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Abstract. We study numerically the Cauchy problem for equivariant wave maps from 3 + 1
Minkowski spacetime into the 3-sphere. On the basis of numerical evidence combined with stability
analysis of self-similar solutions we formulate two conjectures. The first conjecture states that
singularities which are produced in the evolution of sufficiently large initial data are approached
in a universal manner given by the profile of a stable self-similar solution. The second conjecture
states that the codimension-one stable manifold of a self-similar solution with exactly one instability
determines the threshold of singularity formation for a large class of initial data. Our results can
be considered as a toy-model for some aspects of the critical behaviour in the formation of black
holes.

AMS classification scheme numbers: 35L67, 35L70, 35Q75

1. Introduction

Let M be a spacetime with metric η and N be a complete Riemannian manifold with metric
g. The wave map U : M → N is defined as a critical point of the action

S(U) =
∫
M

gAB ∂aU
A∂bU

Bηab dVM . (1)

The associated Euler–Lagrange equations constitute the system of semilinear wave equations

�ηU
A + �A

BC(U)∂aU
B∂aUC = 0, (2)

where the �s are the Christoffel symbols of the target metric g.
The recent surge of interest in wave maps (known in the physics literature as σ -models)

stems from the fact that they provide an attractive toy-model for more complicated relativistic
field equations. In particular they share some features with the Einstein equations so
understanding the problems of global existence and formation of singularities for wave maps
may shed some light on the analogous, but much more difficult, problems in general relativity.
Having this analogy in mind we have studied the Cauchy problem for equation (2) in the case
where the domain manifold is 3 + 1 Minkowski spacetime, M = R

3+1, and the target manifold
is the 3-sphere, N = S3. Although our primary motivation was an attempt to get insight
into some aspects of critical behaviour in gravitational collapse, we think that our results are
interesting in their own right. In this paper we restrict attention to equivariant maps. In polar
coordinates on R

3+1 and S3 the respective metrics are

η = −dt2 + dr2 + r2dω2, g = du2 + sin2(u)d�2, (3)
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where dω2 and d�2 are the standard metrics on S2. Equivariant maps have the form

U(t, r, ω) = (u(t, r),�(ω)), (4)

where � is a homogeneous harmonic polynomial of degree l > 0. In what follows we consider
the case l = 1, where � = ω (such maps are called corotational). For a corotational map the
Cauchy problem for equation (2) reduces to the semilinear wave equation

utt = urr +
2

r
ur − sin(2u)

r2
(5)

with smooth initial data

u(0, r) = φ(r), ut (0, r) = ψ(r). (6)

Regularity at the origin requires that the initial data vanish at r = 0 which implies the boundary
condition u(t, 0) = 0 for all t < T , where T is a time when the first singularity (if there is
any) develops at r = 0. The requirement that the conserved energy associated with solutions
of (5)

E[u] = 1

2

∫ ∞

0
(r2u2

t + r2u2
r + 2 sin2 u)dr (7)

is finite imposes a boundary condition at spatial infinity u(t,∞) = kπ (k = 0, 1, . . .), where
an integer k is the topological degree of the map. Since the time evolution is continuous (at
least for t < T ), this condition breaks the Cauchy problem into infinitely many disconnected
sectors labelled by the degree k.

Note that the energy scales as E[u(x/λ)] = λE[u(x)] which means that equation (5) is
supercritical (like Einstein’s equations). It is widely believed that for supercritical equations the
solutions with sufficiently small initial data exist for all times while large data solutions develop
singularities in finite time [7]. In the case of (5) the global existence for small (in the Sobolev
space Hk with sufficiently large k) data was proved by Kovalyov [8] and Sideris [11]. For large
data there are no rigorous results, however it is known that there exist smooth data which lead
to blowup in finite time. An example of such data is due to Shatah who showed that (5) admits
a self-similar solution u(t, r) = f0(

r
T−t

) which is perfectly smooth for t < T but breaks down
at t = T . Turok and Spergel [13] found this solution in closed form f0 = 2 arctan( r

T−t
) so in

the following we will refer to f0 as the TS solution. Note that for t < T , the TS solution has
degree k = 1.

On the basis of our numerical simulations we conjecture that the example of blowup
given by Shatah is generic. By this we mean that there is a large open set of initial data
which blow up in a finite time T and the asymptotic shape of solutions near the blowup point
(r = 0) approaches f0(

r
T−t

) as t → T −. In this sense the blowup can be considered as local
convergence to the TS solution f0. Actually, our failed efforts to produce a non-self-similar
singularity lead us to suspect that the blowup is universally self-similar. Note that the self-
similarity of blowup excludes a concentration of energy at the singularity and suggests that the
solutions can be continued beyond the blowup time in an almost continuous fashion. We must
admit that this aspect of singularity formation for wave maps is somewhat disappointing from
the standpoint of modelling the formation of energy trapping singularities (like black holes).

Whenever the singularities develop from some but not all data, there arises a natural
question of determining the threshold of singularity formation. We investigated this issue using
a basic technique of evolving various one-parameter families of initial data which interpolate
between global existence (dispersion) and blowup. Along each such family there exists a point
(critical initial data) which separates the two regimes. We show that the critical initial data
blow up in a finite time T and the asymptotic shape of solutions near the blowup point (r = 0)
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approaches f1(
r

T−t
), a self-similar solution with one unstable mode. The marginally critical

data approach f1 for intermediate times but eventually the unstable mode becomes dominant
and ejects the solutions towards dispersion or stable blowup (that is, f0). Thus, we conjecture
that the codimension-one stable manifold of the solution f1 plays the role of the threshold of
singularity formation for a large set of initial data.

The threshold behaviour in our model is similar to the type II critical behaviour in
gravitational collapse (see [5] for a recent review) where self-similar solutions of Einstein’s
equations (continuous or discrete, depending on a model) sit at the threshold of formation of a
black hole. There are also many parallels between our results and the work of Brenner et al [4]
on the chemotaxis equation. All that suggests that self-similar behaviour at the threshold of
singularity formation is a common feature for evolutionary partial differential equations†.

The rest of the paper is organized as follows. In the next two sections we discuss some
special solutions of (5) which are potential candidates for attractors. In section 2 we analyse
self-similar solutions and their linear stability. Section 3 is devoted to static solutions. In
section 4 we describe the results of numerical simulations and document the numerical evidence
behind the two conjectures formulated above.

2. Self-similar solutions

Note that equation (5) is invariant under dilations: if u(t, r) is a solution, so is ua(t, r) =
u(at, ar). It is thus natural to look for self-similar solutions of the form

u(t, r) = f

(
r

T − t

)
, (8)

where T is a positive constant. Substituting the ansatz (8) into (5) we obtain the ordinary
differential equation

f ′′ +
2

ρ
f ′ − sin(2f )

ρ2(1 − ρ2)
= 0, (9)

where ρ = r/(T − t) and ′ = d/dρ. For t < T we have 0 � ρ < ∞.
It is sufficient to consider equation (9) only inside the past light cone of the point (T , 0),

that is for ρ ∈ [0, 1]. The regularity of solutions at the endpoints of this interval enforces the
following behaviour

f (ρ) ∼ aρ as ρ → 0, (10)

and

f (ρ) ∼ π

2
+ b(1 − ρ) as ρ → 1, (11)

where a and b are arbitrary constants. At each endpoint the parameters a and b determine
unique local solutions. One can show that there is a countable sequence of pairs (an, bn) for
which the corresponding solutions, denoted by fn(ρ), are globally regular in the sense that
they satisfy both boundary conditions (10) and (11) and are smooth for ρ ∈ (0, 1).

These solutions can be smoothly extended for ρ > 1 by solving (9) with the initial
condition (11). One can show that the asymptotic behaviour for ρ → ∞ is

fn(ρ) ∼ cn +
dn

ρ
+ O

(
1

ρ2

)
, (12)

† There is a vast literature on a related problem for the nonlinear Schrödinger equation. See [12] for a recent review
and bibliography of this subject.
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Figure 1. The first five self-similar solutions.

Table 1. The parameters of solutions shown in figure 1.

n 0 1 2 3 4

an 2 21.757 413 234.501 47 2522.0683 27 113.388
bn 1 −0.305 664 0.093 2163 −0.028 4312 0.008 6717

where cn → π/2 as n → ∞. The countable family fn was discovered numerically by
Äminneborg and Bergström [1]; recently its existence was proven rigorously via a shooting
argument [3]. The integer index n = 0, 1, . . . denotes the number of intersections of fn(ρ)

with the line f = π/2 on the interval ρ ∈ [0, 1). The ‘ground state’ solution of this family is
the TS solution f0 = 2 arctan(ρ). The solutions fn with n > 0 can be obtained numerically by
a standard shooting-to-a-fitting-point technique, that is by integrating equation (9) away from
the singular points ρ = 0 and ρ = 1 in the opposite directions with some trial parameters
a and b and then adjusting these parameters so that the solution joins smoothly at the fitting
point. The profiles of solutions generated in this way (for n � 4) are shown in figure 1; the
corresponding parameters (an, bn) are given in table 1.

The role of self-similar solutions fn in the evolution depends crucially on their stability
with respect to small perturbations. In order to analyse the linear stability of the self-similar
solutions it is convenient to define the new time coordinate τ = − ln(T − t) and rewrite
equation (5) in terms of τ and ρ

uττ + uτ + 2ρ uρτ − (1 − ρ2)

(
uρρ +

2

ρ
uρ

)
+

sin(2u)

ρ2
= 0. (13)

The standard procedure is to seek solutions of (13) in the form u(τ, ρ) = fn(ρ) + w(τ, ρ).
Neglecting the O(w2) terms we obtain a linear evolution equation for the perturbation w(τ, ρ)

wττ + wτ + 2ρ wρτ − (1 − ρ2)

(
wρρ +

2

ρ
wρ

)
+

2 cos(2fn)

ρ2
w = 0. (14)

Substituting w(τ, ρ) = eλτ vλ(ρ)/ρ into (14) we get an eigenvalue problem

−(1 − ρ2)v′′
λ + 2λρv′

λ + λ(λ − 1)vλ +
2 cos(2fn)

ρ2
vλ = 0. (15)
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Near ρ = 0 the leading behaviour of solutions of (15) is vλ(ρ) ∼ ρα where α(α − 1) = 2, so
to ensure regularity we require

vλ(ρ) ∼ ρ2 as ρ → 0. (16)

Near ρ = 1 the leading behaviour is vλ(ρ) ∼ (1−ρ)β where β(β−1+λ) = 0. The behaviour
corresponding to β = 1 − λ is not admissible (unless λ = 1), so regular solutions must have
β = 0. Then we have (up to a normalization constant)

vλ(ρ) ∼ 1 +
2 + λ(1 − λ)

2λ
(1 − ρ) + O((1 − ρ)2) as ρ → 1. (17)

To find the eigenvalues we need to solve equation (15) on the interval ρ ∈ [0, 1] with the
boundary conditions (16) and (17). We did this numerically (for n � 4) by shooting the
solutions from both ends and matching the logarithmic derivative at a midpoint. Given an
eigenvalue λ, the eigenfunction vλ(ρ) can be extended for ρ > 1 by solving (15) with the
initial condition (17). Our numerical results strongly suggest that the solution fn has exactly
n+ 1 positive eigenvalues (unstable modes). We denote them by λ

(n)
k (k = 1, . . . , n+ 1) where

λ
(n)
1 > λ

(n)
2 > . . . > λ

(n)
n+1 = 1. For example, for n = 1 we have λ

(1)
1 ≈ 6.333 625, λ(1)

2 = 1;
for n = 2 we have λ

(2)
1 ≈ 59.07, λ(2)

2 ≈ 6.304, λ(2)
3 = 1.
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Figure 2. The profiles of unstable modes around the solution f1(ρ). The ‘real’ unstable mode
(solid line) corresponds to the eigenvalue λ

(1)
1 ≈ 6.333 625. The gauge mode (dotted line) has

λ
(1)
2 = 1. For better visualization both plots are normalized to the same slope at the origin.

For every n the lowest positive eigenvalue λ = 1 corresponds to the gauge mode which
is due to the freedom of choosing the blowup time T . To see this, consider a solution
fn(r/(T

′ − t)). In terms of the similarity variables τ = − ln(T − t) and ρ = r/(T − t),
we have

fn

(
r

T ′ − t

)
= fn

( ρ

1 + εeτ

)
where ε = T ′ − T . (18)

In other words, each self-similar solution fn(ρ) generates the orbit of solutions of (13)
fn(

ρ

1+εeτ ). It is easy to verify that the generator of this orbit

w(τ, ρ) = − d

dε
fn

( ρ

1 + εeτ

)∣∣∣∣∣
ε=0

= eτ ρf ′
n(ρ) (19)
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satisfies (14), thus vn = f ′
n(ρ) satisfies (15) with λ = 1. Note that this eigenfunction has

exactly n zeros on ρ ∈ (0, 1) (since fn has n extrema). For a standard Sturm–Liouville
problem this would imply the existence of n eigenvalues above λ = 1. It was shown in [3]
that a similar result holds in the case of (15), in agreement with our numerical findings.

3. Static solutions

Static solutions of equation (5) can be interpreted as spherically symmetric harmonic maps
from the Euclidean space R

3 into S3. They satisfy the ordinary differential equation

u′′ +
2

r
u′ − sin(2u)

r2
= 0, (20)

where now ′ = d/dr . The obvious constant solutions of (20) are u = 0 and u = π ;
geometrically these are maps into the north and the south pole of S3, respectively. The energy
of these maps attains a global minimum E = 0. Another constant solution is the equator map
u = π/2, but this solution is singular and has infinite energy. The scale invariance of (20)
excludes existence of nontrivial regular solutions with finite energy. However, there exists a
regular solution with infinite energy, denoted here by uS(r), which behaves as

uS(r) ∼
{

r for r → 0,
π
2 + C√

r
sin(

√
7

2 ln r + δ) for r → ∞.
(21)

The existence of this solution, shown in figure 3, can be easily proven using x = ln(r) which
transforms (20) into a damped pendulum equation [6].
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Figure 3. The static solution uS(r).

Note that by dilation symmetry, the solution uS(r) generates the orbit of static solutions
ua
S(r) = uS(ar).

We consider now the linear stability of the static solution uS . Inserting u(t, r) =
uS(r) + eikt v(r) into (5) and linearizing, we get the eigenvalue problem

−v′′ − 2

r
v′ + V (r)v = k2v, V (r) = 2 cos(2uS)

r2
. (22)
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If the singular 1/r2 part is subtracted from V , then (22) becomes the p-wave radial Schrödinger
equation in the regular potential Vreg = V (r)−2/r2. This potential has infinitely many bound
states as can be shown by the following standard argument. Consider the perturbation induced
by the scaling transformation

v(r) = d

da
ua
S(r)

∣∣∣∣∣
a=1

= ru′
S(r). (23)

This is an eigenfunction to zero eigenvalue (so-called zero mode). Since uS(r) has infinitely
many extrema, the zero mode has infinitely many nodes which implies by the standard result
from Sturm–Liouville theory that there are infinitely many negative eigenvalues, and eo ipso
infinitely many unstable modes around uS(r). We found numerically that the ‘most unstable’
mode has the eigenvalue k2 = −0.061 306. The spectrum of perturbations around the rescaled
solutions ua

S(r) is obtained by scaling v(r) → v(kr), k2 → a2k2.
To summarize, there exists the static solution uS(r) (and the continuous family of its

rescalings ua
S(r)) which has infinite energy and infinitely many unstable modes. Can such a

beast play any role in dynamical evolution? The answer is not clear to us. The point is that
both the infinite energy and infinite instability of uS(r) have an origin in the far-field behaviour
so it does not seem impossible that solutions ua

S(r) truncated at some radius appear as local
attractors†.

An alternative way of looking at this issue is to consider solutions of (20) in a finite region
r � R, that is harmonic maps from a ball B3(R) into S3. In the Dirichlet case, u(R) = c, the
number of such solutions depends on the value of a constant c — this was discussed in detail
by Jäger and Kaul [6]. In the Neumann case, u′(R) = 0, which might be more relevant in
dynamics, there exists a countable family of finite energy regular solutions uk(r). They are
given by

uk(r) = u
ak
S (r) with ak = rk

R
, (24)

where rk is the kth Neumann point of uS(r), that is a point where u′
S(rk) = 0 (k = 1, 2, . . .).

By construction the solution uk(r) has k − 1 extrema on r ∈ (0, R). By the same Sturm–
Liouville theory argument as above, one can show that a truncated solution uk has exactly
k − 1 instabilities so a priori it might appear as a codimension (k − 1) local attractor in the
dynamical evolution.

In passing we remark that a similar structure of static solutions arising in the chemotaxis
problem was discussed by Brenner et al [4].

4. Numerical results

In this section we describe the results of our numerical simulations of the Cauchy problem
(5), (6). The main goal of these simulations was to identify the generic final states of
evolution (stable attractors) and determine the boundaries between their basins of attraction.
We emphasize that the convergence to attractors (which is due to radiation of energy to infinity)
is always meant in a local sense. Before going into details, we would like to say a few
words about the numerical techniques we employed. The simulations were performed by two
different finite difference methods. The first method was based on an adaptive mesh refinement

† In a recent paper [9] Liebling, Hirschmann and Isenberg claim to have seen the solutions ua
S(r) at the threshold for

singularity formation in the evolution of very special initial data of noncompact support. We have serious misgivings
about this result, in particular we do not understand the discussion of ‘critical’ solutions which are not intermediate
attractors.
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algorithm. This code allowed us to probe the structure of solutions near the singularity with
good resolution. The second method, designed especially to study the convergence to self-
similar solutions, solved the Cauchy problem for equation (13) on a fixed grid. In this case
there was no need of mesh refinement because the convergence to self-similar profiles is a
smooth process in similarity variables. The main difficulty of using similarity variables is that
we do not know the blowup time T in advance, which means that we have to deal with the
gauge mode instability. To suppress this instability (that is, to guess a blowup time T ) we
fine-tuned an extra parameter in the initial data. The fact that the two independent numerical
techniques generated basically the same outputs makes us feel confident about our results.

We recall that initial data of finite energy can be classified according to the topological
degree of the wave map at a fixed time (which is a map from topological S3 into S3). Since the
degree is preserved by evolution, the Cauchy problem breaks into infinitely many topological
sectors. The nonzero degree data are not small by definition, and we conjecture that they always
develop singularities. Thus, from the point of view of studying the threshold for singularity
formation, only degree zero data are interesting so most of our discussion is focused to such
data. A typical example is an ingoing ‘Gaussian’

u(0, r) = φ(r) = A r3 exp

[
−

(
r − r0

s

)4
]
, ut (0, r) = ψ(r) = φ′(r). (25)

In agreement with the rigorous results of [8, 11] we found that if the initial data are sufficiently
small then the solution disperses, that is it converges uniformly on any compact interval to the
‘vacuum’ solution u = 0. In contrast, large initial data develop singularities in finite time—
this manifests itself in an unbounded growth of the gradient of solution at r = 0. The precise
character of blowup will be described below.

Threshold behaviour

In order to determine the boundary between two generic asymptotic states of evolution,
dispersion and collapse, we considered the evolution of various interpolating one-parameter
families of initial data (φ(r, p), ψ(r, p)), that is such families where the corresponding
solutions exist globally if the parameter p is small and blow up if the parameter p is large.
Along each interpolating family there must exist a critical parameter value p∗ which separates
these two regimes. Given two values psmall and plarge, it is straightforward (in principle) to
find p∗ by bisection. Repeating this for many different interpolating families of initial data
one obtains a set of critical data which by construction belongs to the threshold. In order to
figure out the structure of the threshold one needs to determine the flow of critical data. The
precisely critical data cannot be prepared numerically but in practice it is sufficient to follow the
evolution of marginally critical data. We found that the flow of such data has a transient phase
when it seems to approach the self-similar solution f1(r/(T − t)) for some T (see figure 4).
This behaviour is universal in the sense that it is independent of the family of initial data; only
the parameter T depends on the data.

This kind of behaviour can be naturally explained as follows. As we showed above,
the self-similar solution f1 has exactly one unstable mode (apart from the gauge mode)—in
other words the stable manifold of this solution, WS(f1), has codimension one and therefore
generic one-parameter families of initial data do intersect it. The points of intersection
correspond to critical initial data that converge asymptotically to f1. The marginally critical
data, by continuity, initially remain close to WS(f1) and approach f1 for intermediate times
but eventually are repelled from its vicinity along the one-dimensional unstable manifold (see
figure 5). Within this picture the universality of marginally critical dynamics in the intermediate
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Figure 4. The plot ofu(τ, ρ) againstρ from the evolution (in similarity variables) of two marginally
critical Gaussian-type initial data of the form (25), one subcritical (solid line) and one supercitical
(dashed line). These data are identical, except for the amplitudes which differ by 10−17, so the
solutions practically coincide until the last frame. The influence of the gauge mode instability is
minimized by fine-tuning the width of the Gaussian. The convergence to the self-similar profile
f1(ρ) (dotted line) is clearly seen. In the last frame the two solutions depart from the intermediate
attractor in the opposite directions.
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Figure 5. Departure of the supercritical solution shown in figure 4 from the intermediate attractor.
The τ -derivative of the solution is shown to coincide (for small ρ) with the suitably normalized
unstable mode around f1.
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asymptotics follows immediately from the fact that the same unstable mode dominates the
evolution of all solutions. More precisely, the evolution of marginally critical solutions in the
intermediate asymptotics can be approximated as

u(t, r) = f1(ρ) + c(p)eλτ v(ρ)/ρ + decaying modes, (26)

where ρ = r/(T − t), τ = − ln(T − t), and λ = λ
(1)
1 ≈ 6.3336. The small constant c(p),

which is the only vestige of the initial data, quantifies an admixture of the unstable mode—
for precisely critical data c(p∗) = 0. The ‘lifetime’ τ ∗ of the transient phase during which
the linear approximation (26) is valid is determined by the time in which the unstable mode
grows to a finite size, that is c(p)eλτ

∗ ∼ O(1). Using c(p) ≈ c′(p∗)(p − p∗), this gives
τ ∗ ∼ − 1

λ
ln |p − p∗|.

7 10 13

0 2 4
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3

2 4

Figure 6. The evolution of kink-type initial data u(0, ρ) = π tanh(ρ/s) in similarity variables.
The solution (solid line) converges to the Turok–Spergel solution f0(

ρ
1+εeτ ) (dotted line). By fine-

tuning the parameter s, an admixture of the gauge mode instability quantified by ε was made very
small, ε = −0.0085 e−13, so for times τ < 13 the profile f0(

ρ
1+εeτ ) is practically static.
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Figure 7. The same solution as in figure 6 at later times when the gauge mode instability shows
up. The solution follows the moving attractor f0(

ρ
1+εeτ ) (dots).
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Figure 8. The last stages (|T − t | < 10−5) of collapse of marginally supercritical initial data
(the solution f1 was gently ‘pushed’ towards collapse). The arrow indicates the direction of
increasing time. The rapidly evolving inner region and the almost frozen outer region can be
clearly distinguished — this is a typical situation in the formation of a localized singularity. The
numerical solution passes through the blowup in an almost continuous manner — only the point
u(r = 0, t) jumps from 0 to 2π as t crosses T .
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Figure 9. Evidence of universal self-similarity of blowup. The profiles just before and after the
blowup are shown to coincide with the Turok–Spergel solution and its reflection.

Universality of blowup

We now address the question: what is the shape of solutions as they approach the singularity?
We consider first the kink-type initial data of degree one, for example u(0, r) = φ(r) =
π tanh(r/s) with the ingoing-wave condition ut (0, r) = ψ(r) = φ′(r). We found that such
data always blow up in a finite time T and the asymptotic shape of solution near r = 0
approaches the TS solution f0(r/(T − t)) as t → T −. In this sense the singularity formation
can be considered as local convergence to f0. This is shown in figures 6 and 7.
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We have observed the same behaviour in other topological sectors, in particular in the case
of supercritical degree zero data. In figures 8 and 9 we show the formation of a self-similar
singularity in the collapse of slightly perturbed solution f1.

On the basis of these numerical observations, we conjecture that for a large set of solutions
which blow up in finite time, the asymptotic shape near the singularity is given by the self-
similar solution f0. More precisely, for such solutions there exists a time T such that

u(r, t) → f0

(
r

T − t

)
as t → T − (27)

inside the past light cone of the point (T , 0).
Note that in the case of self-similar blowup the energy does not concentrate at the

singularity; in fact the energy inside the past light cone of the point (T , 0) decreases linearly
with T − t . This suggests that the solutions can be continued beyond the blowup time. Indeed,
in figures 8 and 9 we show solutions just after the blowup. At r = 0 the solution u(t, 0) jumps
from 0 to 2π as t crosses T . Since u = 0 and u = 2π correspond geometrically to the same
point, namely the north pole of S3, the solution passing through the singularity remains smooth
everywhere, except at one point (0, T ). Moreover, the solution retains the self-similar profile
at least for some time after the blowup.

5. Conclusions

We have studied the Cauchy problem for corotational wave maps from 3 + 1 Minkowski
spacetime into the 3-sphere. We found that self-similar solutions play a special role in the
dynamical evolution. The stable self-similar solution (Turok–Spergel solution) determines the
asymptotic profile of solutions that blow up in finite time. The self-similar solution with one
instability plays the role of a critical solution, that is, its stable manifold separates solutions
that blow up from solutions that disperse. Of course, it is impossible to explore numerically the
whole phase space, so the complete picture of singularity formation and critical behaviour might
be richer than the one sketched here. In particular our analysis leaves open the question about
the role of a family of static solutions. Although we have not systematically investigated the
nontrivial topological sectors of the model, we anticipate a rich phenomenology of singularity
formation for solutions with high degree; for example we have observed such solutions evolving
(in a weak sense) through a sequence of blowup times Ti .

In our opinion the most interesting open question is: why do the large data solutions
become self-similar near the singularity? We think that this problem should be approached in
similarity variables in which the problem of blowup translates into a question of asymptotic
behaviour as τ → ∞. Note that the evolution equation expressed in similarity variables (13)
resembles the wave equation with damping. It is thus natural to seek a Lyapunov functional,
that is a functional that decreases in time on solutions. If such a functional exists then its
minima are the candidates for generic asymptotic states of evolution, while its saddle points
are the candidates for positive codimension attractors. The self-similar solutions fn restricted
to the interval ρ ∈ [0, 1] are the critical points of the functional

K[u] = 1

2

∫ 1

0

(
ρ2u2

ρ − 2 cos2(u)

1 − ρ2

)
dρ. (28)

Although we were unable to show that this is a Lyapunov functional for equation (13), we
believe that the mechanism suggested here is responsible for asymptotic self-similarity of
blowup.
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