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DISPERSION ANALYSIS OF PLANE WAVE DISCONTINUOUS GALERKIN

METHODS

Claude J. Gittelson1 and Ralf Hiptmair2

Abstract. The plane wave discontinuous Galerkin (PWDG) method for the Helmholtz equation was
introduced and analyzed in [Gittelson, C., Hiptmair, R., and Perugia, I. Plane wave discontinuous
Galerkin methods: Analysis of the h-version. Math. Model. Numer. Anal. 43 (2009), 297–331] as a
generalization of the so-called ultra-weak variational formulation, see [O. Cessenat and B. Després,
Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz

equation, SIAM J. Numer. Anal., 35 (1998), pp. 255–299]. The method relies on Trefftz-type local trial
spaces spanned by plane waves of different directions, and links cells of the mesh through numerical
fluxes in the spirit of discontinuous Galerkin methods.

We conduct a partly empirical dispersion analysis of the method in a discrete translation invariant
setting by studying the mismatch of wave numbers of discrete and continuous plane waves travelling
in the same direction. We find agreement of the wave numbers for directions represented in the local
trial spaces. For other directions the PWDG methods turn out to incur both phase and amplitude
errors. This manifests itself as a pollution effect haunting the h-version of the method. Our dispersion
analysis allows a quantitative prediction of the strength of this effect and its dependence on the wave
number and number of plane waves.
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1. Introduction

We consider the homogeneous Helmholtz equation

−∆u− ω2u = 0 , (1)

on d-dimensional space as our model partial differential equation governing the isotropic propagation of scalar
waves. Here ω > 0 denotes the wave number related to the wavelength λ by λ = 2π

ω
.

Local mesh-based discretizations of (1) are haunted by the so-called pollution effect [6], which refers to the
accumulation of amplitude and phase error due to numerical dispersion. The former describes the undesirable
damping of “discrete plane waves”, the latter the deviation of their wave numbers from the exact value ω,
cf. [6, 9].
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The classical approach to investigating numerical dispersion considers the discretization scheme for the un-
bounded domain R

d on infinite meshes that are invariant under a discrete group of translations. Then dis-
crete Bloch waves can be found by solving small non-linear eigenvalue problems, see, among others, the arti-
cles [9,16,17]. Fully symbolic computations become possible when the scheme is intrinsically of tensor product
type, see the work of M. Ainsworth [1,3–5]. In more general settings, quantitative information about numerical
dispersion can solely be obtained from numerical computations.

An idea meant to curb the pollution effect is to incorporate information on the wave number ω into finite
dimensional trial spaces and use those for a Galerkin-type discretization of (1). One such attempt is the so-
called plane wave discontinuous Galerkin (PWDG) methods introduced in [10] and further analyzed in [11–13].
These generalize the ultra-weak variational formulation (UWVF) scheme of Cessenat and Despres [7, 8, 14, 15],
which has attracted considerable attention.

Numerical experiments in [10, Section 5] clearly conveyed that the h-version of PWDG that seeks to enhance
accuracy through refining the mesh is afflicted by the pollution effect. This article pursues a quantitative
analysis of this effect by studying the strength of numerical dispersion present in several variants of PWDG
among them UWVF. We pursue this for both triangular and quadrilateral meshes in 2D. For want of tensor
product structure we have to rely on numerical approximation in the final step. However, this gives information
of almost the same quality as closed form expressions.

In the next section we introduce PWDG to the extent needed for dispersion analysis. Then we briefly review
the setting and gist of dispersion analysis in Section 3. Numerical computations that yield comprehensive quan-
titative information about the dispersive nature of the PWDG-discretized Helmholtz equation on selected grids
in two dimensions are documented in Section 5. Section 4 discusses details of the computational methodology.

The results of our numerical dispersion analysis for PWDG can be summarized as follows:

• All variants of PWDG under investigation are affected by numerical dispersion, which will inevitably
engender a pollution effect for the h-version. Different choices of PWDG flux coefficients seem to have
only a minor impact.

• Relative dispersion in 2D grows like O(ω2q), q := ⌊p−1

2
⌋, where p is the fixed number of equispaced

plane waves per cell.
• Relative dispersion enjoys an exponential decrease in p.
• An increase in the number of degrees of freedom buys a greater reduction in numerical dispersion for

PWDG than for standard Lagrangian finite elements.

2. Plane Wave Discontinuous Galerkin Methods (PWDG)

From [10, Sect. 2] we briefly recall the definition of the PWDG discretization of the Helmholtz equation (1).
Since dispersion analysis ignores boundaries, we only consider the unbounded domain Ω = R

d, d = 2, 3. To
begin with, we equip Ω with an infinite triangulation Th = {K} with polyhedral cells K of equal size, and write
Fh for its skeleton, that is, the union of edges (d = 2) or faces (d = 3).

Secondly, as a linear Galerkin method, PWDG involves a sesquilinear form whose definition relies on the
triangulation Th. As explained in [10, Sect. 2], by means of local integration by parts and suitably defined
numerical fluxes we arrive at the following PWDG sesquilinear form

bh(u, v) := ah(u, v)− ω2 (u, v)
Rd ,

with (·, ·)
Rd the L2(Rd) inner product and

ah(u, v) :=
∑

K∈Th

∫

K

∇u · ∇v dx−

∫

Fh

[[u]]N · {{∇hv}}dS −

∫

Fh

{{∇hu}} · [[v]]N dS

−
β

iω

∫

Fh

[[∇hu]]N [[∇hv]]N dS + iωα

∫

Fh

[[u]]N · [[v]]N dS ,

(2)
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see [10, Eq. (4.3)]. The positive parameters α, β > 0 reflect the choice of numerical fluxes, and ∇h stands for a
piecewise gradient on Th. We have also used the standard notations for

averages: {{∇hv}} := 1

2
(∇v |K+ + ∇v |K−) ,

jumps: [[u]]N := u |K+ n+ + u |K− n− ,

across an edge/faces separating two cells K+ and K−. It goes without saying that sufficient regularity is
required for the argument functions of ah. Piecewise smooth functions with respect to Th are admissible, of
course. As will be elucidated in Section 3, dispersion analysis can dispense with knowledge of a “right hand
side” source functional.

The third ingredient of a PWDG method are trial and test spaces Vh ⊂ V spanned by plane waves locally. In
detail, let the plane wave space PWω(R

d) be characterized by the number p ∈ N of plane waves and p mutually
different directions dj , j = 1, . . . , p:

PWω(R
d) := {v ∈ C∞(Rd) : v(x) =

p∑

j=1

γj exp(iωdj · x), γj ∈ C} . (3)

In particular, in all numerical computations (for d = 2) we will use evenly spaced directions

dj =

(
cos( 2π

p
(j − 1) + ψ)

sin( 2π
p
(j − 1) + ψ)

)
, j = 1, . . . , p , ψ ∈ R fixed . (4)

Now we are in a position to define the global trial and test spaces for PWDG

Vh := {v ∈ L2
loc(R

d) : v |K ∈ PWω(R
2) ∀K ∈ Th} . (5)

We point out that, of course, p and the directions dj could vary between different mesh cells, and this typically
occurs in practical applications of PWDG. Yet, our approach to dispersion analysis can cope only with a uniform
choice of local spaces, which renders the definition (5) sufficient for our purposes.

It remains to fix the flux coefficients α and β for a complete definition of a PWDG method. In principle, any
choice α, β > 0 leads to a viable method, though extra restrictions may be necessary for the sake of rigorous
theoretical analysis as in [10, Sect. 4], [11, Sect. 3], and [13, Sect. 4]. For the numerical experiments conducted
in Section 5 we rely on the four different sets of coefficients listed in Table 1.

Here, h > 0 denotes the mesh width of Th and, on every edge e, ctinv > 0 is minimal such that

∫

∂K

|vh|
2 dS ≤

c2tinv
diamK

∫

K

|vh|
2 dx ∀vh ∈ PWω(R

2) , (6)

for all cells K ∈ Th containing e, cf. [10, Theorem 3.7]. The values of ctinv are computed by local eigenvalue
problems on K ∈ Th. The choice (UWVF) for the coefficients yields the popular UWVF discretization. The
other choices (PWDG0)–(PWDG2) are inspired by numerical fluxes used for DG methods for 2nd-order elliptic
problems.

3. Abstract Dispersion Analysis

We assume the triangulation Th of Ω = R
d to be invariant with respect to translations by the vectors

(ξn)n∈Zd . These vectors form a lattice in R
d, i.e. they are the linear combinations with integer coefficients of a

basis ξ1, . . . , ξd.
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Table 1. Sets of flux coefficients used for computational dispersion analysis in Section 5, cf. [10, Section 5]

α β

interior boundary

(UWVF)
1

2

1

2

1

2

(PWDG0)
2

ωh

2

ωh
0

(PWDG1)
c2tinv
2ωh

c2tinv
ωh

0

(PWDG2)
c2tinv
2ωh

c2tinv
ωh

ωh

10

Plane wave solutions u(x) = exp(iωd·x), |d| = 1, of the Helmholtz equation are most naturally approximated
by discrete Bloch waves

uh(x) =
∑

n∈Zd

exp(iωhd · ξn)ûh(x− ξn) (7)

where ûh ∈ Vh is compactly supported, |d| = 1 and ωh ∈ C with Reωh > 0. It is readily seen that Bloch waves
are in Vh, and, although not periodic, they are characterized by

uh(x+ ξn) = exp(iωhd · ξn)uh(x) ∀n ∈ Z
d , (8)

thus mimicking the behaviour of the plane wave exp(iωhd · x).

Definition 3.1. For a prescribed direction d, |d| = 1, and wave number ω > 0, the discrete wave number is the
value of ωh ∈ C closest to ω in magnitude for which the Bloch wave (7) is a solution of the discrete equation

ah(uh, vh)− ω2(uh, vh)Rd = 0 ∀vh ∈ V 0
h , (9)

where V 0
h denotes the compactly supported functions in Vh.

Dispersion in direction dmanifests itself in a non-zero difference |ωh−ω|. We can distinguish phase dispersion

|Reωh −ω|, which describes the error in the wavelength of the plane wave solution exp(iωd ·x), and amplitude

dispersion or damping | Imωh|, which represents the change in magnitude of the discrete Bloch wave along its
direction of propagation.

Remark 3.2. In PWDG methods, if the propagation direction d coincides with that of a plane wave basis
function, i.e. d = dj in (3), then the exact solution u(x) = exp(iωd · x) is in Vh, and is thus recovered as the
discrete solution uh of (9). It constitutes a Bloch wave since it satisfies (8) with ωh = ω, and consequently the
dispersion in direction d is zero. This is confirmed by the numerically computed values of ωh shown in Figure 1.

4. Numerical Computation of the Discrete Wave Number

Due to the scaling invariance of the domain R
d, equation (9) can be rescaled to a mesh of cell size h̄ = 1;

given a mesh of arbitrary cell size h, the substitution x̄ = x/h transforms (9) into

ah̄(uh̄, vh̄)− ω2h2(uh̄, vh̄)Rd = 0 ∀vh̄ ∈ V 0

h̄
, (10)
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Figure 1. Dependence of dispersion on the direction d = (cos θ, sin θ) for (PWDG2) with
ω = 1 and p = 5 plane wave basis functions on the triangular mesh (left) and the square mesh
(right) from Figure 2, computed numerically by Algorithm 4.1.

where uh̄(x̄) = uh̄(x/h) = uh(x) and the discrete wave numbers are related by ωh̄ = ωh̄h̄ = ωhh. We
consequently assume, without loss of generality, that h = 1.

Besides the discrete wave number ωh and the propagation direction d, the remaining degrees of freedom
of the discrete Bloch wave (7) are in the compactly supported function ûh. This function can be chosen in a

minimal subspace V̂h of Vh that generates Vh through the translations by (ξn)n∈Zd , i.e. any vh ∈ Vh can be
written as a sum

vh(x) =
∑

n∈Zd

v̂h,n(x− ξn) , (11)

with v̂h,n ∈ V̂h, and only finitely many nonzero terms in (11) at any point x ∈ R
d. For a discrete Bloch wave,

v̂h,n(x) = exp(iωhd · ξn)v̂h(x) with v̂h ∈ V̂h by (7).

In conforming Lagrangian finite elements, V̂h consists of the span of the nodal basis functions associated
to a minimal set of nodes with the property that all other nodes in Th are recovered through translations by

(ξn)n∈Zd . In discontinuous Galerkin methods, V̂h is the restriction of Vh to a minimal patch of cells K̂ ∈ Th
that generates all cells K ∈ Th through translations by (ξn)n∈Zd . The discrete equation (9) is thus reduced

from the infinite mesh Th of Rd to a finite mesh T̂h, consisting just of the elements K̂ in a bounded domain Ω̂,
as illustrated in Figure 2.

Setting uh to a Bloch wave (7) and testing with v̂h ∈ V̂h, (9) becomes

∑

n∈Zd

exp(iωhd · ξn)
[
ah(ûh(x− ξn), v̂h(x))− ω2(ûh(x− ξn), v̂h(x))Rd

]
= 0 ∀v̂h ∈ V̂h , (12)

which is a nonlinear eigenvalue problem for ωh and ûh ∈ V̂h. We point out that thanks to translation invariance

of the sesquilinear forms and of the space V 0
h , testing with functions in V̂h is sufficient if uh is a discrete Bloch

wave. The sum in (12) is finite, containing only indices n for which the translated function ûh(x−ξn) interacts

with V̂h.
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Ω̂

ξ1

ξ2 Ω̂

ξ1

ξ2

Figure 2. A regular triangular mesh (left) and a square mesh (right) are each generated by

translations of Ω̂ by the lattice (ξn)n∈Z2 with basis ξ1, ξ2, and they are invariant with respect
to these translations.

To solve (12) we rely on a new fixed point iteration given by Algorithm 4.1. It reduces the nonlinear eigenvalue
problem (12) for ωh to a sequence of linear eigenvalue problems (13) for ω2

k.

Algorithm 4.1. ω0 := ω
For k = 1, 2, . . .

• Find ω̃2
k ∈ C nearest to ω2 and associated ûk such that

ω̃2
k

∑

n∈Zd

exp(iωk−1d·ξn)(ûk(x−ξn), v̂h(x))Rd =
∑

n∈Zd

exp(iωk−1d·ξn)ah(ûk(x−ξn), v̂h(x)) ∀v̂h ∈ V̂h . (13)

• Update ωk := ωk−1 + ω − ω̃k.

Theorem 4.2. If the sequence (ωk)
∞
k=0

converges, its limit is a solution ωh of (12).

Proof. Let ω∞ denote the limit of (ωk)
∞
k=0

. Since ω− ω̃k = ωk −ωk−1, convergence of (ωk)
∞
k=0

implies ω̃k → ω.
Let (13) be cast as a matrix eigenvalue problem A(ωk−1)uk = ω̃2

kuk, where the matrix A(ωk−1) depends
continuously on ωk−1 and uk is a suitable vector representation of ûk. The assumed convergence ωk → ω∞

implies that the matrices A(ωk−1) converge in norm to A(ω∞). Since ω̃2
k is an eigenvalue of A(ωk−1), its

limit ω2 is an eigenvalue of A(ω∞). Consequently, for the function û∞ ∈ V̂h represented by the corresponding
eigenvector,

ω̃2
∑

n∈Zd

exp(iω∞d ·ξn)(û∞(x−ξn), v̂h(x))Rd =
∑

n∈Zd

exp(iω∞d ·ξn)ah(û∞(x−ξn), v̂h(x)) ∀v̂h ∈ V̂h , (14)

which is equivalent to (12) with ωh = ω∞. �

Invariably, we observed fast linear convergence for Algorithm 4.1, as illustrated in Figure 3 for a particular
case. Taking this for granted, the total error |ωk−ωh| is bounded by a small multiple of the size of the increment
|ωk − ωk+1|. Thus, we terminate the iteration, when the size of the increment ωk − ωk−1 = ω− ω̃k drops below
a prescribed relative (w.r.t. |ω|) tolerance.

Remark 4.3. For discontinuous Galerkin methods with sesquilinear forms (2), interactions between cells are
limited to cells sharing an edge (d = 2) or face (d = 3), and thus the sum in (12) can be restricted to {−1, 0, 1}d,
or a subset, depending on the symmetry of Th. This carries over to (13), and since degrees of freedom on
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Figure 3. Convergence of Algorithm 4.1 on the regular triangular mesh (left) and the square
mesh (right) for ω = 1 with p = 5 equispaced plane wave basis functions, for measuring
dispersion in the direction d = (−1, 0), i.e. for θ = π.

different cells have mutually disjoint supports, (13) simplifies to

ω̃2
k(ûk(x), v̂h(x))Rd =

∑

n∈{−1,0,1}d

exp(iωk−1d · ξn)ah(ûk(x− ξn), v̂h(x)) ∀v̂h ∈ V̂h . (15)

5. Dispersion of PWDG: Numerical Computations

Consistency of Galerkin methods entails that the use of plane wave basis functions eliminates dispersion in
the propagation directions of the basis functions, as noted in Remark 3.2 and illustrated in Figure 1. Figure 4
adds the dependence on the rotation ψ in the definition (4) of the plane wave basis functions. Evidently, the
directions in which dispersion vanishes track the propagation directions of the plane wave basis functions as
these are rotated. Furthermore, Figure 5 indicates that dispersion decays in all directions as ω is decreased.

These computations and all of the following use the triangular and square meshes depicted in Figure 2. The
mesh width h, denoting the lengths of all edges in these meshes, is scaled to h = 1. All numerical values of
dispersion are approximations computed by Algorithm 4.1, which is terminated when |ω̃k − ω| ≤ 10−3ω. The
values of ctinv from (6) are set to ctinv = 4.6568 on the triangular mesh and ctinv = 4.1040 on the square mesh.

We study the maximal dispersion for a given number of plane wave basis functions by taking the maximum
over a large number of equidistant (in angle) directions d = (cos θ, sin θ) and ten separate values of ψ in (4)
to account for the relative orientation of the propagation directions of the basis functions as compared to the
mesh. In order to improve the initial guess in Algorithm 4.1, we begin these computations at directions equal
to propagation directions of basis functions, and incrementally move away from these, using each value of ωh

as the initial guess for the discrete wave number in the next direction.
Figure 6 shows the dependence of the maximal dispersion on ω for p = 5 and the four sets of flux parameters

listed in Table 1. For all four, dispersion decreases algebraically as ω → 0. The rate of decay seems to coincide
for (PWDG0)–(PWDG2), but is slower for (UWVF). This disparity is no longer evident when considering only
the phase dispersion as in Figure 7, suggesting that the extra dispersion of (UWVF) is due only to damping.
For large ω when the plane waves can no longer be resolved by Vh, multiple solutions ωh of (12) are comparably
close to ω, rendering the problem of determining the dispersion ill-posed.

In order to quantify the decay rate of the dispersion as ω → 0, we approximate curves such as those in
Figure 6 by lines in bilogarithmic scale by means of weighted least squares with weight ω−2. This suggests a
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Figure 4. Dependence of the dispersion of (PWDG2) on the direction d = (cos θ, sin θ) and
the rotation ψ in the definition (4) of the plane wave basis functions for p = 5 and ω = 1 on a
triangular mesh (left) and a square mesh (right).
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Figure 5. Dependence of the dispersion of (PWDG2) on the direction d = (cos θ, sin θ) and
ω for p = 5 plane wave basis functions on a triangular mesh (left) and a square mesh (right).

behavior of the maximal dispersion according to

max
1

ω
|ωh − ω| ≈ cωη for ω → 0. (16)

Numerically determined values of η and c depending on p are plotted in Figures 8 and 9. For the fluxes
(PWDG0)–(PWDG2), these computations suggest

η = 2

⌊
p− 1

2

⌋
, (17)

while η is further reduced by one for (UWVF), except for p = 3, 4 in the case of a triangular mesh. This even/odd
staircase effect also appears in the approximation properties of plane waves in two dimensions, see [10].



9

10−1 100 101

10−7

10−5

10−3

10−1

101

ω

m
a
x
|ω

h
−
ω
|/
ω

10−1 100 101

10−7

10−5

10−3

10−1

101

ω

m
a
x
|ω

h
−
ω
|/
ω

(UWVF)

(PWDG0)

(PWDG1)

(PWDG2)

Figure 6. Dependence of the dispersion on ω for the fluxes listed in Table 1 on a triangular
mesh (left) and a square mesh (right), using p = 5 local plane wave basis functions.
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Figure 7. Dependence of the phase dispersion on ω for the fluxes listed in Table 1 on a
triangular mesh (left) and a square mesh (right), using p = 5 local plane wave basis functions.

Figure 9 reveals an exponential decay of the maximal dispersion for small ω as p is increased. This is
confirmed and extended to larger ω by the data from Figures 10 and 11, which plot the maximal dispersion for
large p and ω. The erratic behavior of the dispersion for small ω can be blamed on numerical instabilities due
to the near linear dependence of plane wave basis functions.

Finally, the dispersion of PWDG methods is compared to that of conforming finite elements with tensor
product polynomial bases on the square mesh of R2 for ω = 4 in Figure 12. When considered as a function of
the effective polynomial degree, the dispersion of PWDG methods is slightly larger than that of FEM. However,

since the dimension of the local approximation space V̂h scales quadratically in the polynomial degree for FEM,
but only linearly in the number of plane wave basis functions for PWDG, the dispersion of PWDG methods

decreases much faster than that of FEM when considered as a function of dim V̂h.
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