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Abstract The dispersion and dissipation properties of numerical methods are very impor-
tant in wave simulations. In this paper, such properties are analyzed for Runge-Kutta discon-
tinuous Galerkin methods and Lax-Wendroff discontinuous Galerkin methods when solving
the linear advection equation. With the standard analysis, the asymptotic formulations are
derived analytically for the discrete dispersion relation in the limit of K = kh → 0 (k is
the wavenumber and h is the meshsize) as a function of the CFL number, and the results
are compared quantitatively between these two fully discrete numerical methods. For Lax-
Wendroff discontinuous Galerkin methods, we further introduce an alternative approach
which is advantageous in dispersion analysis when the methods are of arbitrary order of
accuracy. Based on the analytical formulations of the dispersion and dissipation errors, we
also investigate the role of the spatial and temporal discretizations in the dispersion analysis.
Numerical experiments are presented to validate some of the theoretical findings. This work
provides the first analysis for Lax-Wendroff discontinuous Galerkin methods.
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1 Introduction

In wave simulations, highly accurate numerical methods with good dispersive and dissi-
pative behaviors are preferred. In this paper, we analyze the dispersion and dissipation er-
rors of two fully discrete high order discontinuous Galerkin methods, namely, Runge-Kutta
discontinuous Galerkin methods and Lax-Wendroff discontinuous Galerkin methods for a
one-dimensional linear advection equation. Discontinuous Galerkin (DG) methods, as one
class of finite element methods, use piecewise-defined approximating functions that are dis-
continuous at mesh interfaces. The methods can be easily designed to have arbitrary order
accuracy, with the advantages of being compact, free of the inversion of any global mass
matrix when solving time-dependent problems explicitly, suitable for adaptive simulation
and complicated geometry, high parallel efficiency, as well as rich mathematical theory in
terms of stability and error analysis. The aforementioned properties of DG methods make
them one of the most competitive methods in many applications which also include various
wave equations [2, 4, 10, 11].

DG methods were originally proposed by Reed and Hill [19] to solve the linear neutron
transport equation. The error analysis was established by Lesaint and Raviart [15], Johnson
and Pitkäranta [14], Richter [20], and Peterson [16]. Motivated by the success for steady
state problems, DG methods were further devised for many time-dependent equations. In
[7], Chavent and Salzano constructed a fully discrete scheme using piecewise linear DG
method as spatial discretization and the forward Euler method as time discretization, this
method however relies on a very restrictive CFL condition for linear stability. Since then
there have been many developments in time discretizations, in combination with DG spatial
discretizations to get practically more useful schemes, among which are Runge-Kutta time
discretizations and Lax-Wendroff time discretizations. The first DG method with Runge-
Kutta time discretizations (RKDG) was introduced by Cockburn and Shu in [8]. The meth-
ods were generalized in [9] and are now widely used in many applications due to their
simplicity and being explicit. Some error analysis was carried out for these fully discrete
methods by Zhang and Shu in [24–26] and also by Zhong and Shu in [27]. DG methods
with the Lax-Wendroff type time discretization (LWDG) were proposed by Qiu, Dumbser
and Shu [18]. As one-step one-stage high order numerical methods, when compared with
the one-step multi-stage RKDG methods, LWDG methods demonstrate cost efficiency in
some applications such as two-dimensional Euler equations in gas dynamics.

There has been abundant study on the dispersion analysis of many numerical methods,
with some examples including DG methods [2, 4, 11, 12, 21, 22], finite element methods [1,
3, 13], and spectral element methods [5, 6, 23]. Most work was carried out for semi-discrete
schemes. In particular, among the dispersion analysis for DG methods, Sherwin [22] studied
the dispersion relation of the semi-discrete continuous and discontinuous Galerkin methods
for the linear advection equation. He obtained analytically the dispersion relation when the
discrete spaces involve polynomials of degree up to 3, in addition to a numerical study
when the polynomial degree is up to 10. Hu and Atkins [11] examined the semi-discrete DG
methods for one- and two-dimensional linear advection equation with the limit kh → 0 (k is
wavenumber, h is the meshsize). They derived the analytical formulations of dispersion and
dissipation errors when the polynomials degree is up to 16, and conjectured the formulations
for general cases in terms of some Padé approximants. This conjecture was proved in [2]
by Ainsworth, where he also considered the dispersion relation of hp DG methods in two
other limits. Later, Ainsworth, Monk and Muniz [4] studied the dispersive and dissipative
behavior of semi-discrete DG methods for the acoustic wave equation based on either the
interior penalty DG methods for the second order wave equation or a general DG method
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applied to the wave equation in its first order form. In terms of fully discrete DG methods,
there is much less work on the dispersion analysis. Sármány et al. in [21] considered the DG
methods with Runge-Kutta time discretization for Maxwell equations. They numerically
evaluated the accuracy order of the dispersion and dissipation errors of the methods.

In the present work, we focus on the fully discrete DG methods and derive analytical
formulations of the dispersion and dissipation errors of both RKDG and LWDG methods in
terms of the CFL number for kh � 1, with which we carry out comparison between these
two methods and further gain insightful understanding towards the roles of the temporal and
spatial discretizations in dispersion and dissipation behavior. In particular, it is shown that
the DG spatial discretizations lead to super-convergence in the dispersion and dissipation
errors compared with the accuracy of the methods in the L2 norm. This is consistent to the
results for the semi-discrete DG methods [2, 11]. However, when Runge-Kutta methods with
matching accuracy or the Lax-Wendroff type methods are used as the time discretizations,
such super-convergence property is largely lost with the CFL number being order one. We
believe this is due to the finite difference nature of the time discretizations. The work in this
paper also provides the first (dispersion) analysis for LWDG methods, which have compa-
rable asymptotic dispersion and dissipative behavior as RKDG methods of the same order.
For this class of one-step methods, an alternative dispersion analysis is further performed,
and it proves to be advantageous for the methods with arbitrary order of accuracy.

The remaining of this paper is organized as follows. In Sect. 2, RKDG and LWDG meth-
ods are introduced for general one-dimensional conservation laws. In Sect. 3, we first follow
the standard dispersion analysis to obtain the analytical discrete dispersion relation of these
two methods when solving the linear advection equation. Such relations are given asymptot-
ically in kh � 1 as a function of the CFL number. With these results, comparison is carried
out between RKDG and LWDG methods in their dispersion and dissipation behavior. In
Sect. 3, an alternative dispersion analysis is also given for LWDG methods which can be
used to easily analyze the methods when they are of any order of accuracy. By examining
the dispersion and dissipation errors when the CFL number is sufficiently small, in Sect. 4,
we further gain insight for the roles of the spatial and temporal discretizations in the dis-
persion analysis. In Sect. 5, numerical experiments are presented to validate some of our
theoretical findings, which are followed by concluding remarks in Sect. 6.

2 Formulations of Discontinuous Galerkin Methods

In this section, we will introduce Runge-Kutta discontinuous Galerkin methods and Lax-
Wendroff discontinuous Galerkin methods for a one-dimensional scalar conservation law

ut + f (u)x = 0, x ∈ [a, b], t > 0. (2.1)

These are two fully discrete methods which can be of any order of accuracy. Let a = x 1
2

<

x 3
2

< · · · < xm+ 1
2

= b be a partition of the computational domain, with each element denoted
as Ij = [xj− 1

2
, xj+ 1

2
], the midpoint of Ij as xj = (xj− 1

2
+ xj+ 1

2
)/2, and the length as hj . We

define the approximation space as

V N
h = {

v : v|Ij ∈ P N(Ij ), j = 1, . . . ,m
}
,

where P N(Ij ) is the space of polynomials of degree at most N on Ij . All functions in V N
h

are piecewise polynomials, and they are discontinuous at gridpoints. For any v ∈ V N
h , we

also denote v−
j+ 1

2
= limε→0− v(xj+ 1

2
+ ε) and v+

j− 1
2

= limε→0+ v(xj− 1
2
+ ε), ∀j .
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The semi-discrete discontinuous Galerkin method for (2.1) is to look for an approximated
solution uh ∈ V N

h such that for any v ∈ V N
h and j = 1, . . . ,m, there is

∫

Ij

(uh)tvdx −
∫

Ij

f (uh)vxdx + f̂j+ 1
2
v−

j+ 1
2
− f̂j− 1

2
v+

j− 1
2

= 0. (2.2)

Here f̂j+ 1
2
(uh) is a numerical flux at xj+ 1

2
that depends on u−

h,j+ 1
2

and u+
h,j+ 1

2
, ∀j . If we take

{vj

l (x), l = 0,1, . . . ,N} as a local basis of V N
h on Ij and represent the numerical solution

as uh(x, t)|Ij = ∑N

l=0 C
j

l (t)v
j

l (x), then Eq. (2.2) with j = 1, . . . ,m will become an ODE

system for {Cj

l (t)}j,l . If we further solve this ODE system by Runge-Kutta time discretiza-
tions, this will give Runge-Kutta discontinuous Galerkin (RKDG) methods for Eq. (2.1). In
Sect. 3, an equivalent formulation of (2.2), namely,

∫

Ij

(uh)tvdx +
∫

Ij

f (uh)xvdx = (
f −

j+ 1
2
− f̂j+ 1

2

)
v−

j+ 1
2
− (

f +
j− 1

2
− f̂j− 1

2

)
v+

j− 1
2

(2.3)

will be used to derive the discrete dispersion relation.
The Lax-Wendroff discontinuous Galerkin (LWDG) method starts with a Taylor expan-

sion of the solution u in time,

u(x, t + �t) = u(x, t) + �tut + �t2

2
utt + �t3

6
uttt + · · · . (2.4)

Here we use �t to denote the time step. In order to obtain (N +1)st order temporal accuracy,
we will keep the first N +1 time derivatives in (2.4) and replace them with spatial derivatives
based on the original partial differential equation (2.1). For instance, for third order accuracy
in time with N = 2, we will replace ut , utt and uttt in (2.4) with

ut = −f (u)x, utt = ((
f ′)2

ux

)
x
, uttt = −(

3
(
f ′)2(

f ′′)(ux)
2 + (

f ′)3
uxx

)
x
,

and approximate u(x, t + �t) by

u(x, t + �t) ≈ u(x, t) − �tFx,

where

F = f (u) − �t

2

(
f ′)2

ux + �t2

6

(
3
(
f ′)2(

f ′′)(ux)
2 + (

f ′)3
uxx

)
. (2.5)

Note that function F should be FN , and we will drop the subscript N for the simplicity of
notations.

With V N
h as the approximation space, the LWDG method is given as follows: look for

the solution uh ∈ V N
h satisfying

∫

Ij

uh(x, t +�t)vdx =
∫

Ij

uh(x, t)vdx +�t

∫

Ij

F (uh)vxdx −�t
(
F̂j+ 1

2
v−

j+ 1
2
− F̂j− 1

2
v+

j− 1
2

)
,

(2.6)
for any v ∈ V N

h and j = 1, . . . ,m. Here F̂ is a numerical flux, which will be defined in
Sect. 3.2 for a specific f (u) considered in this paper. The resulting method is formally
(N + 1)st order accurate in both space and time, and it will be termed as LWDG(N + 1).
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With the same notation of the local basis and the solution representation as for the
RKDG method, the LWDG method can be further converted into an algebraic system for
{Cj

l (tn)}j,l,n,

N∑

l=0

∫

Ij

v
j

l v
j

i dx
(
C

j

l (tn+1)−C
j

l (tn)
) = �t

∫

Ij

(
v

j

i

)
x
Fdx−�t

(
F̂j+ 1

2

(
v

j

i

)−
j+ 1

2
−F̂j− 1

2

(
v

j

i

)+
j− 1

2

)
,

(2.7)
for i = 0,1, . . . ,N and j = 1, . . . ,m. Here {tn}n is for the discrete time, and tn+1 = tn + �t .
The timestep �t can depend on n in practice. A mathematically equivalent form of (2.7) is
given as follows,

N∑

l=0

∫

Ij

v
j

l v
j

i dx
(
C

j

l (tn+1) − C
j

l (tn)
) = −�t

∫

Ij

Fxv
j

i dx

+ �t
((

F−
j+ 1

2
− F̂j+ 1

2

)(
v

j

i

)−
j+ 1

2
− (

F+
j− 1

2
− F̂j− 1

2

)(
v

j

i

)+
j− 1

2

)
, (2.8)

and it will be used in next section in the dispersion analysis.

3 Dispersion Analysis

In this paper, we focus on the dissipation and dispersion analysis for the fully discrete RKDG
methods and LWDG methods defined in Sect. 2 when they are applied to the linear advection
equation

ut + ux = 0, x ∈ (0,2π], t > 0 (3.1)

with periodic boundary condition. This corresponds to Eq. (2.1) with f (u) = u, a = 0, and
b = 2π . Without loss of generality, the mesh is assumed to be uniform with hj = h for any j .
We choose an orthogonal local basis, given by the scaled translated Legendre polynomials

v
j

l (x) =
√

2l+1
2 Pl(

2(x−xj )

h
). Here Pl(x) with l = 0, . . . ,N are the Legendre polynomials on

[−1,1] satisfying Pl(1) = 1. We also define the coefficient vector Cj = (C
j

0 ,C
j

1 , . . . ,C
j

N)T ,
where C

j

l with l = 0,1, . . . ,N are the coefficients in the local expansion of uh.
In order to carry out the dispersion analysis, we consider the linear advection equa-

tion (3.1) with an initial condition u(x,0) = eikx . The exact solution is given by u(x, t) =
ei(kx−ωt) with ω = k. Here k is called the wavenumber, ω is the frequency, and ω = k is
the exact dispersion relation for Eq. (3.1). Suppose the numerical solution of a method is
of the same form, namely, uh(x, t) = ei(kx−ω̃t) = eωi t ei(kx−ωr t). When ωi = �(ω̃) < 0, the
scheme is dissipative. And ωr = 	(ω̃) 
= k gives a dispersive solution. By taking into ac-
count how fine the mesh is with respect to the wavenumber k, we further define K = kh

and Ω = Ωr + iΩi with Ωr = ωrh and Ωi = ωih, then the exact dispersion relation can be
expressed as Ωr = K and Ωi = 0. Our goal is to estimate the dispersion error Ωr − K and
the dissipation error Ωi of the RKDG and LWDG methods with respect to the CFL number
ν = �t

h
for K � 1. In this paper, all reference values of the CFL number to ensure the linear

stability of the scheme come from literature.
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3.1 Analysis of RKDG Methods

To allow information propagate stably, we use an upwind numerical flux for the semi-
discrete DG method in (2.3) when it is applied to (3.1). That is, f̂j+ 1

2
= ûh,j+ 1

2
= u−

h,j+ 1
2
, ∀j .

Then the method becomes
∫

Ij

uh,t vdx +
∫

Ij

uh,xvdx = (
u−

h,j+ 1
2
− ûh,j+ 1

2

)
v−

j+ 1
2
− (

u+
h,j− 1

2
− ûh,j− 1

2

)
v+

j− 1
2

= −(
u+

h,j− 1
2
− u−

h,j− 1
2

)
v+

j− 1
2

(3.2)

for j = 1, . . . ,m, and it can be further written into a matrix form

dCj

dt
= 2

h

(−(
D0 + G+

0

)
Cj + G−

0 Cj−1
)
, (3.3)

once the solution representation is taken in terms of the local basis. Here the (s, l)-th entry
of the matrices D0,G

−
0 ,G+

0 is defined as

D0(s, l) =
∫

Ij

vj
s

∂v
j

l

∂x
dx,G−

0 (s, l) = (
vj

s v
j−1
l

)|x
j− 1

2

,G+
0 (s, l) = (

vj
s v

j

l

)|x
j− 1

2

,

respectively. It is easy to see that these matrices are independent of index j , therefore the
notations D0,G

+
0 and G−

0 will not lead to any confusion.
With U = −(D0 + G+

0 ),L = G−
0 , we rewrite Eq. (3.3) with j = 1, . . . ,m into an ODE

system
⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

dC1

dt
dC2

dt
...
...

dCm

dt

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

= 2

h

⎛

⎜⎜⎜⎜⎜⎜
⎝

U 0 . . . 0 L

L U

.. .
. . .

. . .
. . .

L U

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜
⎝

C1

C2

...

...

Cm

⎞

⎟⎟⎟⎟⎟⎟
⎠

(3.4)

which can also be compactly denoted as dC
dt

= AC, with A being the coefficient matrix
and C = ((C1)T , . . . , (Cm)T )T . We then solve this ODE system from time t to t + �t by
Runge-Kutta (RK) methods. For instance, the 2-stage 2nd order RK method gives C(t +
�t) = (I + �tA + 1

2 (�tA)2)C(t), and the 3-stage 3rd order RK method gives C(t + �t) =
(I + �tA + 1

2 (�tA)2 + 1
6 (�tA)3)C(t). In this paper, we will use RKDG(N + 1) to denote

the fully discrete scheme which uses the upwind DG method in (3.4) (also see (3.2)) with
the discrete space V N

h as the spatial discretization, and the (N + 1)-stage (N + 1)st order
RK method as the time discretization.

3.1.1 RKDG2 with N = 1

With a simple derivation, RKDG2 can be written as

Cj (t + �t) = 2ν2L2Cj−2(t) + (
2νL + 2ν2(LU + UL)

)
Cj−1(t)

+ (
I + 2νU + 2ν2U 2

)
Cj (t). (3.5)
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Let Cj (t) = α exp(i(kxj − ω̃t)), with α being a nonzero constant vector of length N + 1.
We substitute it into Eq. (3.5) and obtain an eigenvalue problem

(
e−iω̃�t I − M

)
α = 0, (3.6)

where

M = 2ν2L2e−2ikh + (
2νL + 2ν2(LU + UL)

)
e−ikh + I + 2νU + 2ν2U 2. (3.7)

This 2 × 2 matrix M has two eigenvalues, and if we denote one as λ, then
{

Ωr = − 1
ν

arctan( �(λ)

	(λ)
),

Ωi = 1
2ν

ln((	(λ))2 + (�(λ))2).
(3.8)

For K = kh � 1, there is only one eigenvalue of M, satisfying Ωr ∼ K as K → 0, which
is physically relevant and is said to be consistent. Based on the consistent eigenvalue of M
in (3.7), we obtain

{
Ωr = K + 1

6 ν2K3 + ( 1
270 − 1

20 ν4)K5 + O(K7),

Ωi = (− 1
72 + 1

8ν3)K4 + ( 1
648 − 1

144ν2)K6 + O(K8).
(3.9)

This indicates that the dispersion error Ωr − K is of third order accuracy with respect to
K � 1, and the dissipation error Ωi is of fourth order accuracy. When k = O(1), this is
equivalent to say that the dispersion error ωr − k is of second order accuracy and the dissi-
pation error ωi is of third order accuracy in h � 1.

It seems that a careful selection of the CFL number ν may lead to − 1
72 + 1

8ν3 = 0 and
therefore give higher accuracy in dissipation error. However, to make this happen, one must
choose ν ≈ 0.4807, which is beyond the linear stability limit of RKDG2, ν ≤ 1

3 . In other
words, the result in (3.9) is sharp, and no higher order accuracy can be achieved for either
the dissipative error or the dispersive error by simply changing the constant ν. (Later in
Sect. 4, a different scenario is discussed when ν is allowed to depend on K .) Note that the
dominating error is from dispersion, and the coefficient of its leading term is an increasing
function of ν and it is always positive. Therefore a smaller CFL number leads to a smaller
dispersion error. On the other hand, since |− 1

72 + 1
8ν3| increases as ν → 0+, a smaller CFL

number leads to a larger dissipation error.
For a given wavenumber k, by making use of the asymptotic formula in (3.9), we can

estimate the total dispersion and dissipation errors of the RKDG2 solution up to a given time
T for sufficiently small mesh size h. To be more concrete, assume the numerical solution is

uh(x,T ) = ei(kx−ω̃T ) = e�(ω̃)T ei(kx−	(ω̃)T ) = eΩi
T
h ei(K−Ωr)

T
h ei(kx−kT ), (3.10)

then eΩi
T
h ∼ e(− 1

72 + 1
8 ν3)K4 T

h measures the total dissipation error, and ei(K−Ωr)
T
h ∼ e− 1

6 iν2K3 T
h

measures the total dispersion error up to time T . These approximations can provide useful
guidance for one to control errors in wave simulations.

3.1.2 RKDG3 with N = 2

Following the similar procedure for RKDG2, we obtain an eigenvalue problem (3.6) for the
dispersion analysis of RKDG3, where M = A1e

−3ikh + A2e
−2ikh + A3e

−ikh + A4 with

A1 = 4

3
ν3L3,
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A2 = 4

3
ν3

(
L2U + LUL + UL2

) + 2ν2L2,

A3 = 4

3
ν3

(
LU 2 + ULU + U 2L

) + 2ν2(LU + UL) + 2νL,

A4 = I + 4

3
ν3U 3 + 2ν2U 2 + 2νU.

When we use symbolic computation software MAPLE to obtain the consistent eigenvalues
of M, in order to simplify the lengthy result and get an analytical form of the leading term,
the following nontrivial equality is identified and proves to be crucial,

52 + 72ν − 3240ν2 + 8260ν3 + 6360ν4 − 11568ν5 − 33408

+ √
17

(
20 − 120ν + 120ν2 − 420ν3 + 3720ν4 − 3600ν5 − 8000ν6

)

= (
1 + 7ν − 24ν2 + √

17 − 3
√

17ν − 4
√

17ν2
)3

.

With this, the consistent eigenvalue of M is simply given by

λ = 1 − iνK − 1

2
ν2K2 + i

1

6
ν3K3 + O

(
K6

)
,

and we further obtain from (3.8)

{
Ωr = K + 1

30ν4K5 + ( 1
42000 − 1

252ν6)K7 + O(K8),

Ωi = − 1
24ν3K4 + ( 1

72ν5 − 1
7200 )K6 + O(K8).

(3.11)

One can see that the dissipation error of RKDG3 is of the same order of accuracy as that of
RKDG2, and Fig. 1(left) further shows that RKDG3 has smaller dissipation error regardless
of the CFL number ν. We only plot the curve with ν ∈ [0,0.2] for RKDG3 due to its linear
stability condition ν < 0.209. On the other hand, the dispersion error of RKDG3 is fifth
order accurate, and it is much higher compared with RKDG2. Moreover, for RKDG3, the
dissipation error is dominating, and a smaller CFL number leads to smaller dissipation and
dispersion errors and thus more accurate solutions.

Fig. 1 The leading coefficient C2 in the dissipation error Ωi = C2K4 +O(K6). Left: RKDG2 and RKDG3;
Right: LWDG2 and LWDG3
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3.2 Analysis of LWDG Methods

For the linear advection equation (3.1) with f (u) = u, the function F in (2.5) with general
N becomes

F = u − �t

2! ux + (�t)2

3! uxx + · · · + (−1)N (�t)N

(N + 1)!
∂Nu

∂xN
.

Consider the following numerical flux for the LWDG method in (2.7) (or in (2.8)),

F̂j+ 1
2

= βu−
j+ 1

2
+ (1 − β)u+

j+ 1
2
+ γ (F − u)−

j+ 1
2
+ (1 − γ )(F − u)+

j+ 1
2

(3.12)

with parameters β,γ ∈ [0,1]. Different values of β and γ will give different numerical
fluxes, and one shall know that not all values lead to stable schemes. One widely-used nu-
merical flux for the LWDG method is with β = 1, γ = 1

2 . In this subsection, we will focus
on the dispersion analysis of the LWDG method with this numerical flux.

In order to derive the compact matrix form of the LWDG method, we define matrices
E−,E+,G−,G+ and D, which all depend on N and have the (s, l)-th entries given as
follows.

E−(s, l) =
(

(1 − β)vj
s v

j

l + (1 − γ )

×
(

−�t

2! vj
s

∂v
j

l

∂x
+ · · · + (−1)N (�t)N

(N + 1)!v
j
s

∂Nv
j

l

∂xN

))

x
j+ 1

2

,

E+(s, l) =
(

(1 − β)vj
s v

j+1
l + (1 − γ )

×
(

−�t

2! vj
s

∂v
j+1
l

∂x
+ · · · + (−1)N (�t)N

(N + 1)!v
j
s

∂Nv
j+1
l

∂xN

))

x
j+ 1

2

,

G−(s, l) =
(

βvj
s v

j−1
l + γ

(
−�t

2! vj
s

∂v
j−1
l

∂x
+ · · · + (−1)N (�t)N

(N + 1)!v
j
s

∂Nv
j−1
l

∂xN

))

x
j− 1

2

,

G+(s, l) =
(

βvj
s v

j

l + γ

(
−�t

2! vj
s

∂v
j

l

∂x
+ · · · + (−1)N (�t)N

(N + 1)!v
j
s

∂Nv
j

l

∂xN

))

x
j− 1

2

,

D(s, l) =
∫

Ij

vj
s

∂v
j

l

∂x
dx − �t

2!
∫

Ij

vj
s

∂2v
j

l

∂x2
dx + · · · + (−1)N (�t)N−1

N !
∫

Ij

vj
s

∂Nv
j

l

∂xN
dx.

(3.13)

Using these matrices, the LWDG method in (2.8) can be rewritten as

1

2ν

(
Cj (t + �t) − Cj (t)

) = (
E− − G+ − D

)
Cj (t) + G−Cj−1(t) − E+Cj+1(t). (3.14)

To carry out the dispersion analysis, we take the ansatz Cj (t) = α exp(i(kxj −ω̃t)) in (3.14),
with α being a nonzero constant vector, and obtain the following eigenvalue problem

(
e−iω̃�t − 1

2ν
I + M

)
α = 0, (3.15)
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where M = (D +G+ −E−)+E+eikh −G−e−ikh. If one of the eigenvalues of M is denoted
as λ and let λ̃ = 1 − 2νλ, we will have

{
Ωr = 	(ω̃)h = − 1

ν
arctan( �(λ̃)

	(λ̃)
),

Ωi = �(ω̃)h = 1
2ν

ln((	(λ̃))2 + (�(λ̃))2).
(3.16)

3.2.1 LWDG2 with N = 1

For LWDG2, the physically relevant dispersion relation is given as
{

Ωr = K + ( 1
12ν + 1

6ν2)K3 + O(K5),

Ωi = (− 1
72 + 1

72ν + 1
6ν2 + 1

8ν3)K4 + O(K6).

This indicates that the dispersion error Ωr −K is dominating, and it is of third order accuracy
with respect to K � 1. The dissipation error Ωi is of fourth order accuracy. Based on [17],
the linear stability condition of LWDG2 is ν < ν0 = 0.223. Under this constraint, it can
be shown that − 1

72 + 1
72ν + 1

6ν2 + 1
8ν3 < 0, and therefore the dissipation error of LWDG2

can not be higher than fourth order accurate. Furthermore, the leading coefficients of both
Ωr − K and Ωi are increasing functions of ν, hence a smaller CFL number ν will lead to
better dispersion behavior but worse dissipation behavior of the scheme.

3.2.2 LWDG3 with N = 2

By using the following nontrivial equality

(−52 − 360ν − 300ν2 + 1000ν3 + 20(1 + 3ν)
√

17 + 30ν − 75ν2
) 1

3

= −(5ν + 1) +
√

17 + 30ν − 75ν2,

we obtain the consistent eigenvalue of M,

λ = 1

2
iK + 1

4
νK2 − 1

12
iν2K3 − 1

240

(20ν3 + 5ν2 − 2ν − 1)ν

1 + 3ν
K4

+ 1

3600

(300ν5 + 150ν4 − 5ν3 − 75ν2 − 7ν + 9)ν

(1 + 3ν)2
iK5 + O

(
K6

)
,

which gives
{

Ωr = K − 1
1800

(60ν5+15ν4−70ν3−8ν−9)ν

(1+3ν)2 K5 + O(K7),

Ωi = 1
120

(5ν3−2ν−1)ν

1+3ν
K4 + O(K6).

This shows that the dissipation error dominates and it is fourth order accurate. This error
is of the same order as that of LWDG2, yet the leading coefficient is of smaller magni-
tude, see Fig. 1(right). The dispersion error of LWDG3, on the other hand, is of fifth order
which is two order higher than that of LWDG2. Based on [17], the linear stability condition
for LWDG3 is ν < 0.127. Under this restriction, Fig. 1(right) and Fig. 3(left) imply that
the leading coefficient of Ωr − K is positive and monotonically increasing, while the lead-
ing coefficient of Ωi is negative and monotonically decreasing. In other words, as the CFL
number ν decreases, the magnitude of both coefficients decreases correspondingly. There-
fore, different from LWDG2, a smaller ν gives smaller dispersion and dissipation errors and
therefore better accuracy in solutions.
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3.3 Comparison of RKDG and LWDG Methods

In this subsection, we compare the performance of RKDG and LWDG methods based on
the formulas derived in Sects. 3.1–3.2 for Ωr and Ωi . Since Ωr − K = C1K

3 + O(K5) and
Ωi = C2K

4 +O(K6) for both RKDG2 and LWDG2, one only needs to compare Cl , l = 1,2
directly.

In Fig. 2(left), we plot the coefficient C1 as a function of the CFL number ν for both
RKDG2 and LWDG2. Even though the range of ν is taken as (0, 1

3 ), the curve for LWDG2
is valid only for ν ∈ (0,0.223) due to the linear stability restriction. Both curves are mono-
tonically increasing, and for the same ν, RKDG2 has smaller dispersion error than LWDG2.
In addition, with a widely used CFL number, namely, 1

3 for RKDG2 and 0.22 for LWDG2,
we have C1 = 1.85E-2 for RKDG2 and C1 = 2.33E-2 for LWDG2. Therefore, even in this
case, RKDG2 still has better performance in dispersion behavior. Figure 2(right) gives the
curves of the coefficient C2 of RKDG2 and LWDG2, and both are increasing functions of ν.
Within the stability range of LWDG2, both functions are negative. For a fixed ν in this range,
LWDG2 has better dissipation behavior than RKDG2. This is also true if ν = 1

3 is taken for
RKDG2 and ν = 0.22 is for LWDG2.

For RKDG3 and LWDG3 with N = 2, there are Ωr − K = C1K
5 + O(K7) and Ωi =

C2K
4 + O(K6). Figure 3 shows that both C1 and C2 for RKDG3 are of much smaller

magnitude than those for LWDG3, therefore RKDG3 has better dispersion and dissipation
behavior with more accurate numerical solutions than LWDG3. Note that for N = 1,2, both
RKDG and LWDG methods have positive C1. This implies a phase lead, which is confirmed
by numerical experiments in Sect. 5 (see Table 1 and Table 3).

When N ≥ 3, for the eigenvalue problems arising in the dispersion analysis of
RKDG(N + 1) and LWDG(N + 1), we can no longer obtain a compact asymptotic for-
mula of the consistent eigenvalue as a function of the CFL number ν with respect to K � 1,
hence we will not include any discussion for these cases. One can surely numerically eval-
uate the dispersion relation with a given ν for larger N as in [21] by following the analysis
in Sects. 3.1 and 3.2.

Fig. 2 Left: The leading coefficient C1 in the dispersion error Ωr = K + C1K3 + O(K5) for RKDG2 and
LWDG2. Right: The leading coefficient C2 in the dissipation error Ωi = C2K4 + O(K6) for RKDG2 and
LWDG2
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Fig. 3 Left: The leading coefficient C1 in the dispersion error Ωr = K + C1K5 + O(K7) for RKDG3 and
LWDG3. Right: The leading coefficient C2 in the dissipation error Ωi = C2K4 + O(K6) for RKDG3 and
LWDG3

3.4 An Alternative Analysis for LWDG Methods: The Fixed-ω Method

The dispersion analysis in Sects. 3.1–3.2 is a standard approach, which solves the eigenvalue
problem (3.6) or (3.15) for the frequency ω̃ in terms of the wavenumber k. The advantage
of this approach is the clearness of its physical meaning, since the wavenumber k is usually
given in the initial condition. However, when we use the (N + 1)st order RKDG or LWDG
method, in order to obtain the formulation of e−iω̃�t in terms of k, a polynomial equation
of degree N + 1 needs to be solved, and this becomes more complicated for larger N .
On the other hand, when solving the eigenvalue problem (3.15) for the LWDG method
by computing the determinant of the coefficient matrix, if one solves the wavenumber in
terms of the frequency, the eigenvalue problem will be much simpler. This is stated more
rigorously in the next Theorem.

Theorem 3.1 Suppose h > 0,N ∈ N and β,γ ∈ [0,1]. Consider the (N +1)st order LWDG
method with the numerical flux defined in (3.12), then the discrete dispersion relation is
determined by the consistent solution of the eigenvalue problem (3.15). Moreover, (i) For
N = 0, the eigenvalue problem is a quadratic equation in terms of ξ = eikh when 0 < β < 1,
and it is linear when β = 0 or β = 1. (ii) For N ≥ 1, when (β − 1)2 + (γ − 1)2 
= 0 and
β2 + γ 2 
= 0, the eigenvalue problem is a quadratic equation in terms of ξ = eikh. When
β = γ = 1 or β = γ = 0, the eigenvalue problem turns to a linear polynomial equation.

Proof The eigenvalue problem (3.15) has nontrivial solutions if and only if the determinant
of the coefficient matrix M is equal to zero. The conclusion for N = 0 is straightforward, as
all the involved matrices are scalar, we here only focus on the cases with N ≥ 1. When β and
γ are not equal to 0 or 1 at the same time, it is easy to show that matrices E+ and G− are of
rank 1. By the properties of determinant under row or column operations, the determinant of
the matrix is of the form δ1 + δ2e

ikh + δ3e
−ikh, where δi, i = 1,2,3 are constants. Therefore

the solution of the eigenvalue problem (3.15) is the root of δ2ξ
2 + δ1ξ + δ3 = 0 with ξ =

eikh. When β = γ = 1, we have E+ = 0 based on its definition in (3.13). In this case, the
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determinant can be reduced to δ1 + δ3e
−ikh, thus the problem leads to a first order equation

δ1ξ + δ3 = 0. Similarly, when β = γ = 0, we have G− = 0 in (3.15). Following the same
discussion, we can also obtain that the problem leads to a linear polynomial equation. �

Given the frequency ω, u(x, t) = ei(kx−ωt) is the exact solution for (3.1) with the
wavenumber k = ω. Assume the numerical solution of the LWDG methods is of the same
form, namely, uh(x, t) = ei(k̃x−ωt). Following [2], we define the relative error ρN = eikh−eik̃h

eikh .

Note that ρN ≈ i(k − k̃)h with K = kh � 1, and it measures the difference between the
exact and the discrete wavenumbers multiplied by the mesh parameter h and therefore gives
the dispersion error of the schemes. Theorem 3.1 implies that with the fixed-ω method, one
can obtain the analytical formulation of the consistent eigenvalue for any N and therefore
the discrete dispersion relation for arbitrary order LWDG methods. This is a huge advantage
over the standard approach. The fixed-ω approach was used in [2] to analyze the dispersion
property for the semi-discrete DG methods of any order of accuracy.

For the commonly-used numerical flux given by (3.12) with β = 1, γ = 1
2 , we can

easily compute the asymptotic formulation of the relative error ρN , and the results for
N = 0,1, . . . ,4 are given as follows.

ρ0 =
(

1

2
− ν

2

)
K2 + i

(
1

3
− ν

2
+ 1

6
ν2

)
K3 + O

(
K4

)

ρ1 = i

(
1

12
ν + 1

6
ν2

)
K3 +

(
1

72
− 1

72
ν − 1

6
ν2 − 1

8
ν3

)
K4 + O

(
K5

)

ρ2 = − 1

120

ν(5ν3 − 2ν − 1)

3ν + 1
K4 − i

1800

(60ν5 + 15ν4 − 70ν3 − 8ν − 9)ν

(3ν + 1)2
K5 + O

(
K6

)

ρ3 = − i

5040

(35ν5 − 43ν3 + 20ν + 3)ν

5ν2 + 1
K5

+ 1

70560

(2975ν6 + 175ν5 − 4105ν4 − 470ν3 + 830ν2 + 316ν + 24)ν

(5ν2 + 1)2
K6 + O

(
K7

)

ρ4 = 1

90720

(147ν7 − 455ν5 + 343ν3 − 20ν − 3)ν

10ν + 1
K6

− i

816480

ξ

(1 + 20ν + 100ν2)
K7 + O

(
K8

)

where ξ = 9261ν12 −45570ν10 −1323ν9 +56999ν8 +855ν7 −22842ν6 +189ν5 +2574ν4 +
165ν3 + 73ν2 + 15ν. For the linear advection Eq. (3.1), one can also consider the fully up-
wind numerical flux, namely (3.12) with β = γ = 1. When N = 0, ρ0 has the same formu-
lation as above. And ρN , with N = 1, . . . ,4, are given as follows.

ρ1 = i

12

(
ν − ν2

)
K3 +

(
1

72
− 1

18
ν + 1

24
ν2

)
K4 + O

(
K5

)

ρ2 = 1

120

(
ν − ν2

)
K4 + i

(
1

180
ν4 + 1

200
ν − 19

1800
ν2

)
K5 + O

(
K6

)

ρ3 = i

(
− 1

504
ν2 − 1

720
ν4 − 1

1680
ν

)
K5

+
(

1

2940
ν − 59

70560
ν2 + 1

2016
ν4

)
K6 + O

(
K7

)
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ρ4 =
(

1

9072
ν2 − 1

30240
ν − 1

12960
ν4

)
K6

+ i

(
11

116640
ν2 − 1

54432
ν − 1

3645
ν4 + 1

5040
ν6

)
K7 + O

(
K8

)
.

Based on the formulations of ρN for the LWDG methods using the numerical flux with
β = 1, and γ = 1

2 or 1, the following pattern can be observed,

ρN =
{

C2K
N+3 + iC1K

N+2 + O(KN+4), if N is odd,

C1K
N+2 + iC2K

N+3 + O(KN+4), if N is even,
(3.17)

where C1,C2 are two real constants dependent of the CFL number ν and N . These formulas
show that the relative error ρN is of order N + 2 in K � 1 for the (N + 1)st order LWDG
methods. Here C1 or iC1 denotes the coefficient of the leading order term. The formulas
can be used to further study the relative error. For instance, in Fig. 4, ln(|C1|) is plotted
as a function of ν for the method with β = 1 and γ = 1

2 . One can conclude that when
N increases, not only ρN will be of higher order accuracy, the magnitude of the leading
coefficient |C1| will also decrease significantly. Since ln(|C1|) → −∞ as ν → 0, we only
plot ln(|C1|) for ν from 10−5 to 0.22.

Remark 3.2

(1) Though a similar result as in Theorem 3.1 holds for the semi-discrete DG method in
(3.2) (see [2]), it does not hold for fully discrete RKDG methods. It can be shown that
the eigenvalue problem in the dispersion analysis for the RKDG3 method leads to a
cubic polynomial equation in terms of eikh.

(2) −	(ρN) ≈ −�(k̃h) and �(ρN) ≈ 	(kh − k̃h) measure the dissipation and dispersion
errors of LWDG methods, respectively. This is consistent to the observation that for
LWDG(N + 1) with N = 1,2, −	(ρN) is of the same order of accuracy as Ωi , and
�(ρN) is of the same order of accuracy as Ωr − K .

Fig. 4 ln(|C1|), with C1 defined
in (3.17), for the (N + 1)st order
LWDG method using the
numerical flux (3.12) with β = 1
and γ = 1

2 , N = 1, . . . ,4. The
solid, dot, long-dash and
space-dash lines represent the
case when N = 1,2,3,4
respectively
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One natural question is, can we design LWDG methods with a higher order relative error
ρN if the parameters β and γ take some special values in the numerical flux (3.12)? When
N = 0, the numerical flux is given by F̂ = βu− + (1 − β)u+, and the relative error is given
as,

ρ0 =
(

β − 1 + ν

2

)
K2 + i

6

(
12β2 − 6νβ − 12β + ν2 + 3ν + 2

)
K3 + O

(
K4

)
.

One can see that for general value of β , there is ρ0 = O(K2) and this is consistent to our
previous observation. Yet when β and the CFL number ν are properly related, namely,
β = 1+ν

2 , ρ0 will be one order higher with ρ0 = O(K3). In this case, the numerical

flux becomes F̂ = 1+ν
2 u− + 1−ν

2 u+ which is upwind-biased. Numerical experiments with
ν = 0.2,0.4,0.6,0.8 also indicates that the resulting method is stable. The success of the
LWDG1 with N = 0 unfortunately can not be carried over to general N . For example, when
N = 1 with F̂ = βu− + (1 − β)u+ − �t

2 (γ u−
x + (1 − γ )u+

x ), in order to improve the ac-
curacy order of ρ1 from O(K3) to O(K4), one needs β = 1

2 and γ = 1
2 + 1

6ν
. Note that ν

appears in the denominator of γ which grows unboundedly when ν approaches 0. Numeri-
cal tests show that the resulting method, though formally with higher order relative error ρ1,
is unstable.

4 The Role of the Spatial and the Temporal Discretizations

In Sect. 3, we have derived the analytical formulations of the leading terms of the dispersion
and dissipation errors, Ωr −K and Ωi , of RKDG and LWDG methods, as well as the relative
error ρN for LWDG methods, as a function of the CFL number ν. The analysis is carried
out by assuming ν is a constant. In this section, we will further discuss these results when ν

can depend on K and therefore can be chosen to be “smaller”, with the goal to understand
the role of the spatial and the temporal discretization in the dispersion analysis for the fully
discrete methods.

We start with RKDG methods. In Sect. 3.1, we obtain for RKDG2 the dispersive er-
ror Ωr − K = 1

6 ν2K3 + ( 1
270 − 1

20ν4)K5 + O(K7) which is third order accurate. Note that
limν→0

1
6ν2 = 0 and limν→0

1
270 − 1

20ν4 = 1
270 . If ν is taken to be “smaller”, in particular

with ν = O(Kr) and r ≥ 1, then Ωr − K = O(K5) and it is two order more accurate.
On the other hand, smaller ν will not change the overall fourth order accuracy of the dis-
sipative error Ωi = (− 1

72 + 1
8ν3)K4 + O(K6) = O(K4). Since the properties of the fully

discrete schemes with sufficiently small CFL numbers are determined only by spatial dis-
cretizations, one can conclude that the second order DG spatial discretization contributes to
RKDG2 with Ωr − K = O(K5) and Ωi = O(K4), yet the second order Runge-Kutta time
discretization reduces the order of the dispersive error by two while keeping the dissipative
error unchanged. Similarly, for RKDG3, from the dispersion analysis given in (3.11), and
with the sufficiently small CFL number, namely ν = O(Kr) and r ≥ 2

3 , the dispersive error
becomes Ωr − K = O(K7) and the dissipative error is Ωi = O(K6), and these can be at-
tributed to the third order DG spatial discretization, while the third order Runge-Kutta time
discretization reduces the order of both dispersive and dissipative errors by two, rendering
Ωr − K = O(K5) and Ωi = O(K4).
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Next we consider LWDG methods. For LWDG2, the dispersion and dissipation errors
are given as
{

Ωr = K + ( 1
12ν + 1

6ν2)K3 + ( 1
270 + 5

432ν − 11
144ν2 − 1

8ν3 − 1
20ν4)K5 + O(K7),

Ωi = (− 1
72 + 1

72ν + 1
6ν2 + 1

8ν3)K4 + ( 1
648 + 17

2592ν − 29
864ν2 − 7

96ν3 − 1
20ν4)K6 + O(K8).

With ν = O(Kr) and r ≥ 2, we have Ωr − K = O(K5) and Ωi = O(K4), and they are
determined by the spatial discretization in LWDG2, while the time discretization in LWDG2
is responsible for Ωr − K = O(K3) and Ωi = O(K4). For LWDG3, there is

⎧
⎪⎪⎨

⎪⎪⎩

Ωr = K − 1
1800

(60ν5+15ν4−70ν3−8ν−9)ν

(1+3ν)2 K5 + ξ

3780000(1+3ν4)
K7 + O(K8),

Ωi = 1
120

(5ν3−2ν−1)ν

1+3ν
K4

− 1
36000

1500ν8+750ν7−2150ν6−3075ν5+830ν4+1950ν3+439ν2−33ν+5
(1+3ν)3 K6 + O(K8),

with ξ = 45000ν10 + 33750ν9 − 148500ν8 + 27375ν7 − 94100ν6 − 142275ν5 + 97415ν4 +
129000ν3 +24327ν2 −2994ν +90. Then with ν = O(Kr) and r ≥ 2, the dispersion and dis-
sipation errors of LWDG3 are Ωr −K = O(K7) and Ωi = O(K6), and they are attributed to
the spatial discretization of LWDG3, while its temporal discretization is responsible for the
two order lower dispersive error Ωr − K = O(K5) and the dissipative error Ωi = O(K4)

of the fully discrete LWDG3. Compared with RKDG(N + 1), N = 1 or 2, in order to ex-
tract the contribution of the spatial discretization, one needs to use relatively smaller ν and
therefore smaller time-step �t in LWDG(N + 1).

Based on the analysis given so far, one can see that with sufficiently small CFL numbers,
both RKDG and LWDG methods have a (2N + 3)rd order dispersive error Ωr − K , and
a (2N + 2)nd order dissipative error Ωi where N = 1,2. Since these orders of accuracy
are higher than the expected (N + 1)st order of accuracy of the methods in the L2 norm,
the spatial discretizations of both RKDG and LWDG methods lead to super-convergence in
dispersion and dissipation errors. When the wavenumber k is given, by taking into account
the factor h in Ωr and Ωi , we also say that the dispersive error ωr − k due to the spatial
discretization is (N + 1)st order more accurate and the dissipative error ωi is N th order
more accurate than the L2 errors of the RKDG or LWDG numerical solutions. On the other
hand, the temporal discretization reduces the super-convergence in the dispersive error when
N = 2, while completely eliminating the super-convergence in the dispersive error when
N = 1 and in the dissipative error when N = 2.

Finally, we turn our discussion to the relative error ρN obtained for the LWDG methods
in Sect. 3.4. With the similar analysis as for Ωr − K and Ωi , based on ρN , N = 0, . . . ,5
of the LWDG methods using the numerical flux (3.12) with β = 1 and γ = 1

2 , and with the
CFL number ν = O(Kr) and r ≥ N + 2 for K � 1, we obtain

ρN = 1

2

(
N !

(2N + 1)!
)2

K2N+2 + i

(
N !

(2N + 1)!
)2

N + 1

(2N + 1)(2N + 3)
K2N+3 + O

(
K2N+4

)
.

(4.1)
We conjecture that (4.1) also holds for general N . One can see that ρN for LWDG methods
is of (2N + 2)nd order accuracy if the influence of time discretizations can be neglected,
and this is a super-convergent property, similar as previously discussed for Ωr − K and Ωi .
In [2], the asymptotic formulations of the relative error ρN was mathematical proved for
the semi-discrete upwind DG method in (3.2) with any N . In this case ρN is completely
determined by the spatial DG discretizations. Although LWDG methods do not have a semi-
discrete version when �t → 0, one can still compare ρN in (4.1) and that in [2]. Indeed,
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the formula of ρN in (4.1) is identical to that of the semi-discrete upwind DG method in
(3.2). Hence the spatial discretization of LWDG methods contributes to ρN in a similar
way as that of the semi-discrete DG methods. The results in Sect. 3.4 show that ρN is of
order (N + 2) with ν = O(1), indicating that the time discretization eliminates the super-
convergence in ρN . (Recall that ρN ≈ i(k − k̃)h.) Although the formulas of ρN for LWDG
methods with β = 1, γ = 1

2 and β = γ = 1 are quite different, we can show that with the
CFL number ν = O(Kr) and r ≥ N + 2, (4.1) is also satisfied for LWDG methods with
β = γ = 1. Therefore the spatial discretization of LWDG methods with those two types of
numerical fluxes has similar effect on ρN .

5 Numerical Experiments

In this section, we will present a set of numerical experiments, which will verify some of
the theoretical findings in Sects. 3 and 4 and demonstrate the dispersion and dissipation
behavior of the RKDG and LWDG methods with N = 1,2. A simple cosine wave will be
considered in Sect. 5.1, followed by a non-smooth square wave in Sect. 5.2.

5.1 Cosine Wave

We start with the linear advection equation in (3.1) with a smooth initial condition u(x,0) =
cos(4x) and a periodic boundary condition. This simple cosine wave will be simulated by
RKDG methods and LWDG methods up to the final time T on a uniform mesh with m

elements. For LWDG methods, the numerical flux is given by (3.12) with β = 1, γ = 1
2 .

We first take the CFL number to be constant, with ν = 1
3 for RKDG2, ν = 0.2 for

LWDG2, ν = 0.2 for RKDG3, and ν = 0.1 for LWDG3. In Fig. 5, we plot the numeri-
cal solutions of RKDG2 and LWDG2 methods with m = 100 and T = 400π . One can see
that the RKDG2 is more dissipative. The solutions by RKDG3 and LWDG3 methods are
given in Fig. 6 on the same mesh at T = 400π . Apparently, these two third order methods
perform much better than the second order ones. In fact, one would need to zoom in the plot
(see the one on the right in Fig. 6) in order to see the difference among the two numerical
solutions and the exact solution. This zoomed-in plot also shows that the LWDG3 method is

Fig. 5 The exact solution (solid
line), and the numerical solutions
of RKDG2 (dashed line) and
LWDG2 (dash-circle line)
methods, with the initial
condition u(x,0) = cos(4x) and
the final time T = 400π on a
uniform mesh with m = 100
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Fig. 6 The exact solution (solid line), and the numerical solutions of RKDG3 (dashed line) and LWDG3
(dash-circle line) methods, with the initial condition u(x,0) = cos(4x) and the final time T = 400π on a
uniform mesh with m = 100. The zoomed-in plot is given on the right

more dissipative than the RKDG3 method. These qualitative observations are consistent to
our theoretical analysis. What one cannot directly extract from these two figures is the phase
error in the numerical solutions.

Next, we will examine the dissipation and dispersion errors quantitatively and verify the
analytical results in Sect. 3. More specifically, we want to estimate the orders N1 and N2 in
the dispersion error Ωr − K = O(KN1) and the dissipation error Ωi = O(KN2). With the
initial condition u(x,0) = eikx and the numerical solution uh (resp. uH ) computed from a
uniform mesh with the meshsize h (resp. H ), N2 can be obtained based on (3.10) as follows,

N2 = ln(ln |uh|/ ln |uH |)
ln(h/H)

+ 1.

Since we are using 	(u(x,0)) as the initial condition in the simulation, N2 is indeed com-
puted as

N2 = ln(ln(max |uh|)/ ln(max |uH |))
ln(h/H)

+ 1.

To estimate N1, one would need to manually track the phase shift between the numerical
and the exact solutions at time T . Let dh (resp. dH ) denote the phase distance between the
exact and the numerical solutions which are originally at x = 0. Then dh = Ωr,h−kh

h
T , and

N1 = ln(lndh/ lndH )

ln(h/H)
+ 1. (5.1)

Note that we are not taking absolute values of dh and dH in (5.1) due to that both fully
discrete DG methods exhibit phase lead. This has been implied by the analysis in Sect. 3.3
and can also be seen from Table 1 and Table 3. Since we determine dh by counting the
number of involved mesh elements, dh is accurate only up to ±h.

In Table 1, we report the dispersion and dissipation errors and orders of RKDG2 and
LWDG2 based on the numerical solution at time T = 400π . The results confirm the third
order dissipation error and the fourth order dispersion error predicted by our analysis in
Sects. 3.1.1 and 3.2.1. We can also see that RKDG2 is less dispersive (with smaller dh) but
more dissipative (with larger | ln(max |uh|)|. When N = 2, it is difficult to track the phase
distance dh, therefore in Table 2 we only report the dissipation errors and orders of RKDG3
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Table 1 Dispersion and dissipation errors and orders of RKDG2 with ν = 1/3 and LWDG2 with ν = 0.2 at
T = 400π . The initial condition is u(x,0) = cos(4x)

m

RKDG2 LWDG2

dh ln(max |uh|) N1 N2 dh ln(max |uh|) N1 N2

50 49
25 π −5.76E-0 – – 12

5 π −2.03E-0 – –

100 12
25 π −7.25E-1 3.03 3.99 3

5 π −2.61E-1 3.00 3.96

200 3
25 π −9.02E-2 3.00 4.01 3

20 π −3.21E-2 3.00 4.02

400 3
100 π −1.09E-2 3.00 4.05 7

200 π −3.91E-3 3.10 4.04

Exact 0 0 3 4 0 0 3 4

Table 2 Dissipation errors and orders of RKDG3 with ν = 0.2 and LWDG3 with ν = 0.1 at T = 400π . The
initial condition is u(x,0) = cos(4x)

m

RKDG3 LWDG3

ln(max |ũ|) N2 ln(max |ũ|) N2

50 −2.34E-1 – −5.05E-1 –

100 −2.72E-2 4.10 −6.17E-2 4.04

200 −3.34E-3 4.03 −7.66E-3 4.01

400 −4.16E-4 4.01 −9.56E-4 4.00

Exact 0 4 0 4

and LWDG3, which again verify the theoretical results that the dissipation errors are fourth
order for both methods, with LWDG3 being more dissipative.

The results in Tables 1–2 are computed when the CFL number ν is taken to be constant
during the mesh refinement. Now we want to investigate the performance of the methods
when ν = O(Kr), that is, ν depends on the meshsize, with r properly chosen according to
Sect. 3.4. The objective is to numerically verify the super-convergence in the dissipation and
dispersion errors when the contribution of the time discretizations can be negligible.

Due to the difficulty in measuring the phase shift dh for highly accurate methods, we carry
out the simulations to the final time T = 800π on meshes with m = 130,150,170,190. In
Table 3, the dissipation and dispersion errors and orders are presented for RKDG2 with
ν = K and for LWDG2 with ν = K2. Note that the order of the dissipation errors is 4 as
predicted in Sect. 3.4, while the order of dispersion errors oscillates around the theoretical
value 5. The latter is due to the ±h measuring error in dh. Table 4 reports the dissipation
errors and orders of RKDG3 with ν = K and of LWDG3 with ν = K2. They confirms the
super-convergence in dissipation errors, which are of sixth order accurate and are only due
to the spatial discretization.

5.2 Square Wave

In this subsection, we consider the advection equation (3.1) with the following initial con-
dition,

u(x,0) =
{

1, x ∈ [ π
2 , 3π

2 ],
0, x ∈ [0, π

2 ) ∪ ( 3π
2 ,2π], (5.2)
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Table 3 Dispersion and dissipation errors and orders of RKDG2 with ν = K and LWDG2 with ν = K2 at
T = 800π . The initial condition is u(x,0) = cos(4x)

m

RKDG2 LWDG2

dh ln(max |uh|) N1 N2 dh ln(max |uh|) N1 N2

130 12
65 π −9.34E-1 – – 7

65 π −9.43E-1 – –

150 8
75 π −6.23E-1 4.83 3.83 4

75 π −6.25E-1 5.91 3.87

170 1
17 π −4.34E-1 5.76 3.89 3

85 π −4.34E-1 4.30 3.92

190 4
95 π −3.13E-1 4.01 3.93 2

95 π −3.13E-1 5.65 3.94

Exact 0 0 5 4 0 0 5 4

Table 4 Dissipation errors and orders of RKDG3 with ν = K and LWDG3 with ν = K2 at T = 800π . The
initial condition is u(x,0) = cos(4x)

m
RKDG3 LWDG3

ln(max |ũ|) N2 ln(max |ũ|) N2

130 −2.24E-2 – −2.21E-2 –

150 −9.59E-3 6.92 −1.09E-2 5.94

170 −4.61E-3 6.85 −5.87E-3 5.95

190 −2.31E-3 7.20 −3.38E-3 5.96

Exact 0 6 0 6

which can be decomposed into infinite cosine waves

u(x,0) = 1

2
+ 2

π

∞∑

k=0

(−1)k+1 cos[(2k + 1)x]
2k + 1

. (5.3)

The exact solution is a square wave.
In Fig. 7, the numerical solutions of RKDG2 and LWDG2 are plotted against the ex-

act solution at T = 2π . Note that both numerical solutions display oscillations, which are
due to dispersion errors of the methods, especially the different dispersion errors associated
with each individual cosine mode. At this time, one can not tell which method has larger
dispersion error. On the other hand, the magnitude of the oscillation in RKDG2 solutions
is relatively smaller, this indicates that RKDG2 is more dissipative, just as predicted by the
theoretical result in Sect. 3 for a single wave mode.

The analysis in Sect. 3 implies that higher order methods have better dissipation and
dispersion behavior and therefore more accurate results, this can be demonstrated by Fig. 8
which includes the solutions of RKDG3 and LWDG3. Note that these solutions have much
smaller oscillations than the solutions by second order schemes, and the shape is also very
close to the square wave. In order to compare the dissipation behaviors of RKDG3 and
LWDG3, we continue the simulation and plot the solutions after 2.5 × 104 time periods in
Fig. 9. One can easily see that the LWDG3 is more dissipative and this agrees with our
theoretical result in Sect. 3.3. For the simulation in this section, we take the CFL number
ν = 1

3 for RKDG2, ν = 0.2 for LWDG2, ν = 0.2 for RKDG3, and ν = 0.1 for LWDG3.
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Fig. 7 Solutions by RKDG2 (left) and LWDG2 (right), with a square wave initial condition (5.2) and the
final time T = 2π on a uniform mesh with m = 40. The solid line and dash-circle line represent the exact
solution and the numerical solution, respectively

Fig. 8 Solutions by RKDG3 (left) and LWDG3 (right), with a square wave initial condition (5.2) and the
final time T = 2π on a uniform mesh with m = 40. The solid line and dash-circle line represent the exact
solution and the numerical solution, respectively

6 Concluding Remarks

In this paper, the dispersion and dissipation errors are analyzed for discontinuous Galerkin
methods. We focus on fully discrete discontinuous Galerkin methods and their analytical
discrete dispersion relation as a function of the CFL number ν in the limit of K = kh → 0.
With the results, a quantitative comparison is made between Runge-Kutta discontinuous
Galerkin methods (RKDG) and Lax-Wendroff discontinuous Galerkin methods (LWDG).
In particular, for RKDG2 and LWDG2, the dominating error comes from dispersion, and
RKDG2 has smaller dispersion error but larger dissipation error than LWDG2. However,
RKDG3 has better dispersion and dissipation behavior than LWDG3. An alternative disper-
sion analysis, by assuming the wave frequency is given, proves to be advantageous for the
one-step LWDG methods of arbitrary order of accuracy. This approach avoids solving an
eigenvalue problem of a growing size when the accuracy order of the method increases.

By considering the dispersion and dissipation errors with sufficiently small CFL num-
bers, we also find that the DG spatial discretizations contributes to super-convergence in
dissipation and dispersion errors, while the Runge-Kutta or Lax-Wendroff time discretiza-
tions with matching accuracy will reduce or eliminate such super-convergence when the
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Fig. 9 Solutions by RKDG3 (left) and LWDG3 (right), with a square wave initial condition (5.2) and the
final time T = 5 × 104π on a uniform mesh with m = 40. The solid line and dash-circle line represent the
exact solution and the numerical solution, respectively

CFL number is taken to be order one as in common practice. We believe this difference
is due to that DG spatial discretizations are of finite element type, while the temporal dis-
cretizations in both RKDG and LWDG methods are of finite difference type. To avoid or to
reduce the loss of the super-convergence property, one can use ν = O(Kr) with some r > 0.
That is, the CFL number depends on the meshsize and the characteristic wavenumber. Al-
ternatively, when ν is chosen to be O(1), one can employ higher order Runge-Kutta time
discretizations for RKDG methods. In both cases, additional computational cost is needed.
For LWDG methods with ν = O(1), completely different strategies need to be explored in
order to preserve the super-convergence in dissipation and dispersion errors. This is cur-
rently under investigation.

The analysis in this paper is for the simple one dimensional scalar advection equation.
One can also conduct similar dispersion analysis for higher dimensional or systems of wave
equations. Though the actual analysis often depends on the choice of the discrete spaces and
mesh elements, in some cases, it can be essentially one dimensional and scalar. For example,
the dispersion analysis of RKDG methods for higher dimensional scalar advection equation
can be reduced to the study of several one dimensional scalar advection equations, when the
Cartesian mesh is used together with discrete spaces of tensor structure.
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