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Dispersion and attenuation in a Smith-Purcell free electron laser
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It has previously been shown that the electron beam in a Smith-Purcell free-electron laser interacts with
a synchronous evanescent wave. At high electron energy, the group velocity of this wave is positive and
the device operates on a convective instability, in the manner of a traveling-wave tube. For operation as an
oscillator, the gain must exceed the losses in the external feedback system. At low electron energy, the
group velocity of the synchronous evanescent wave is negative and the device operates on an absolute
instability, like a backward-wave oscillator, and no external feedback is required. For oscillation to occur,
the current must exceed the so-called start current. At an intermediate energy, called the Bragg condition,
thegroupvelocity vg of the evanescent wave vanishes and both the gain and the attenuation due to resistive
losses in the grating diverge. It is shown that near the Bragg condition the gain depends on v�1=3

g , while the
attenuation depends on v�1

g . Since the attenuation increases faster than the gain near the Bragg condition,
the Smith-Purcell free-electron laser cannot operate at the point of maximum gain. The effects of resistive
losses become increasingly important as Smith-Purcell free-electron lasers move to shorter wavelengths.
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I. INTRODUCTION

At the present time, THz sources are actively being
developed for a variety of applications in biophysics,
medical and industrial imaging, nanostructures, and mate-
rials science [1,2]. Electron-beam driven devices, such as
backward-wave oscillators (BWOs), synchrotrons, and
various free-electron lasers (FELs), are promising sources
of THz radiation. Modern synchrotrons with short electron
bunches, such as BESSY II in Berlin [3] and the recirculat-
ing linac at Jefferson Laboratory [4], produce broadband
radiation out to about 1 THz with tens of watts average
power. Conventional FELs also operate in the THz region
at dedicated facilities, with up to hundreds of watts average
power [5–9]. The drawback to both synchrotrons and
conventional FELs is that they require large facilities.

BWOs, on the other hand, are compact and relatively
inexpensive. Commercially available BWOs produce
milliwatts of power from 30–1000 GHz. The shortest
wavelength produced to date by a BWO was 250 �m,
which was achieved in 1979 [10]. Typically BWOs run
with a magnetically guided, high-current, low-energy elec-
tron beam in a compact, tightly enclosed, slow-wave struc-
ture. The electron beam interacts with a slow wave for
which the group velocity is negative. Since the backward
wave provides feedback, the devices oscillate without the
need of a resonator.

A tabletop Smith-Purcell FEL (SP-FEL) is an interesting
alternative source of THz radiation [11,12]. Typically a SP-
FEL operates with a low-current, medium-energy, tightly
focused electron beam with no guide field. In many ways
these devices are similar to BWOs and traveling-wave
tubes, but they use an open grating as the slow-wave
structure. In addition to the laser emission, these devices
emit Smith-Purcell (SP) radiation over a band of wave-
lengths shorter than the laser wavelength. The wavelength
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of this radiation can be tuned by varying the angle of
observation or the energy of the electron beam. Although
incoherent SP radiation is of low power, it can be coher-
ently enhanced by the electron bunching that occurs when
the SP-FEL saturates.

Previous theories of the SP-FEL have assumed that the
electron beam interacts with a wave whose frequency is
that of the SP radiation [13–15]. However, it has recently
been shown that the beam interacts with an evanescent
mode of the grating that lies at a wavelength longer than
the SP radiation and radiates only when it reaches the end
of the grating [16]. When the group velocity vg of this
mode is positive, the interaction corresponds to a convec-
tive instability and feedback must be provided by an ex-
ternal resonator (or reflections from the ends of the
grating). When the group velocity of the evanescent
mode is negative, the interaction corresponds to an abso-
lute instability and the SP-FEL oscillates without external
feedback if the current is above a threshold value called the
start current. In either case, the gain has a maximum near
the point where the group velocity vanishes, which is
called the Bragg condition, or � point. However, the
attenuation due to surface losses in the grating also has a
maximum at the Bragg condition. In the following we
compute the gain and attenuation and show that while the
gain increases near the Bragg condition like v�1=3

g , the
attenuation increases like v�1

g . Therefore, it is not possible
to operate very close to the Bragg condition. Since the
attenuation increases as the frequency increases, this
limitation becomes increasingly important at shorter
wavelengths.

II. GAIN

Smith-Purcell radiation is emitted when an electron
passes close to the surface of a grating, as shown in
3-1  2005 The American Physical Society
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FIG. 1. Smith-Purcell radiation.
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Fig. 1 [17]. The virtual photons of the electron field are
scattered by the grating, and the wavelength �SP of the
radiation observed at the angle 	 from the direction of the
electron beam is

�SP

L
�

1

jmj

�
1

�
� cos	

�
; (1)

where L is the grating period, �c the electron velocity, c
the speed of light, and m the order of the reflection from the
grating. The angular spectral fluence of incoherent SP
radiation is described by the theories of van den Berg
and Tan [18–20], Schaechter [21], and Shibata et al. [22].

When the current in the electron beam is sufficiently
high, the interaction between the electrons and the fields
above the grating becomes nonlinear. This causes periodic
bunching of the electrons in the beam, which amplifies the
fields and coherently enhances the SP radiation. A tabletop
SP-FEL based on this principle has been demonstrated at
Dartmouth [11,12]. This device operated near threshold,
and nonlinear emission in a direction normal to the grating
was observed in the spectral region from 300–900 �m.
The experimental parameters are summarized in Table I.

Several theories have been proposed to calculate the
gain of a Smith-Purcell FEL. Gover and Livni treat
Cerenkov and Smith-Purcell FELs as waveguides for eva-
nescent waves [13]. They conclude that the gain is propor-
tional to the electron-beam current if the energy spread is
broad and to the cube root of the beam current if the energy
TABLE I. Parameters of the Dartmouth experiment.

Grating period 173 �m
Groove width 62 �m
Groove depth 100 �m
Grating length 12:7 mm
Electron energy 30–40 keV
Electron-beam current 1 mA
Electron-beam diameter 24 �m
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spread is small. Schaechter and Ron [14] analyze the
interaction of an electron beam with a wave traveling along
the grating and include waves that are emitted by the beam
and reflected off the grating. They treat the system as an
amplifier and calculate the rate of growth of a wave that is
incident on the grating from infinity. They find that the gain
is proportional to the cube root of the electron-beam cur-
rent. Another theory has been advanced by Kim and Song
[15]. They consider an electron beam that interacts with a
Floquet wave traveling along the surface of the grating, but
they assume that at least one Fourier component (space
harmonic) of the Floquet wave radiates as it travels along
the grating. They predict that the gain depends on the
square root of the electron-beam current rather than the
cube root, as predicted by the other theories and inferred
experimentally by Bakhtyari, Walsh, and Brownell [12].
None of these theories account for the dispersion of the
grating.

The present theory [16] of gain in an SP-FEL assumes a
perfectly conducting rectangular grating, as shown in
Fig. 1. The space above the grating is filled with a relativ-
istically boosted plasma dielectric, for which the dielectric
susceptibility in the plasma rest frame is [23]

�0
e � �

!02
p

!02 ; (2)

where !0 is the optical frequency and the plasma frequency
in the plasma rest frame is

!02
p �

n0
eq2

"0m
(3)

in which n0
e is the electron density, q the electron charge, m

the electron mass, and "0 the permittivity of free space (SI
units are used throughout). The longitudinal polarization in
the laboratory frame is given by the relativistically correct
constitutive relation [24]

Px � "0�0
eEx; (4)

where Ex is the longitudinal electric field.
Beginning with Floquet’s theorem, we assume two-

dimensional TM waves and expand the Ex and Hz fields
above the grating in a Fourier series of evanescent waves
(also called space harmonics) of the form

Ex �
X1

p��1

Epe��pyeipKxei�kx�!t�; (5)

Hz �
X1

p��1

Hpe��pyeipKxei�kx�!t�; (6)

where Ep and Hp are constants, ! is the frequency in the
laboratory frame, k the wave number parallel to the grating,
and
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K �
2�
L

(7)

the grating wave number. From the wave equation we find
that

�2
p � �k � pK�2 �

!2

c2
�

!02
p

c2
: (8)

Computations show that the wave is evanescent (nonradia-
tive), since �2

p > 0 for all p. To satisfy the boundary
condition that the wave vanish in the limit y ! 1, we
chose the negative root �p < 0. From the Maxwell-
Ampere law we find that

�pHp � i"0!�1� �0
p�Ep; (9)

where the dielectric susceptibility at the frequency ! of the
pth component in the laboratory frame is

�0
p �

�!2
p

#3
! � �c�k � pK��2
(10)

and !p is the plasma frequency in the laboratory frame.
When the wave is nearly synchronous, the susceptibility is
nearly divergent only for p � 0, so we write (9) in the form

Hp � i"0
!
�p

�1� $p0�0
0�Ep: (11)
05070
In the grooves of the grating we expand the fields in the
Fourier series

Ex �
X1
n�0

�En cos
�
n�x

A

�
sinh
&n�y � H��

cosh
&nH�
e�i!t; (12)

Hz �
X1
n�0

�Hn cos
�
n�x

A

�
cosh
&n�y � H��

sinh
&nH�
e�i!t; (13)

where �En and �Hn are constants, A is the width of the
groove, and H the depth. These expressions satisfy the
boundary conditions that Ex vanish at the bottom of the
groove (y � �H), and @Hz=@x vanish at the sides of
the groove (x � 0; A). From the wave equation we find that

&2n �

�
n�
A

�
2
�

!2

c2
; (14)

and from the Maxwell-Ampere law we get

�H n � �i"0
!
&n

tanh�&nH� �En: (15)

Across the interface between the grating and the electron
beam, the tangential component of the electric field is
continuous. Since the tangential field vanishes on the sur-
face of the conductor, we see that
X1
p��1

Epei�k�pK�x �

�P
1
n�0

�En cos
�

n�x
A

�
tanh�&nH� for 0< x < A;

0 for A < x < L:
(16)
If we multiply by exp
�i�k � qK�x� and integrate over
0< x < L, we get

Eq �
X1
n�0

�En tanh�&nH�
Kqn

L
; (17)

where

Kqn � iA
�k � qK�A

�k � qK�2A2 � n2�2 
��1�
ne�i�k�qK�A � 1�:

(18)

Likewise, the tangential component of the magnetic field
must be continuous across the interface, so

X1
p��1

Hpei�k�pK�x �
X1
n�0

�Hn cos
�
n�x

A

�
coth�&nH�

for 0< x < A:

(19)
If we multiply by cos�m�x=A� and integrate over 0< x <
A we get

�H m
1� $m0

2
coth�&mH� �

X1
p��1

Hp
K�

pm

A
: (20)

If we substitute (11) and (15) into (20), substitute (17)
for Ep, and reverse the order of summation, we obtain the
matrix equation

�E m �
X1
n�0

�Rmn � �0
0Smn� �En; (21)

where
Rmn �
tanh�&nH�

1� $m0

X1
p��1

&mA
�pL

4

�k � pK�2A2 � m2�2


�k � pK�2A2

�k � pK�2A2 � n2�2

�
��1�m cos
�k � pK�A� � 1 for m � n � even
i��1�m sin
�k � pK�A� for m � n � odd

(22)
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and

Smn �
tanh�&nH�

1� $m0

&mA
�0L

4

k2A2 � m2�2

k2A2

k2A2 � n2�2

�
��1�m cos
kA� � 1 for m � n � even
i��1�m sin
kA� for m � n � odd

: (23)
For a solution to exist, the determinant of the coefficients
must vanish,

jRmn � �0
0Smn � $mnj � 0: (24)

This is the dispersion relation, and its roots give us the
functional dependence !�k�.

In the absence of the electron beam, the dispersion
relation is

jRmn � $mnj � 0: (25)

Some simple computations carried out using MATHCAD are
shown in Fig. 2 for the parameters used in the experiments
at Dartmouth, which are summarized in Table I. As we see
in Fig. 2, the group velocity d!=dk at the operating point is
negative, in the manner of a backward-wave oscillator.

In the computations it is also found that the disper-
sion relation is accurately described by (25) even if
just a single element in the matrix of coefficients is
used, provided that at least three terms are used in
the sum for the coefficients (that is, �1 � p � 1). For
example, near the operating point indicated in Fig. 2,
which corresponds to the Dartmouth experiments, the
intensities of the first few terms in the expansion (12)
of the electric field in the grooves are in the ratios
j �E0j

2:j �E1j
2:j �E2j

2...�1:0:21:0:24:0:06:0:29:0:02:0:11:0:01... .
However, the error in !�k� incurred by retaining only the
first term is less than 1% and the error in �g�k� is about 1%.
Typically, five or more terms are carried in the expansions
(5) and (6) of the evanescent wave above the grating, to
assure convergence. To compute the gain, we take advan-
tage of this simplification and examine the dispersion
relation

R00 � 1� �0
0S00 � 0: (26)
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When the effect of the electron beam is small, we expand
the dispersion relation near the solution

R00�!0; k0� � 1 (27)

for the empty grating (no-beam case) and write

R00�!; k� � 1� R!$! � Rk$k; (28)

where $! � ! � !0, $k � k � k0, and

R! �
@R00

@!

��������!0;k0

; (29)

Rk �
@R00

@k

��������!0;k0

: (30)

But if we differentiate (27) we see that

R!
d!
dk

� Rk � �gcR! � Rk � 0; (31)

where �gc is the group velocity of the wave in the empty
grating. To first order, then, we are left with the equation

R!�$! � �gc$k� � �0
0S � 0; (32)

where

S � S00�!0; k0�: (33)

As noted earlier, the susceptibility diverges at the syn-
chronous point. Since the gain is largest there, we select as
the operating point

!0 � �ck0 (34)

as indicated in Fig. 2, and expand

�0
0 � �

!2
p

#3�! � �ck�2
� �

!2
p

#3�$! � �c$k�2
: (35)

Substituting this back into (32) we get the usual cubic
equation

�$! � �gc$k��$! � �c$k�2 � �; (36)

where computations show that

� �
!2

pS

#3R!
(37)

is positive real. It is useful, at this point, to consider the
amplifier (convective instability) and oscillator (absolute
instability) cases separately.
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A. Amplifier

When the group velocity is positive, the beam and the
wave both move to the right and the interaction that pro-
duces gain is called a convective instability. In general,
both the frequency shift $! and the wave number shift $k
are complex, but for an amplifier operating in steady state
the frequency shift $! is real. In this case it is easily shown
that the gain, which corresponds to the imaginary part of
$k, is largest for $! � 0. To see this, we differentiate (36)
and set $! � 0 to get

d$k
d$!

�
� � 2�g

3��gc
� real: (38)

Therefore, for real $! the imaginary part of $k is a
maximum. The dispersion relation (36) is then

$k3 � �
�

�2�gc3
: (39)

Of the three roots, the root with the largest negative imagi-
nary part has the highest gain and we find that the ampli-
tude growth rate for the fastest growing mode is

� � �Im�$k� �

���
3

p

2

��������
�

�2�gc3

��������
1=3

: (40)

As first pointed out by Pierce [25] for traveling-wave tubes
(TWTs), the gain is proportional to v�1=3

g and diverges at
the Bragg condition, where the group velocity vanishes.
This is illustrated in Fig. 3. At energies below 125 keV the
group velocity is negative and the device operates in the
manner of a BWO. This case is discussed below. Above
125 keV the device operates on a forward wave, in the
manner of a TWT.

To operate the SP-FEL as an oscillator when the inter-
action is a convective instability, it is necessary to provide
external feedback by means of an optical resonator. This
resonator might be as simple as the reflections at the ends
of the grating. The threshold for oscillation requires that
the total power gain per pass exceed the loss per round trip
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of the evanescent wave. This can be expressed

e2�Z�1� Floss� > 1; (41)

where Floss is the fractional power loss in the feedback
circuit, or equivalently

�Z >
1

2
ln
�

1

1� Floss

�
: (42)
B. Oscillator

When the group velocity is negative, the interaction that
produces gain is called an absolute instability. External
feedback is unnecessary because while the evanescent
wave moves to the left, the electron beam carries the
polarization created by the interaction to the right. This
represents an intrinsic form of feedback. Provided that the
electron beam exceeds some minimum current, called the
start current, the SP-FEL oscillates without external feed-
back. This is the principle of the BWO [26,27]. To estimate
the start current, we express the electric field above the
grating as a sum of the fields of the three modes corre-
sponding to the three roots of the dispersion relation (36).
The field of the jth mode, from (5), is

Ej �
X1

p��1

E�j�
p e���j�

p yeipKxei�k0x�!0t�ei�$kjx�$!jt�: (43)

To the lowest order, however, the coefficients E�j�
p and ��j�

p

are the same as for the empty structure, so the field above
the grating at any time is

Ex �
X

j

AjEj � E0

X
j

Aje
i�$kjx�$!jt�; (44)

where the coefficients Aj are constants and the mode above
the empty grating is

E0 �
X1

p��1

Epe��pyeipKxei�k0x�!0t�: (45)

To form a mode of the oscillator, the modes Ej must all
have the same frequency $!j � $!. In addition, their sum
must satisfy the boundary conditions at the ends of the
grating. At the left end of the grating, the plasma enters
undisturbed in density and velocity. Since the density
fluctuations vanish, the polarization vanishes, and since
the velocity fluctuations vanish, the convective derivative
of the polarization vanishes. But from (35) we see that the
polarization is

Px � �
"0!

2
pE0

#3
X

j

Aje
i�$kjx�$!t�

�$! � �c$kj�
2 (46)

and the convective derivative of the polarization is
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dPx

dt
�

�
@
@t

� �c
@
@x

�
Px �

i"0!2
pE0

#3
X

j

Ajei�$kjx�$!t�

$! � �c$kj
:

(47)

The boundary conditions therefore become

X
j

Aj

�$! � �c$kj�
2 � 0; (48)

X
j

Aj

$! � �c$kj
� 0: (49)

For the third boundary condition, we assume that there is
no input field at the right end of the grating, so the field
there vanishes. For a grating of length Z, the corresponding
boundary condition isX

j

Aje
i$kjZ � 0: (50)

The boundary conditions (48)–(50) must be solved subject
to the constraint imposed by the dispersion relation (36).
For convenience, we introduce the dimensionless variables
[27]

$j �

��������
�2�gc3

�

��������
1=3

�
$!
�c

� $kj

�
; (51)

- �

��������
�

�2�gc3

��������
1=3

Z; (52)

and write the boundary conditions in the form

X
j

Aj

$2j
� 0; (53)

X
j

Aj

$j
� 0; (54)

X
j

Aje
�i-$j � 0: (55)

For a solution to exist, it is necessary that the determinant
of the coefficients vanish,

�����������
1=$21 1=$22 1=$23
1=$1 1=$2 1=$3
e�i-$1 e�i-$2 e�i-$3

������������ 0: (56)

Finally, we introduce the dimensionless quantity

& �

��������
�2�g

�

��������
1=3

�
1

�
�

1

�g

�
$! (57)

in terms of which the dispersion relation becomes (for
�g < 0)

$2�$ � &� � 1 � 0: (58)
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The dimensionless equations (56) and (58) appear also in
the theory of BWOs, and they have been solved numeri-
cally [27]. It is found that the smallest value of - for which
the imaginary part of & is nonnegative is -0 � 1:97. Thus,
the threshold condition for a growing oscillation is

�Z > -0

���
3

p

2
; (59)

where � is the amplitude gain coefficient given by (40).
For the parameters of the Dartmouth experiment the pre-
dicted start current is about 1 mA, which is close to the
observed value. It is also predicted that the evanescent
wave should appear at about 690 �m. Although radiation
at this frequency was not identified in the Dartmouth
experiments, it has been found by Donohue and Gardelle
in numerical simulations of SP radiation computed using a
PIC code [28].
III. ATTENUATION

In the long-wavelength THz region and beyond, dissi-
pation in the grating is generally small. However, at shorter
wavelengths the dissipation due to surface currents in the
grating of an SP-FEL has significant impact on the opera-
tion of the device. To compute the attenuation, we consider
a pulse as it propagates along the grating. When the pulse is
long and has a narrow spectrum, and the attenuation is
small, the pulse travels self-similarly with group velocity
vg � @!=@k. However, the total energy UT in the pulse
decreases at the rate

dUT

dt
� �QT; (60)

where QT represents the total dissipative losses in the
surface of the grating. But the energy and the losses are
both quadratic in the field amplitudes, so the energy decays
exponentially according to the expression

UT � U0e�21x0 (61)

where U0 is the initial energy, 1 the amplitude attenuation
coefficient, and x0 the position of the center of the pulse.
Comparing (60) and (61), we see that the attenuation
coefficient is

1 �
QT

2vgUT
: (62)

However, since the pulse travels self-similarly, this expres-
sion can be applied to any point in the pulse or, for periodic
waveguides, an average over one grating period and one
cycle of the pulse. Thus,

1 �
hQi

2vghUi
; (63)

where the brackets h i indicate an average over one grating
period and one cycle.
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Losses due to dissipation in the surface of the grating are
given by the Poynting vector at the grating surface.
Provided that the dissipation occurs in a thin region close
to the surface, we may ignore gradients in the directions
parallel to the grating surface compared with those in the
normal direction. From the wave equation for a plane wave
we get the dispersion relation k2 � �"!2, where for non-
magnetic materials the permeability is � � �0, and for a
Drude conductor the permittivity is [29]

" � "0

�
1� i

20

"0!
1

1� i!3

	
: (64)

Here 20 � "0!
2
p3 is the dc conductivity, ! the frequency,

"0 the permittivity of free space, and 3 the mean time
between collisions. For aluminum, 20 � 3:65
107=�-m, 3 � 1:0 10�14 s, and ! � 1014 radians=s in
the THz region, so we can ignore the first term and use the
simpler expression

" � i
20

!
1� i!3

1� !232
: (65)

From the Maxwell-Ampere equation we find that the fields
are related by kH � "!E. The average value of the
Poynting vector over one cycle is then

hSi � hEHi �
1

2
jH0j

2Re�
������������
�0="

q
�; (66)

where H0 is the complex amplitude of the field. Since the
transverse component of the magnetic field is continuous at
the surface of the grating, the amplitude of Hz immediately
outside the grating can be used. The losses can then be
evaluated at each point on the grating surface and inte-
grated over the length of that surface.

When the losses are small, they can be computed using
the fields in the empty grating (no electron beam), which
are given by (5) and (6) above the grating and by (12) and
(13) in the grooves. The resulting losses are

hQtopi �
1

2
Re

������
�0

"

r X
p;q

HpHq
�ei�1=2��p�q�K�A�L��L

� A�sinc
�
1

2
�p � q�K�L � A�

	
; (67)

hQsidesi�
1

2
Re

������
�0

"

r X
m�0

j �Hmj
2 sinh
&mH�cosh
&mH��&mH

&mjsinh
&mH�j2

�
1

2
Re

������
�0

"

r X
m�n


1���1�m�n� �Hn
�H�

m


&m

�coth
&nH��&ncoth
&mH�

&m
2�&n

2 ; (68)
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hQbottomi �
1

2
Re

������
�0

"

r X
m�0

j �Hmj
2 A�1� $m0�

2j sinh
&mH�j2
; (69)

where hQtopi is the average loss over the top surface of a
grating tooth, hQbottomi the average loss on the bottom of a
groove, and hQsidesi the average loss on the two sides of the
groove.

To find the average total energy per period in the fields,
we integrate the energy density

hUi �
1

2
�0hH

2i �
1

2
"0hE

2i �
1

4
�0H

�
0H0 �

1

4
"0E

�
0E0

(70)

in which H0 and E0 are the complex amplitudes of the
fields, over the volume above the grating and in the groove.
For this calculation, the fields Ex and Ey are found in terms
of the field Hz from the Maxwell-Ampere law. Above the
grating we get

Ex �
X1

p��1

i�p

"0!
Hpe��pyeipKxei�kx�!t�; (71)

Ey �
X1

p��1

k � pK
"0!

Hpe��pyeipKxei�kx�!t�; (72)

and in the grooves we get

Ex � �i
X1
n�0

&n
�Hn

"0!
sinh
&n�y � H��

sinh�&nH�
cos

�
n�x

A

�
e�i!t;

(73)

Ey � i
X1
n�0

n�
"0!A

�Hn
cosh
&n�y � H��

sinh�&nH�
sin

�
n�x

A

�
e�i!t:

(74)

When we evaluate the integrals, we find that the energies
are

hUabovei �
�0L
4

X
p

�
1�

c2�2
p

!2

�
jHpj

2

�p
; (75)

hUgroovei � hUxi � hUyi � hUzi; (76)

where
3-7
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hUxi �
�0c2HA

8!2

X
m�0

j �Hmj
2j&mj

2 1� $m0

2

sinh
&mH� cosh
&mH� � &mH

&mHsinh2
&mH�
; (77)

hUyi �
�2�0c

2H

16!2A

X
m�0

j �Hmj
2m2 sinh
&mH� cosh
&mH� � &mH

&mH sinh
&mH� sinh
&m
�H�

; (78)

hUzi �
�0HA
8

X
m�0

j �Hmj
2 1� $m0

2

sinh
&mH� cosh
&mH� � &mH
&mH sinh
&mH� sinh
&�

mH�
: (79)
A numerical solution of these equations is easily ob-
tained using MATHCAD. First we find the eigenvalue !�k�
and eigenvector �En in the no-beam case, and compute the
group velocity by numerically differentiating !�k�. The
coefficients Hp and �Hm are found from (11), (15), and (17).
The gain and attenuation are then calculated using the
above formulas. As was the case with the dispersion,
numerical computations show that when computing the
attenuation coefficient 1, one term (m � 0) is sufficient
to describe the fields in the slot. For example, for the
operating point in the Dartmouth experiments, the error
incurred by retaining only the first term in hQi is about 1%,
in hUi about 3% and, as noted earlier, in vg about 2%. The
error in 1 is about 5%. It is necessary to use more than one
term for the fields above the grating, but five terms (p �
�2; . . . ; 2) provide a good approximation. We find that it is
necessary to keep five decimal places for the convergence
check in the root-solving routine.

There are no singularities in hQi or hUi, so the attenu-
ation peaks at the Bragg condition, where the group veloc-
ity vanishes. This is shown in Fig. 3, and the net gain
�net � � � 1 is shown in Fig. 4. Since the gain varies as
v�1=3

g and the attenuation as v�1
g , the attenuation diverges

faster than the gain, making it impossible to work close to
the Bragg condition, where the gain by itself is largest.

IV. CONCLUSION

In conclusion, we find that dispersion and attenuation
play an important role in the performance of Smith-Purcell
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FIG. 4. Net gain calculated for the Dartmouth experiments.
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free-electron lasers. Because of the dispersive properties of
the grating, at high electron energy the SP-FEL operates on
a forward-moving evanescent wave, as does a TWT. At low
electron energy the SP-FEL operates like a BWO since
there is a backward evanescent wave that provides self-
feedback to bunch the electrons. This allows the SP-FEL to
oscillate without a resonator. Attenuation is caused by
resistive losses in the surface of the grating. Both the
gain and the attenuation diverge at the Bragg condition,
where the group velocity of the evanescent wave vanishes.
However, the gain in a SP-FEL depends on the group
velocity as v�1=3

g and the attenuation as v�1
g , so the attenu-

ation diverges faster than the gain. This makes it impos-
sible to operate near the Bragg condition, where the gain is
largest. As SP-FELs are operated at shorter wavelengths,
the effects of attenuation become more important.
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