app should not be here. One of my friends was
bashed severely because of a prank. As creators of
something you must remember people can misuse
this. You may have made this for light pranks but you
have to think the negative side as well.”

As seen from above, the supportive reviews seem to focus
on functional aspects (e.g., allowing to create fake profiles) – a
view enforced by the TRR ranking scheme. On the other hand,
the critical reviews seem to highlight the issues with the
inability of the app to deliver add-on features (e.g., adding
Instagram account) or ethical usages (e.g., misusing the app).
For a randomly selected sample size of 42, the number of
negative reviews are much than the supportive reviews (the
number of good reviews is 15 and the number of bad reviews
is 27), thus, providing a low rating for the app under
consideration. Hence, in the case of this particular app,
although there is a disparity between the user rankings and the
TRR ranking, a user who is focused on the functional view of
the app (i.e., is the app delivering what it promises to deliver)
would tend to agree with the TRR ranking.

In a similar way, for 30 heterogeneous apps from top ten
categories, we found seven apps that show opposite orderings.
These seven cases again are grouped into two good to bad and
bad to good categories:

 Good to Bad: Two supportive and two critical user
comments for such a case from the category of Travel & Local
include:

 “Good app, while I was traveling in side train. the
location of indication station almost correct but PNR
updates very slow”

 “The best part of this application is that it works in
offline mode. Now available in all 8 necessary
languages, especially in hindi and bengali, very good
application.”

 “Live status was not updated... My train has moved
and crossed over 5 big stations but its showing in the
same boarded place itself.”

 “Now Not able search pnr status, always showing
Indian railways server error, while server is working
fine in other app. Please correct it then it's become very
useful as before.”

As seen from above, again, the supportive reviews seem to
focus on non-functional aspects (e.g., multi-lingual), while the
critical reviews seem to highlight the issues with the inability
of the app to deliver the necessary functionality (e.g. incorrect
live status) – a view enforced by the TRR ranking scheme. For
a randomly selected sample size of 42, the number of positive
reviews are much than the supportive reviews (the number of
good reviews is 28 and the number of bad reviews is 14), thus,
providing a low rating for the app under consideration. Hence,
in the case of this particular app, although there is a disparity
between the user rankings and the TRR ranking, a user who is
focused on the functional view of the app (i.e., is the app
delivering what it promises to deliver) would tend to agree
with the TRR ranking

Bad to Good: Two supportive and two critical comments
for such a case from the category of Business include:

 “I am getting interviewed after applying and similar
exp beside my frnd have regular oppertunities because
he has paid service of naukri. I dont know how but
some times i feel its because of paid or non paid.”

 “One of the best app. Notifications are well organized.
I wish if dummy openings can be removed which
misguide the applicants and they don't get call despite
of matching JD.”

 “App is good. But d employers in it r cheat. I got a
call from a Company named as 'Genius Solutions'.
They called me for interview at their office in kirti
nagar. They deposited 500 rs money from me and said
by calling they will tell me the nearby location to my
house. Now, its been one week they hvnt even called
me n when i tried to call they r not responding. Beware
guys n girls.”

 “This App is good no doubt but one of the recruiter
call me for the Interview & I had given the simple
Interview & told I'm Selected & ask me to pay 750 as it
is refundable. After paying it they again ask to pay
2000 for the training which is not refundable then I
found that they are fraud & fooling me.. Then I decided
not to go & pay 2000 for training. But My 750 is gone
& very upset.”

As seen from above, the supportive reviews seem to focus
on functional aspects (e.g., a good organization of notations) –
a view enforced by the TRR ranking scheme. On the other
hand, the critical reviews seem to highlight the issues with the
external features (e.g., bad behavior by recruiters). For a
randomly selected sample size of 42, the number of negative
reviews are much than the supportive reviews (the number of
good reviews is 11 and the number of bad reviews is 31), thus,
providing a low rating for the app under consideration. Hence,

again, in the case of this particular app, although there is a
disparity between the user rankings and the TRR ranking, a
user who is focused on the functional view of the app (i.e., is
the app delivering what it promises to deliver) would tend to
agree with the TRR ranking.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have described the technique to model
and quantify the trust of software apps based on the
programmatic (internal) view. The proposed technique, called
TRR approach, also provides methods to analyze, and
aggregate, internal views of software apps and use them to
perform trust-based rating and ranking. We applied TRR
approach to a few apps from popular categories and compared
the rankings based on the user reviews with our rankings.
Although, we found is most cases, the two rankings were
different, a closer investigation does reveal that there are many
similarities between the rankings, if the user is focused on the
promised functional features of the app. As many users are not
focused on the functional aspects only but give importance to
other aspects (e.g., additional feature or look and feel), it is
necessary to merge the internal view provided by the TRR
approach with the external view obtained by more thorough
investigation (e.g., sentiment analysis and reputation of users)
of user reviews. Such a combined alternative will provide a
holistic view of apps and their rankings – one of the future
investigations we are planning to pursue. Other future efforts
include applying the TRR approach to larger and diverse
datasets and the exploration of other prevalent techniques
(e.g., model checking) to compute the internal view.

REFERENCES
[1] Number of apps available in leading app stores as of March 2017:

www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/

[2] Why You Shouldn't Trust App Store Reviews (and What to Trust
Instead): lifehacker.com/why-you-shouldnt-trust-app-store-reviews-and-
what-to-1515379780.

[3] L. Gallege, D. U. Gamage, J. H. Hill, and R. R. Raje, “Understanding
the trust of software-intensive distributed systems,” Concurrency and
Computation Practice and Experience, Volume 28, Issue 1, pp. 114-143,
January 2016.

[4] L. Gallege, and R. R. Raje, “Parallel Methods for Evidence and Trust-
basd Selection and Recommendation of Software Apps from Online
Marketplaces,” Proceedings of the 12th Annual Cyber and Information
Security Research Conference, 2017.

[5] L. Gallege, “Trust-based Service Selection and Recommendation for
Online Software Marketplaces (TruSStReMark),” PhD Thesis, IUPUI,
December 2016.

[6] G. Shafer, “A Mathematical Theory of Evidence,” Whitepaper,
Princeton University Press, 1976.

[7] N. Indurkhya and F. J. Damerau, Handbook of Natural Language
Processing, 2nd ed., Chapman and Hall Inc., 2010.

[8] Espresso:google.github.io/android-testing-
supportlibrary/docs/espresso/index.html

[9] Monkey: developer.android.com/studio/test/monkey.html

[10] X. Ma, N. Wang, P. Xie, J. Zhou, X. Zhang, C. Fang, “An Automated
Testing Platform for Mobile Applications,” IEEE International
Conference on Software Quality, Reliability and Security Companion,
2016.

[11] A. Machiry, R. Tahiliani, and M. Naik. “Dynodroid: An input generation
system for android apps,” In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pp. 224–234, ACM, 2013.

[12] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented
evolutionary testing of android apps,” In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 599–609, ACM, 2014.

[13] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” In ACM SIGPLAN
Notices, volume 48, pp. 623–640. ACM, 2013.

[14] FindBugs: findbugs.sourceforge.net/

[15] Jlint: jlint.sourceforge.net/

[16] H. Khalid, M. Nagappan, A. E. Hassan, “Examining the Relationship
between FindBugs Warnings and App Ratings,” IEEE SOFTWARE, pp.
34–39, July/August 2016.

[17] S. Panichella, A. Di Sorboy, E. Guzmanz, C. A.Visaggioy, G. Canforay,
and H. C. Gall, “How Can I Improve My App? Classifying User
Reviews for Software Maintenance and Evolution,” ICSME, Bremen,
Germany, pp. 281 -290, 2015.

[18] B. Pang, L. Lee, and S. Vaithyanathan, “ThumbsUp? Sentiment
Classification using Machine Learning Techniques,” Proceedings of the
Empirical Methods in Natural Language Processing (EMNLP), 2002.

[19] F. Palomba, M. Linares-V´asquez, G. Bavota, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia, “User Reviews Matter! Tracking
Crowdsourced Reviews to Support Evolution of Successful Apps,”
ICSME, Bremen, Germany, pp. 291-300, 2015.

[20] M. Siegler, “YouTube Comes To A 5-Star Realization: Its Ratings Are
Useless,” Techcrunch, Sep 22, 2009.

[21] D. Hovemeyer and W. Pugh, “Finding Bugs Is Easy,” ACM SIGPLAN
Notices, vol. 39, no. 12, 2004.

[22] Evaluation-of-findbugs: girasoleyang.blogspot.com/2013/11/evaluation-
of-findbugs-final-blogpost.html

[23] A. Jøsang, “Subjective Logic: A formalism for reasoning under
uncertainty,” Springer Verlag, 2016.

[24] A. Jøsang, “An Algebra for Assessing Trust in Certification Chains,”
NDSS Symposium, 1999.

[25] Top 10 Google Play categories: www.appbrain.com/stats/android-
market-app-categories

[26] D. Ceolin, P. Groth, and W. Robert Van Hage, “Calculating the trust of
event descriptions using provenance,” Proceedings Of The SWPM,
2010.

[27] H.Wenchang Shi, Z. Liang, and B. Liang, “Using new fusion operations
to improve trust expressiveness of subjective logic,” Wuhan University
Journal of Natural Sciences, Volume 16, number 5, Sep 2011.

[28] [28] M. G. Kendall, “A New Measure of Rank Correlation,” Biometrika,
Volume 30, Issue 1-2, pp. 81–93, 1938.

