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As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting
species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the
oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave
bifurcation, remains less investigated. Here, we extend the original analysis by Turing to networks and apply
it to ecological metapopulations with dispersal connections between habitats. Remarkably, the oscillatory
Turing instability does not lead to wave patterns in networks, but to spontaneous development of
heterogeneous oscillations and possible extinction of species. We find such oscillatory instabilities for all
possible food webs with three predator or prey species, under various assumptions about the mobility of
individual species and nonlinear interactions between them.Hence, the oscillatory Turing instability should
be generic andmust play a fundamental role inmetapopulation dynamics, providing a commonmechanism
for dispersal-induced destabilization of ecosystems.

A
rich variety of nonequilibrium pattern formation is supported by reaction-diffusion processes. One of the
universal mechanisms of such pattern formation is provided by the Turing instability1; a diffusion-
induced instability of the homogenous state which leads to spontaneous development of self-organized

patterns. The Turing instability can play an important role in biological morphogenesis and has been extensively
studied in various applications, including biological2–6, chemical7,8 and physical systems9. The classical Turing
instability leads to the establishment of stationary spatial patterns. However, the oscillatory analogue of this
instability is possible and it has also been discovered by Turing1. This oscillatory intability produces traveling or
standing waves and therefore it is often called ‘‘the wave instability’’10. At least three species are needed for the
oscillatory instability, while the stationary instability is possible already with two species. The stationary Turing
instability has been extensively studied both theoretically2–4,9 and experimentally5–8, whereas the oscillatory
instability is more rare and it was found only for special chemical systems11–13. Note that complex spatio-temporal
patterns can also emerge as a result of interactions between the stationary Turing instability and other bifurca-
tions. For example, near the Turing-Hopf bifurcation point, complexmixedmodes leading to standing waves and
spatio-temporal chaos can exist14. However, their mechanism is different from that of the oscillatory Turing
instability.

Reaction-diffusion processes are also characteristic to ecological systems. The reactions correspond in this
case to the predator-prey and other interactions between the species. Both passive diffusion and active
random migration are possible in ecological populations. Moreover, there are situations when a population
occupies a large habitat and therefore can be considered as an extended spatial system. The classical Turing
instability is possible in ecosystems. It has been shown that such instability should be generic for the two-
species predator-prey models15 (see also16). Complex spatio-temporal ecological dynamics related to the
Turing-Hopf15,17 and Turing-Takens-Bogdanov15 bifurcations has been discussed. Stationary Turing pat-
terns have been found in realistic models describing plant-parasite18, plankton-fish19 and plant-insect20

interactions. The oscillatory Turing instability is also possible in ecology. In a study of a three-species
plant-parasite-hyperparasite system, such instability leading to standing waves, has been previously
considered18.

While some ecological systems can be described by reaction-diffusion equations for continuous media, there
are also many ecosystems that are spatially fragmented and represent networks21–23. Such networks are formed by
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individual habitats which are linked by dispersal connections.
Ecological species populate the habitats and diffusively migrate over
a network. Such network-organized ecosystems are known as meta-
populations24–26. The metapopulation concept has been applied to
describe and investigate real ecological systems (see, e.g.27–29). It has
also been used in the context of the epidemic research30–33. In the
framework of the metapopulation concept, the role of dispersal
connections in enhancing the stability of an ecosystem (the rescue
effect) has been discussed25 (see also28). The theoretical results
have been tested in the experiments with specially prepared
metapopulations27,29.
Ecological metapopulations provide examples of reaction-dif-

fusion systems with a network structure. Such systems can how-
ever be also found in other research fields. For instance, a
biological embryo can be viewed as a network of cells with the
chemicals diffusing over the pattern of intercellular connec-
tions34–36. Networks formed by coupled reactors can also be con-
sidered37,38. Theoretical studies of reaction-diffusion processes on
networks have already attracted much attention39. Effects of
infection spreading over the networks have been discussed in
detail30–33. The role of network topology on the phase diagrams
of nonequilibrium phase transitions on networks has been con-
sidered40. Traveling and pinned fronts in networks of diffusively
coupled bistable elements were analyzed41 and control of front
propagation by global feedback has been considered42. There is
large literature on the networks formed by diffusively coupled
oscillators43,44 (see also45). The role of dispersal connections in
the synchronization effects in ecological networks has also been
discussed46.
The stationary Turing instability for networks has been first

analyzed in 1971 by Othmer and Scriven34. The authors have
introduced a general mathematical description of the classical
Turing instability in two-component reaction-diffusion networks
and have applied their theory for regular lattices35. Stationary
Turing patterns in small networks of coupled chemical reactors
have subsequently been discussed37. The properties of such instab-
ility and of the final established stationary patterns in large ran-
dom networks of diffusively coupled activator-inhibitor elements
have been investigated and the mean-field theory of Turing pat-
terns in such network systems has been constructed9. The global
feedback control of the stationary Turing patterns in networks has
been studied47. A detailed mathematical analysis of the hysteresis
phenomena related to the network Turing bifurcation has recently
been performed48.
In this article, we present, for the first time, theoretical investi-

gations of the oscillatory Turing instability (the analogue of the
wave bifurcation) in network-organized reaction-diffusion systems
and apply them to large ecological networks. Our numerical simu-
lations are performed for the metapopulations with various three-
species food webs under different assumptions about the nonli-
nearities of the population dynamics. The instability could be

found for all such systems and, as we therefore believe, it should
be common in ecology. In contrast to the wave instability in
continuous media, traveling or standing waves do not develop
and oscillations, localized on a subset of network nodes, are
instead observed. The bifurcation is supercritical and therefore
the final pattern is usually well described by the first critical mode.
This diffusion-induced instability leads to destabilization of meta-
populations and the extinction of some species may result from it.
We consider ecological networks formed by individual popula-

tions which occupy separate habitats, labeled by indices i~
1,2, � � � , N , and are coupled by dispersal connections. Our attention
is focused on the populations which consist of three interacting
species. All possible food webs with three different species are dis-
played in Fig. 1. Generally, such ecological networks are described by
equations
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for i,j~1, � � � , N , where population densities of species on node i are
denoted as ui5 [U]i, vi5 [V]i, andwi5 [W]i, functions F5Qu

2Ru,
G5 Qv

2 Rv, H 5 Qw
2 Rw are the differences of reproduction (Q)

and death (R) rates for each species, and su,v,w are the mobilities of
the three species; the common parameter E is introduced for con-
venience, so that the mobility of all species can be varied without
changing relative mobilities. The Laplacian matrix L has elements

Lij~Aij{

X

j
Aijdij where Aij is the matrix of connections between

the habitats. We assume that, in absence of diffusive coupling, a
stable stationary state (u0, v0, w0) exists which is determined by
F(u0, v0, w0) 5 G(u0, v0, w0) 5 H(u0, v0, w0) 5 0 where u0 . 0,
v0.0 and w0.0.
For comparison, the continuous analog of the model (1) will be

also considered, where node variables ui, vi and wi are replaced by
space-dependent densities u, v and w. The diffusion processes are
described by using the diffusion operator=2 instead of the Laplaciam
matrix Lij. Thus, the model equations are given by
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We examine three different food webs shown in Fig. 1a–c. In the
food chain shown in Fig. 1a, top predator W is feeding on inter-
mediate species V which is in turn a predator for prey U. In the
food web shown in Fig. 1b, both species V and W play a role of the
predators for prey U while V is also a prey for W. In the food web
shown in Fig. 1c, species U and V are the prey for predator W.
Explicit expressions for the reproduction rates and death rates in
each model (A, B and C) are provided in Methods section. While
different nonlinear dependence can be considered for predator-
prey interactions, we will employ the Holling type II functions3,49

(See Supporting Information for other dependences). Note that
the food web shown in Fig. 1d is excluded from our analysis. In
such system, two competing species V and W cannot coexist in a
steady uniform state and oscillatory Turing instabilities are
impossible.

a

U

W

V

b

c d

V

W

U

VU

W

U

W V

Figure 1 | Foodweb diagrams. Each arrow goes from the consuming to the

consumed species. In the last food web (d), no persistence with fixed values

of �u,�v,�wð Þ can be achieved; therefore this web is excluded from our

analysis.
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Results
Linear stability analysis. Below we give the precise definition of the
oscillatory Turing instability in ecological networks. The stability of
the uniform state of the model can be analyzed by the linear stability
analysis. Small perturbations (dui, dvi, dwi) are introduced to the
steady state as (ui, vi, wi) 5 (u0, v0, w0) 1 (dui, dvi, dwi). Substi
tuting this into Eqs. (1), the following linearized differential
equations are obtained:

d

dt
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where Fu~LF=Lu u0,v0,w0ð Þ

�

� , Fv~LF=Lv u0,v0,w0ð Þ

�

� , Fw~LF=Lw u0,v0,w0ð Þ

�

� ,

… are partial derivatives at the uniform steady state (u0, v0, w0). The

Laplacian eigenvectors {~w að Þ} are introduced to decompose the
perturbations. They are defined as

X

N

j~1

Lijw
að Þ
j ~L

að Þw
að Þ
i ð4Þ

whereL(a) is the Laplacian eigenvalue of the a th mode (a~1, � � � , N).
The mode indices {a} are sorted in the increasing order of the

Laplacian eigenvalues {L(a)} so that L
1ð Þ
ƒL

2ð Þ
ƒ � � �ƒL

Nð Þ
~0

holds. The perturbations (dui, dvi, dwi) are expanded over the set of
the Laplacian eigenvectors as
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where (a)
5 l(a)1 iv(a) is a complex growth (or decay) rate of the a th

eigenmode. Substituting these expressions into Eqs. (3), the following
equations are obtained for each eigenmode:
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Thus, the decay rate of each eigenmode is determined by the characteristic equation
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The uniform steady state is stable if l(a),0 for all a. The Turing instability takes

place if l(a) becomes positive at some a5 ac which represents the critical mode for

the instability. The criticalmodes are stationary, w
acð Þ
i , ifv acð Þ

~0. On the other

hand, the critical modes can also be oscillatory, w
acð Þ
i eiv acð Þt , if

v acð Þ
=0. As noticed already by Turing1, oscillatory instabilities are

possible only if the number of species is at least three.
For the continuous analogue (2), a similar analysis can be per-

formed. Since eigenvectors of the differential operator =2 are plane
waves, =2eikx 52k2eikx, small perturbations can be decomposed over
them as

du x,tð Þ~

ð

dkU kð Þ exp kð Þt
h i

exp ikx½ �,

dv x,tð Þ~

ð
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h i

exp ikx½ �,

ð8Þ

to obtain the characteristic equation
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The instability occurs if l(k) becomes positive at some critical wave number

kc. The critical mode corresponds to a traveling wave w
kcð Þ
i eiv

kcð Þt if

v kcð Þ
=0 or to a stationary wave eikcx if v kcð Þ

~0.
For continuous media, the oscillatory Turing instability is usually

called the wave instability, since the first unstable modes are the
traveling waves. In networks, traveling waves do not appear and
therefore it is not appropriate to talk about a wave instability in this
case.

Numerical investigations. First, we show the results for Model A.
Starting from equal mobilities su 5 sv 5 sw, we gradually increase
the mobility su of the bottom prey U and observe the oscillatory
Turing instability. The stationary steady state becomes unstable
above a certain threshold and non-uniform oscillations develop.
The emerging oscillatory Turing pattern is displayed in Fig. 2a.
One can notice that oscillations in the pattern are localized on a
subset of nodes. Network nodes with relatively high degrees (hubs)
exhibit oscillations while the other nodes remain staying near the
uniform steady state (See also Supplementary videos S1 and S2). We
will show later that such localized oscillations are typical for the
oscillatory Turing patterns in networks. Remarkably, the stationary
Turing instability can also be found in the same model when the
mobility sv of the intermediate species V is decreased (Fig. 2b).
Numerical simulations of the continuousmodel yield the behavior

shown in Figs. 2c,d, where periodic boundary conditions are
employed. The stationary pattern (Fig. 2b) becomes transformed
to a periodic stationary Turing pattern (Fig. 2d), whereas the loca-
lized oscillatory pattern (Fig. 2a) gives rise to a traveling wave
(Fig. 2c). While patterns in networks and continuous media may
appear different, they indeed correspond to the same, stationary or
oscillatory, Turing bifurcations.
The oscillatory Turing instability is observed also in other food

webs, Models B (Eqs. (12)) and C (Eqs. (13)). As well as in Model A,
the instability takes place in each system when the mobility of one
species is increased to exceed a certain threshold. In Model B, the
oscillatory Turing instability occurs when the mobility su of
the bottom prey U is increased. The emerging pattern is shown in
the left panel of Fig. 3a. In Model C, the instability occurs as the
mobility sv of a prey V is increased up (Left panel in Fig. 3b). Thus,
the oscillatory Turing instability is observed in all possible food webs
with three species shown in Fig. 1a–c.
Furthermore, in our numerical simulations, the oscillatory Turing

instablity was not sensitive to the choice of nonlinear functions in
Eqs. (1). As shown in Supplementary Information, different non-
linear functions could be used to describe predator-prey interactions.
We could observe the oscillatory Turing instability under various
assumptions3,49 about the functional form of the reproduction and
death rates. Moreover, the instability could be observed even if one of
the three species was immobile (see Supplementary Information).
Therefore, we found the oscillatory Turing instability in a wide

range of ecological models and conclude that the oscillatory Turing

www.nature.com/scientificreports
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instability is generic for ecosystems. This discovery agrees with the
results of our analytical investigation on the sufficient conditions for
the instability (See Ref.50 and Supplementary Information). Examin-
ing emergent patterns, one can notice that developing oscillations in
all considered systems are localized on a subset of network nodes
with close degrees. Although the localizing nodes are different
depending on a system, localized oscillations were always found.
As we discuss below, localization is a common characteristic of oscil-
latory Turing patterns in ecological networks.

Subcritical vs. supercritical bifurcations. Above the instability
threshold, nonlinear effects become important. They can lead to
the saturation of growth and the establishment of a final pattern.
Generally, they also determine whether a bifurcation is subcritical
or supercritical. When the bifurcation is subcritical, the pattern
with large magnitude becomes immediately established once the
instability threshold is exceeded. Such bifurcations are charac-
terized by hysteresis, so that the pattern persists even below the
instability threshold. In contrast to this, a supercritical bifurcation
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does not show a hysteresis and the magnitudes of established pat-
terns are small close to the threshold. In this case, the final patterns
do not differ much from the first critical modes near the bifurca-
tion point.
Figure 4 displays the results of the linear stability analysis and the

global amplitude �A (See Methods) for the oscillatory (Fig. 4a,b) and
stationary (Fig. 4c,d) Turing instabilities in Model A. Increasing the
mobility su of the preyU, we calculated the linear growth rate 5 l1
iv to find the instability at a threshold su,crit.. The critical eigenmode
has a complex linear growth rate (Fig. 4a) and therefore the instability
is oscillatory. After passing the instability, we gradually increase the
mobility su further away from the threshold and calculate the global
amplitude �A (Fig. 4b). As can be clearly seen in the figure, the oscil-
latory Turing instability corresponds to a supercritical bifurcation. We

have checked that near the threshold �A! su{su,crit:ð Þ1=2 holds. Thus,
small amplitude patterns can be established near the instability thresh-
old. In contrast, the stationary Turing instability, which corresponds to
a growth rate of a real number (Fig. 4c), exhibits a subcritical bifurca-
tion. As shown in Fig. 4d, once the instability takes place, the ampli-
tude �A jumps up to a large value.

Estimations of oscillatory Turing patterns using critical Laplacian
eigenvectors. Due to its supercritical bifurcation, oscillatory Turing
patterns near the instability threshold are well described only by the
first critical eigenmode ac, so that we have

dui tð Þ~U acð Þ exp v acð Þt
h i

w
acð Þ
i ,

dvi tð Þ~v acð Þ exp v acð Þt
h i

w
acð Þ
i ,

dwi tð Þ~W acð Þ exp v acð Þt
h i

w
acð Þ
i :

ð10Þ

Therefore, in this case, final patterns can be predicted bymeans of the

critical Laplacian eigenvectors~w acð Þ.
In Fig. 5, we demonstrate the prediction for Model A. Figure 5a

shows the results of the linear stability analysis at two different values
of overall mobility E in Model A. The respective critical Laplacian
eigenvectors are displayed in Figs. 5c,d and the actual oscillatory
Turing patterns in Figs. 5e,f. As seen in Fig. 5, critical Laplacian
eigenvectors and developing oscillatory patterns are localized on
subsets of network nodes with close degrees. The localization for
the considered network is demonstrated in Fig. 5b, where magni-

tudes jw
að Þ
i j of the components of Laplacian eigenvectors ~w að Þ are

displayed as a function of a. This localization is consistent with the
previous discovery for large random networks9,51. The critical eigen-
mode ac depend on the overall mobility E shown in Fig. 5a. As dis-
cussed previously9, the Laplacian eigenvalue L

(a) appears in the
characteristic function (7) multiplied by E. Then, if we change the
overall diffusion mobility E, the critical eigenmode ac shifts so that

the product EL acð Þ is kept constant. Thus, the characteristic local-
ization of the critical Laplacian eigenvector changes depending on
the overall mobility E shown in Fig. 5c,d. Correspondingly, in emer-
ging oscillatory Turing patterns, localizing nodes shift from hubs
(Fig. 5e) to peripheral nodes (Fig. 5f). Thus, examining Fig. 5, one
can predict the emerging patterns by means of respective critical
Laplacian eigenvectors.
The oscillatory Turing instabilities found in other models are

also identified with supercritical bifurcations shown in Fig. 3, and
Figs. S1 and S2 in Supplementary Information. Thus, the instability
generically leads to pattern formations of small amplitudes, which
are described by the Laplacian eigenvectors of critical modes. This
indicates that the localization property of the oscillatory patterns
originates in the localizing Laplacian eigenvectors.
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In contrast to the oscillatory instability, the stationary Turing
instability corresponds to a subcritical bifurcation. This gives a strik-
ing difference between patterns arising from both the instabilities. It
has been previously found in two-component reaction-diffusion net-
works that the stationary Turing instability corresponds to a subcrit-
ical bifurcation9. This holds also in three-component systems, that is,
ecological networks with three species. The bifurcation is subcritical
and the stable nonlinear state is far from the uniform steady state.
Although differentiation starts from the nodes with the characteristic
degree of the critical eigenvector, it takes place in surrounding nodes
sequentially and spreads over the entire network. The amplitude of
the developed final pattern becomes large. Thus, as we have seen in
Fig. 2, although both instabilities are induced by the diffusion effect,
the uniform steady state is destabilized in distinctly different fashions.

Secondary instability - Extinction of ecological species. We have
studied the dynamical behavior induced by the oscillatory Turing
instability far from the threshold and found a potential secondary
instability, leading to the extinction of ecological species. Note that
the dynamical behavior far from the instability threshold largely
depends on the considered model. We have identified such
extinction in Models A and B. As an illustration, we here show the
results for Model A. Figure 6 displays numerical results far from the
first instability threshold. Now, all eigenmodes are unstable except for
the zero eigenmode a50 (Hopf mode). In Fig. 6a, the network average
Æw(t)æ for the top predatorW is plotted as a function of time. After an
oscillatory transient, the average Æw(t)æ tends to zero and therefore the
top predator vanishes (See also Supplementary videos S3). Two
remaining species, the prey U and the intermediate predator V,
exhibit uniform oscillations after the extinction of the top predator
W (Fig. 6b). Thus, the secondary instability may be inherent in the
oscillatory Turing instability, which destabilizes the considered
ecosystem and leads to the extinction of ecological species.

Discussion and conclusions
The mathematical description for the classical (stationary) Turing
instability in networks has been proposed already in 197134.
However, it has been first applied only to regular lattices34,35 and
small networks37,38. Recently, such instability in large random net-
works has been investigated and characteristic properties of station-
ary Turing patterns in large networks have been discussed9,47,48. In
contrast to this, the mathematical theory of the oscillatory Turing
bifurcation (the analogue of the wave bifurcation) in networks has
been missing and our work is the first report where such theory is
constructed.
Similar to continuous reaction-diffusion systems, the oscillatory

instability needs three reacting species1 and it occurs when diffusion
mobilities of the species are largely different. However, wave pat-
terns, which are typical for such instability in continuous media,
do not emerge in networks. Therefore, we prefer not to use the term
‘‘wave instability’’ in the present study. As we find, heterogeneous
oscillations spontaneously develop and they are localized on a subset
of network nodes with similar degrees. The localization of developing
oscillations could be explained by taking into account the known
statistical properties of Laplacian eigenvectors in large random net-
works9,51. Such eigenvectors correspond to the critical modes of the
oscillatory Turing instability and hence they determine the prop-
erties of developing patterns.
Previously, it has been shown that the classical (stationary) Turing

bifurcation in networks is subcritical; it is characterized by strong
hysteresis and the properties of final stationary patterns in networks
are largely different from those of the first critical modes. In contrast
to this, we have found that the oscillatory Turing bifurcation in net-
works is typically supercritical. Thus, the hysteresis is absent and the
amplitude of the Turing patterns gradually grows as the control
parameter is increased. Near the bifurcation point, oscillatory
Turing patterns with small amplitudes are observed and they agree

a

0.18

0.19

0.2

0.21

0.22

λ
(α

)

ω
(α

)

-25 -20 -15 -10 -5 0

−0.04

−0.02

0

0.02

0.04

Λ
(α)

λ(α)

ω (α)

αc

λ(α)

ω(α)

αc

-12 -10 -8 -6 -4 -2 0
−0.4

−0.2

0

0.2

0.4

Λ
(α)

λ
  
 ,

(α
)

ω
(α

)

c

b

d

43.5 44 44.5 45 45.5 46
0

0.1

0.2

0.3

0.4

0.5

1/σ
v

A

53.35 53.4 53.45 53.5 53.55
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

σ
u

A

x 10 -2

Figure 4 | Linear stability analysis on Model A. Growth rates l(a) and frequenciesv(a) for different modes a near the instability threshold (a,c) and the
global amplitudes �A (b,d) for oscillatory (a,b) and stationary (c,d) Turing instabilities. The arrows in (d) show the directions of the parameter change.

Dispersal mobilities are (a) E~0:45, su50.5342, sv5sw50.01, (b) E~0:45, sv 5 sw50.01, (c) E~0:5, sv50.022, su 5 sw51, (d) E~0:5, su 5 sw51.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 3585 | DOI: 10.1038/srep03585 6



well with the first critical modes. This means that by considering
Laplacian eigenvectors the properties of final small-amplitude pat-
terns can be analyzed.
While the proposedmathematical theory is general and applicable

to systems with various origins, our detailed numerical simulations
have been performed for the models of ecological networks also
known as metapopulations26. We have considered metapopulations
with the graph structure of scale-free networks. The habitats, repre-
senting network nodes, were occupied by local three-species ecosys-
tems forming food webs. All possible food webs with three predator
or prey species were considered.We have only excluded the foodweb
with two predators and one prey shown in Fig. 1d because steady
coexistence of all three species is not possible in this case. Moreover,
simulations under various assumptions for nonlinear predator-prey
interactions have been carried out.

The oscillatory Turing instability could be observed for all con-
sidered metapopulation models. It has been found as the network
mobility (dispersal rate) of one of the species was gradually increased.
Note that it could be the mobility of a prey or a predator, depending
on the food web and the mathematical model applied. The instability
has been observed also in the three-species metapopulations where
one of the species was immobile. The results of our numerical simu-
lations are supported by the general sufficient conditions for the
oscillatory bifurcation in three-component ecological systems which
we have derived. While our analysis has been performed only for
systems with three species, it can be straightforwardly extended to
the systems with a larger number of components and hence for the
metapopulations with more complex food webs. Moreover, such
instabilities are also possible in other biological and chemical sys-
tems. As two examples, numerical simulations for the chemical
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extended Brusselator and Oregonator models are presented in
Supplementary Information.
We conclude that the oscillatory Turing instability may be generic

for ecosystems. It should be generally expected whenever metapo-
pulations with at least three species and sufficiently large differences
in the mobilities of the species are investigated. This result may be of
principal importance. Previously, the discussion has been focused on
the role of dispersal connections in enhancing the stability of uni-
form steady states25,27. We find however that dispersal connections
would often destabilize the uniform steady state and lead to the
development of oscillations on a subset of network nodes. We would
like to stress that such oscillations are a consequence of the differ-
ential dispersal mobilities of species and they were always absent for
isolated populations in individual habitats.
While the developing oscillations are weak near the instability

threshold, their amplitude increases with the distance from the crit-
ical point and large-amplitude oscillations are also possible. We have
shown that the secondary instabilities of such oscillations may take
place and, in the considered example Fig. 6, they have resulted in the
extinction of one of the species and, therefore, in the degradation of
an ecosystem. So far, only the global extinction through the develop-
ment of uniform oscillations via a Hopf bifurcation has been dis-
cussed. Our work provides a different scenario for the extinction of
species through the development of dispersal-induced hegeroge-
neous oscillations in ecological networks.
It would be interesting to perform experimental or field studies of

the oscillatory Turing instability and the resulting Turing patterns in
real ecological systems. For this purpose, it may be beneficial to work
first with the artificially constructed metapopulations as it has been
done before in the experimental studies on the role of dispersal con-
nections27,29,52. To prove the presence of oscillatory Turing patterns in
natural ecosystems, the development of such patterns and their res-
ponses to local perturbations should be analyzed, similar to what has
been done to demostrate the existence of classical stationary Turing
patterns in biological organisms6.

Methods
Food-web models. zwModel A. In the food chain shown in Fig. 1a, top predatorW is
feeding on intermediate species V which is in turn a predator for prey U. The
collective dynamics of such metapopulation is described by Eqs. (1) with

Qu
~au, Ru u, vð Þ~buuzcu

v

uzm
,

Qv uð Þ~cv
u

uzm
, Rv v, wð Þ~avzdv

w

vzV
,

Qw vð Þ~dw
v

vzV
Rw

~aw:

ð11Þ

The parameters in Eq. (11) are fixed at au51, bu51, cu51, av51/4, cv51, dv51,
aw51/2, dw51 and m5 n51/2, yielding a uniform stationary state (u0, v0, w0)5(1/2,
1/2, 1/4).

Model B. In the food web shown in Fig. 1b, both species V and W play a role of the
predators for prey U while V is also a prey forW. Such system is modelled as follows:

Qu uð Þ~au{buu, Ru u, v, wð Þ~cu
v

uzm
zeu

w

uzr
,

Qv uð Þ~cv
u

uzm
, Rv v, wð Þ~avzdv

w

vzV
,

Qw u, vð Þ~dw
v

vzV
zew

u

uzr
, Rw

~aw:

ð12Þ

We fixed parameters in Eqs. (12) at au51, bu51.5, cu51, eu50.4, av50.25, cv51,
dv51, aw50.5, dw51, ew50.4 and m5 n5 r50.5, which gives a uniform steady state
u0, v0, w0ð Þ^ 0:468, 0:221, 0:168ð Þ.

Model C. In the food web shown in Fig. 1c, species U and V are the prey for predator
W. Thus we have

Qu uð Þ~au{buu, Ru u,wð Þ~cu
w

uzm
,

Qv vð Þ~av{bvv, Rv v,wð Þ~dv
w

vzV
,

Qw u,vð Þ~cw
u

uzm
zdw

v

vzV
, Rw

~aw:

ð13Þ

Parameters in Eqs. (13) are fixed at au 5 av55.55, bu 5 bv51.2, cu 5 dv53, aw51,
cw51.5, dw51.5 and m 5 n52 in Eqs. (13), yielding a uniform steady state
u0,v0w0ð Þ^ 0:295, 2:330, 3:975ð Þ.

Network architecture. The network structure is determined by a symmetric
adjacencymatrixA, whose elementsAij are 1, if a link from node j to node i exists, and

0 otherwise. The degree, number of links, of node i is defined as ki~
X

j
Aij. The

network-Laplacian matrix L is defined as Lij 5 Aij 2 dijkj. The scale-free network is
generated by the Barabási-Albert preferential attachment algorithm53. The network
size wasN550 and themean degree was Ækæ58. For convenience, the node index {i} is
sorted as decreasing order of the degree ki, number of links, so that k1§k2§ � � �§kN
holds.

Amplitude. To quantify emergent patterns, the amplitude is introduced. The
amplitude of individual node i at time t is defined as

Ai tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ui tð Þ{ u tð Þh ið Þ2z vi tð Þ{ v tð Þh ið Þ2z wi tð Þ{ w tð Þh ið Þ2
� �

q

, ð14Þ

where u tð Þh i~
X

i
ui tð Þ=N, v tð Þh i~

X

i
vi tð Þ=N and w tð Þh i~

X

i
wi tð Þ=N are

the mean quantities. The long-time-averaged amplitude is defined as

�Ai~ lim
T??

1

T

ðT

0

dtAi tð Þ: ð15Þ

Similary, the amplitude of the entire network at time t is defined as

A tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i

ui tð Þ{ u tð Þh ið Þ2z vi tð Þ{ v tð Þh ið Þ2z wi tð Þ{ w tð Þh ið Þ2
� �

r

, ð16Þ

The long-time-averaged amplitude is defined as

�A~ lim
T??

1

T

ðT

0

dtA tð Þ: ð17Þ
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The 4th-order Runge-Kutta scheme with time step Dt51024 was employed in
numerical integration. The integration code was written by using the C language. The
simulations were started from the uniform steady state (u0, v0,w0) with random small
perturbations with standard deviations (u0, v0, w0) 3 1023. The steady state was
identified by using the Mathematica software.
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