Dispersed Conductive Polymer Nanoparticles on Graphitic Carbon Nitride for Enhanced Solar-driven Hydrogen Evolution from Pure Water

Yi Sui,^{‡ab} Jinghai Liu,^{‡ac} Yuewei Zhang,^a Xike Tian^b and Wei Chen^{*a}

^ai-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China. E-mail:<u>wchen2006@sinano.ac.cn</u>
^bFaculty of Material Science & Chemistry, China University of Geosciences, Wuhan 430074, P. R. China. E-mail: xktian@cug.edu.cn
^cCollege of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao, 028043, P. R. China.

[‡]These authors contributed equally to this work.

The method to test the concentration of hydrogen peroxide produced at the interface of $g-C_3N_4$ and water under simulated solar light:

Hydrogen peroxide (H_2O_2) measurements were performed on 2.0 mL reaction suspension that was taken immediately after the irradiation. For each test, a 0.5 mL volume of 1% o-tolidine in 0.1 M HCl (Alfa Aesar, 98%, without further purification) ^[1] was added to the suspension. This mixture was allowed to react for 2 min. In the presence of peroxides, a blue color is formed very quickly resulting from the oxidation of o-tolidine. Subsequently, the dispersion was acidified with 1 M HCl (2 mL), which caused the color of the dispersion to turn yellow. The yellow-coloured species is the protonated form of the 2-electron oxidation product of o-tolidine formed. The dispersion was quickly filtered through a 0.22 um membrane filter and the absorption spectrum of the filtrate was immediately recorded with a UV-Vis spectrophotometer (Shimadzu, UV-2550). The absorption spectrum of the 2-electron oxidized toluidine has a characteristic maximum at 438 nm.

Concentration of peroxides determined by the calibrated curve and fitting equation

The calibrated curve and fitting equation was made using H_2O_2 with different concentration as external standard materials. The *o*-tolidine as an indicator for H_2O_2 was the quick oxidation reaction of *o*-tolidine and H_2O_2 catalyzed by Pt ^[2, 3]. Without the catalyst, the colorization reaction was slow. Therefore, we used Pt-g-C₃N₄ without irradiation as the catalyst for the indicator reaction. The testing process was similar to the mentioned above, but the reaction suspension was 1 mL H_2O_2 solution and 1 mL Pt-g-C₃N₄ (0.8 mg mL⁻¹).

Fig. S1 The H₂ evolution for Pt loaded PC1.5 (PPy/g-C₃N₄ with PPy loading amount of 1.5 wt%) with different sacrificial electrons donors. (a) Pure water. (b) 10 v% triethanolamine (TEA). (c) 0.25 M Na₂S/Na₂SO₃.

Fig. S2 The detected evolving gas by Gas Chromatogram (TCD as detector, packed column, molecular sieve 5A 60-80 mesh, column serial number 100526-01) with N_2 as carrier gas.

Fig. S3 The calibration curve and fitting equation of produced H2 and the peak area obtained from GC test, which are determined by external standard method using H2 (99.999%) as standard materials with different volume under the same experimental and GC conditions as the water-splitting experiment.

Fig. S4 The hydrogen peroxide produced on the interface of $g-C_3N_4$ and water under solar light irradiation. Control 1: Pt–g-C₃N₄ without irradiation. Control 2: water instead of Pt–g-C3N4. Simulated solar light was obtained by an AM1.5 filter with an intensity of 56.07 mW cm⁻². The reaction system was 80 mg photocatalyst in 100 mL

Fig. S5 The calibration curve and the fitting equation of the H_2O_2 concentration and absorbance, which are determined by external standard method using H_2O_2 as standard materials with different concentration under the same experimental conditions.

References:

[1] O. C. Compton, F. E. Osterloh, J. Phys. Chem. C 2009, 113, 479-485.

[2] D. Duonghong, M. Gratzel, J. Chem. Soc., Chem. Commun., 1984, 1073, 1597-1599.

[3] J. Kiwi, M. Gratzel, J. Mol. Cat., 1987, 39, 63-70.

water.