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1. INTRODUCTION

Photonic-crystal fibers (PCFs) [1–4] offer an
unprecedented control over waveguide dispersion. The
PCF design allows the wavelength of zero group-veloc-
ity dispersion (GVD) to be tuned within a broad spec-
tral range [5], making it possible to directly couple a
Ti:sapphire laser output into solitons in the fiber [6] and
providing phase matching for a broad class of paramet-
ric four-wave mixing processes [7]. Combined with a
high optical nonlinearity, provided by PCFs with very
small cores and high core-cladding index steps [1, 8],
the unique dispersion flexibility of the PCFs enables a
radical enhancement of the nonlinear-optical transfor-
mation for laser fields with broadly varying parameters
from the countinuous-wave radiation [9] to few-cycle
laser pulses [10]. PCF-based supercontinuum radiation
sources [11, 12] and frequency converters [7] are
widely employed in optical metrology [13–16], show a
tremendous potential for improving the performance of
optical coherence tomographs [17], as well as nonlinear
spectrographs [18, 19] and microscopes [20–22] based
on coherent anti-Stokes Raman scattering (CARS).
Such fiber components serve as an ultrafast flash in
time-resolved spectroscopy [23] and expand the appli-
cability range of femtosecond laser sources to photo-
chemistry and photobiology [8]. In advanced laser
sources of few-cycle light pulses, PCFs are widely
employed nowadays to control the carrier–envelope
phase (CEP) of few-cycle field waveforms [13, 24],
enabling the generation of isolated attosecond pulses
[25], leading to the development of new methods of
spectroscopy with attosecond time resolution [26], and
facilitating the creation of extreme-intensity laser sys-

tems [27] and frequency comb synthesizers for high-
precision measurements [28].

In laser technologies, the tailored dispersion of
PCFs helps to balance the group delay inside fiber
oscillators [29–34], as well as to amplify [35], spec-
trally broaden [36], and compress [36, 37] high-peak-
power laser output. An all-fiber chirped-pulse amplifi-
cation system based on compression in an air-guiding
photonic band-gap fiber has been demonstrated by
Limpert et al. [37]. As shown by de Matos et al. [38],
hollow-core PCFs allow the creation of all-fiber pulse
compressors for high-peak-power pulses within a broad
range of wavelengths.

Photonic-crystal fibers also contributed to the power
scaling using fiber lasers. Since the precision of the tai-
loring PCF waveguide parameters during fiber fabrica-
tion exceeds that of conventional index-guiding fibers,
a very large core single-mode PCF supporting a single
mode (with 

 

V

 

 < 

 

π

 

) can be fabricated [37]. Such PCFs
complement the existing fiber laser technologies [38,
39]. Large mode-area PCF components [40, 41] have
been shown to allow the creation of high-power fiber
lasers [42, 43], the amplification of a short-pulse fiber
laser output [35], the compression of submegawatt,
subpicosecond laser pulses [36], and the efficient
supercontinuum generation for high-energy nanosec-
ond [44] and femtosecond [45] laser pulses.

The accurate design of a PCF dispersion profile for
the precise dispersion compensation through fiber
structure engineering is key to optimizing the perfor-
mance of fiber laser sources of ultrashort light pulses.
Here, we show that, for a broad class of fiber laser oscil-
lator–amplifier systems involving pulse stretching,
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chirped-pulse amplification, and pulse compression,
the nonlinear phase shift can partially compensate for
the fourth-order dispersion. We also propose a conve-
niently formalized algorithm for the design of the PCF
dispersion in fiber laser systems allowing the dispersion
of a stretcher–compressor system to be compensated to
the fourth order by using a sequence of only two
fibers—a standard passive fiber and a PCF with a care-
fully designed dispersion profile. We present examples
of the pulse evolution in such stretcher–compressor
systems demonstrating the performance of optimized
PCF-based stretchers in fiber oscillator–amplifier
sources of ultrashort high-peak-power light pulses.

2. DESIGN RULE FOR A COMPOSITE FIBER 
PULSE STRETCHER

We consider a generic fiber laser system consisting
of a fiber oscillator, stretcher, amplifier, and a compres-
sor. The group delay introduced by the compressor

 

G

 

c

 

(

 

ω

 

) is represented as a Taylor series about the central
frequency 

 

ω

 

0

 

:

(1)

where 

 

ϕ

 

c

 

 is the phase shift introduced by the compres-
sor and 

 

θ

 

k

 

 = (
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k

 

ϕ

 

c

 

/
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ω

 

k

 

.

The stretcher should then be designed in such a way
so as to precompensate for group delay (1) within the
required range of frequencies 

 

ω

 

. Mathematically, this
condition implies that the group delay introduced by
the stretcher 

 

G

 

s

 

(

 

ω

 

) should reproduce the frequency pro-
file of –

 

G

 

c

 

(

 

ω

 

) with minimum deviations within the con-
sidered frequency interval.

A stretcher that consists of a sequence of 

 

M

 

 fibers
supporting guided modes with propagation constants
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 = 1, 2, …, 

 

M

 

, gives rise to the group delay
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where 
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) is the group delay introduced by the 
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th
fiber and 
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 is the length of the 
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th fiber.

The expansion of 
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It can be seen from Eqs. (1)–(3) that, to compensate
for the stretcher–compressor dispersion up to the 

 

q

 

th-
order terms in the absence of nonlinear phase shifts, the
stretcher should be designed in such a way so as to meet
the following set of 

 

q

 

 – 1 linear equations:

(4)

where 

 

p

 

 = 2, 3, …, 

 

q

 

. Equation (4) constitutes the first
step in our iterative procedure, indicated by subscript
(1). At this step, we consider a purely linear regime of
pulse stretching. Nonlinear phase shifts will be
included through the next iterations of our procedure.

With 

 

M = q – 1, the number of unknowns in set (4)
is equal to the number of equations. In this case, set (4)
can be easily resolved with respect to the lengths of

fibers  in the stretcher unless the determinant of the

M × M matrix  is zero. The solution is given by

(5)

where

(6)

is the determinant of the  matrix and

(7)

is the determinant of the matrix obtained from  by
replacing the ith column by the column composed of
the free terms –θp in set of Eqs. (4).

Although, formally, Eqs. (4) can be resolved with

respect to  whenever M = q – 1 and Γ ≠ 0, the solu-
tion of Eqs. (4) corresponds to the fiber lengths in a

stretcher only when  ≥ 0 for all m. We will now show
that, in practice, this latter condition is often hard to sat-
isfy using only standard optical fibers.

3. PHOTONIC-CRYSTAL FIBERS
AS COMPONENTS OF COMPOSITE PULSE 

STRETCHERS

Consider a laser system that includes a pulse com-
pressor inducing a group delay with θ2 < 0, θ3 > 0, and
θ4 < 0. This type of a group-delay profile is provided,
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for example, by a standard grism compressor designed
to operate with an ytterbium fiber laser output. The
group-delay profile of a typical grism compressor pre-
sented in Fig. 1 corresponds to θ2 ≈ –12.45 ps2, θ3 ≈
6.98 × 10–2 ps3, and θ4 ≈ –6.2 × 10–4 ps4 at the central
wavelength λ0 = 1050 nm. To compensate for such a
group delay up to the third-order dispersion terms (q =
3), we reduce set (4) to two equations, p = 2, 3, keeping
to the terms in each of the equations, M = 2. Solution

(5) then yields  = Γ1, 2 /Γ. To compensate for the
group delay of the grism compressor, the overall GVD
of the stretcher consisting of two fibers must be normal,
which can be easily achieved at λ0 = 1050 nm with stan-
dard optical fibers. For this type of fibers, however, the
β3m parameter is usually also positive (see the inset in
Fig. 1). Since parameters βpm are positive for p = 2, 3

and m = 1, 2), the product  = Γ1Γ2Γ–2 is always
negative for the considered class of group-delay profile
with θ2 < 0 and θ3 > 0. The group delay introduced by
such a grism is thus difficult or impossible to precom-
pensate with the use of standard optical fibers.

Dispersion profiles suitable for an accurate precom-
pensation of the grism group delay can be designed by
using photonic-crystal fiber technologies. These tech-
nologies, as highlighted in an earlier work, allow the
dispersion profiles unattainable with standard fibers to
be engineered. Here, we consider a silica–air PCF con-
sisting of a solid core and a microstructure cladding
with a large ratio of the diameter of air holes d to the
pitch of the microstructure cladding Λ (see the inset in
Fig. 2). To analyze the properties of the modes sup-
ported by such a waveguide structure, we employed a
modification of the fully vectorial localized-function
procedure [46, 47], solving the vectorial wave equa-

l1 2,
1( )

l1
1( )

l2
1( )
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Fig. 1. Group-delay (solid line) and group-delay disper-
sion (dashed line) profiles of a typical grism compressor.
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Fig. 2. Spectral profiles of the group-velocity dispersion D
(a), (b) and the third-order dispersion parameter β3 (c) as a
function of the wavelength for a photonic-crystal fiber with
a cross-section structure shown in the inset: (a) the pitch of
the microstructure cladding Λ varies from 0.77 to 0.80 µm
with d/Λ = 0.996; (b) and (c) Λ = 0.78 µm and the d/Λ ratio
varies from 0.880 to 0.996.
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tions for the electromagnetic field. The two-dimen-
sional profile of the refractive index is approximated
with a series expansion in the Hermite–Gaussian poly-
nomials and trigonometric functions. Transverse com-
ponents of the electromagnetic field are represented as
series expansions in Hermite–Gaussian polynomials.
The substitution of these series expansions for the field
and refractive index into the wave equations for trans-
verse field components reduces the problem to a matrix
equation eigenfunction and eigenvalue problem, allow-
ing the propagation constants and transverse field pro-
files to be determined for the PCF modes.

For sufficiently small Λ, corresponding to a small-
size fiber core, the dispersion parameter β2 = ∂2β/∂ω2

(and the related group-velocity dispersion parameter
D = –2πcλ–2β2) of such a fiber passes through zero
twice [48]. For a PCF with an extreme value of d/Λ =
0.996, the second long-wavelength zero-GVD point λz

can be tuned from approximately 970 to 1035 nm by
varying the pitch of the cladding Λ from 0.77 to
0.80 µm (Fig. 2a). For wavelengths longer than λz, the
considered type of PCF provides the regime of normal
dispersion (β2 > 0, D < 0) with β3 = ∂3β/∂ω3 < 0, as
required for the precompensation of the grism group
delay. As illustrated by the results of the calculations
presented in Figs. 2b and 2c, both the β2 and β3 param-
eters can be adjusted for the optimal compensation of
the target group delay by varying the d/Λ ratio.

4. NUMERICAL MODEL FOR PULSE-
STRETCHING DYNAMICS

We now proceed with a numerical analysis of the
spectral and temporal evolution of a laser pulse in a
stretcher consisting of a sequence of optical fibers. Our
numerical procedure is based on the solution of the gen-
eralized nonlinear Schrödinger equation [49, 50] for the
field envelope A = A(z, t):

(8)

where z is the propagation coordinate, t is the time vari-
able, τ is the retarded time, α(k) = Im[∂kβ/∂ωk] accounts
for the fiber loss, and β(k) = Re[∂kβ/∂ωk] are the coeffi-
cients in the Taylor-series expansion of the propagation
constant β. The nonlinear polarization Pnl(ξ, τ) in
Eq. (8) is defined as

(9)

where n2 is the nonlinear refractive index of the fiber
material, ω is the current frequency, ω0 is the central
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is the frequency-dependent effective mode area, and the

operator (•) denotes the inverse Fourier transform,

[ f(x)] = (2π)–1/2 exp(ixy)dx, [ f(x)] =

(2π)–1/2 exp(–ixy)dx, and { [ f(x)]} = f(x).

The frequency-domain nonlinear polarization in Eq. (9)
is defined through the direct Fourier transform

(11)

including both the instantaneous, Kerr nonlinearity, and
the retarded Raman contribution via the nonlinear
response function

where fR is the fractional contribution of the Raman
response; δ(t) and Θ(t) are the delta and the Heaviside
step functions, respectively; and τ1 and τ2 are the char-
acteristic times of the Raman response of the fiber
material. For fused silica, fR = 0.18, τ1 = 12.5 fs, and
τ2 = 32 fs.

The nonlinear polarization Pnl(ξ, τ) defined in the
form of Eq. (9) not only helps to include the influence
of the frequency-dependent effective mode area Seff on
the nonlinear coefficient γ = (n2ω)/(cSeff), but also
yields the correct definition of the local field intensity
[51], which also depends on Seff(ω).

5. A TWO-STAGE FIBER-PULSE STRETCHER

We consider a two-stage stretcher consisting of a
sequence of two optical fibers. For the first stage, we use
a standard fiber with the parameters typical of an HI1060
fiber: D = –45 ps/(nm km) and β31 = 2 × 10–4 ps3/m at
λ0 = 1050 nm. The effective mode area for this fiber at
λ0 is S1eff ≈ 30.2 µm2, corresponding to the nonlinear
coefficient γ1 ≈ 6.3 W–1 km–1. The photonic-crystal fiber
with Λ = 0.78 µm and d/Λ = 0.94 is employed as the
second stage of our stretcher. The dispersion properties
of this fiber (see Figs. 2b, 2c) at λ0 = 1050 nm are char-
acterized by the parameters β22 = 4.56 × 10–2 ps2/m,
β32 = –5.58 × 10–4 ps3/m, and β42 = 1.98 × 10–6 ps4/m.
The fourth-order dispersion of the first fiber is assumed
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to be negligible with respect to the fourth-order disper-
sion of the PCF β41 � β42. This assumption reflects the
realistic relation between the dispersion parameters of
the standard and photonic-crystal fibers considered in
this work. The effective mode area for the fundamental
mode of PCF at λ0 is S2eff ≈ 0.57 µm2, corresponding to
a very high nonlinearity of γ2 ≈ 330 W–1 km–1. We also
include a loss of 100 dB/km to account for inevitable
limitations of fiber technologies when applied to the
fabrication of fibers with such a small core.

Since the second fiber possesses a very high nonlin-
earity, as a penalty for the unusual dispersion profile,
which is required for the accurate dispersion compen-
sation, the key function of the first fiber is to stretch the
pulse before it enters the highly nonlinear PCF in order
to reduce the nonlinear phase shift in the second fiber.
We will include the nonlinear effects iteratively show-
ing that the nonlinear phase shift can partially balance
the fourth-order dispersion of the fiber stretcher.

To demonstrate the convergence of the proposed
stretcher design algorithm to a target dispersion profile,
we examine the propagation dynamics for laser pulses
with two representative sets of input parameters. Input
pulses of the first type will have the pulse width τp1 =
200 fs and the input pulse energy W1 = 400 pJ. For input
pulses of the second type, we set τp2 = 100 fs and W2 =
50 pJ. Such a comparative analysis will show that, for
shorter input pulses, the stretcher design becomes pro-
gressively more difficult requiring a larger number of
iterations. In accordance with Eq. (5), the fiber lengths

are chosen equal to  ≈ 169.6 m and  ≈ 159.1 m
in the first iteration of our procedure. To compensate for
the loss in the PCF, we include an amplification with a
gain of 0.5 dB/m within the first 15 m of the first fiber
for the input pulses of the first type and a gain of
1.47 dB/m within the first 10 m of the first fiber for the
input pulses of the second type.

Figures 3a and 3b display the spectra of laser pulses
of the first and second type after the amplification in the
initial section of the first fiber (solid line), at the output
of the first fiber (dashed line) and at the output of the
PCF (dash–dotted line). The energy of the laser pulses
after the amplification segment is 2.24 and 1.48 nJ for
the first and second types of input pulses, respectively.
At the output of the stretcher, the energies of the first
and second types of laser pulses are approximately 50.0
and 31.5 pJ, respectively. As can be seen from the time-
domain dynamics of pulse stretching (Figs. 4a, 4b), the
first fiber stretches the input pulse up to hundreds of
picoseconds (field snapshots at 169.6 m), reducing the
nonlinear effects in the highly nonlinear PCF employed
for the second stage of the pulse stretcher. As a result,
the propagation through the PCF is accompanied by
virtually no changes in the spectrum of the light pulse
(Figs. 3a, 3b).

l1
1( )

l2
1( )

6. NONLINEAR PHASE SHIFT IN A COMPOSITE 
FIBER PULSE STRETCHER

Within the initial section of the pulse stretcher,
where the pulse width is still short and the pulse peak
power is high, the laser field acquires a nonlinear phase
shift. Although this phase shift is sensitive to the param-
eters of the input laser pulse, the analysis presented
below in this section helps to identify significant gen-
eral tendencies in the modification of the spectral phase
due to nonlinear effects and to propose a generic strat-
egy for a partial compensation of the resulting pulse
distortions. The nonlinear spectral phase Φ(1) originat-
ing from the nonlinear spectral shift and the related
nonlinear group delay Θ(1) = ∂Φ(1)/∂ω for the first and
second types of input laser pulses considered here are

Fig. 3. The spectral evolution of laser pulses in the fiber
stretcher after amplification in the initial section of the first
fiber (solid line), at the output of the first fiber (dashed line),
and at the output of the PCF (dash–dotted line). The input
pulse width is (a) 200 and (b) 100 fs. The input energy is
(a) 400 and (b) 50 pJ. All of the spectra are normalized to
their peak values. The filled circles show the spectrum of the
input pulse.
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shown in Figs. 5a and 5b. The group-delay dispersion

 = ∂2Φ( j)/∂ω2 induced by the optical nonlinearity at
the first step of our iterative procedure can be approxi-
mated by a Taylor-series expansion about the central
wavelength of 1050 nm:

(12)

where  = (∂kΦ(1)/∂ωk .

For the first and second types of input laser pulses,

the spectral profiles of  and  = ∂3Φ(1)/∂ω3 are
presented in Figs. 6a and 6b. At λ0 = 1050 nm, we find
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2.93 × 10–4 ps4 for the input pulses of the first type and

 ≈ –0.206 ps2,  ≈ –2.86 × 10–3 ps3, and  ≈
3.90 × 10–4 ps4 for the input pulses of the second type.

In the first iteration of our procedure, described by
Eqs. (4)–(7), nonlinear effects give rise to uncompen-
sated phase shifts, which translate into the residual

group delay ∆(1)(ω) = (ω) + Θ(1)(ω) – Gc(ω) of the
stretcher–compressor system, distorting light pulses at
the output of the pulse compressor. This uncompen-
sated group delay can be represented as a Taylor-series
expansion about ω0:
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Fig. 4. Time-domain evolution of laser pulses in the fiber
stretcher after amplification in the initial section of the first
fiber (15 m), at the output of the first fiber (169.6 m), at a
distance of 250 m from the input of the stretcher, and at the
output of the stretcher (328.66 m). The input pulse width is
(a) 200 and (b) 100 fs. The input energy is (a) 400 and
(b) 50 pJ.
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Here, at λ0 = 1050 nm,  ≈ ,  ≈ , and

 ≈ θ4 +  + .

The key result of the first-iteration analysis is that
the nonlinear phase shift can partially compensate for
the fourth-order fiber dispersion. In the case considered

here, we find  ≈ 3.0 × 10–6 ps4, which is two orders

of magnitude less than  ≈ 3.90 × 10–4 ps4. This
important finding allows the desired dispersion profile
of a fiber stretcher to be designed with an accuracy up
to the fourth-order dispersion terms using a sequence of
only two optical fibers, as in the example considered
throughout this paper.

7. AN ITERATIVE DESIGN OF A FIBER 
STRETCHER DISPERSION PROFILE

To minimize the residual group delay originating
from nonlinear phase shifts, we include the nonlinear
effects into the stretcher design rule at the second step
of our iterative procedure. To this end, we represent the

group-delay dispersion  = ∂2Φ( j)/∂ω2 induced by
the optical nonlinearity at the jth step of our iterative
procedure as a Taylor-series expansion about the cen-
tral wavelength of 1050 nm:

(14)

where  = (∂kΦ( j)/∂ωk  and j stands for the number
of iteration steps.

At the second step of our iteration procedure, the

fiber lengths  are found from the set of equations

(15)

The solution of Eq. (15) with p = 2, 3 and m = 1, 2

yields  ≈ 165.6 m and  ≈ 167.3 m for the input

pulses of the first type and  ≈ 165.8 m and  ≈
167.5 m for the input pulses of the second type. In this

iteration ( j = 2), parameters  in the Taylor-series
expansion of the nonlinearity-induced group-delay dis-
persion [Eq. (14)] about λ0 = 1050 nm are defined as

 ≈ –0.186 ps2,  ≈ –2.75 × 10–3 ps3, and  ≈
2.88 × 10–4 ps4 for the input pulses of the first type and

 ≈ –0.20 ps2,  ≈ –2.68 × 10–3 ps3, and  ≈
3.83 × 10–4 ps4 for the input pulses of the second type.
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An uncompensated stretcher–compressor group
delay at the jth step of our iteration procedure is repre-
sented as
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Here, the coefficients  are given by
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Fig. 6. Spectral profiles of parameters  (curve 1) and

 (curve 2) for a laser pulse transmitted through the
fiber stretcher. The input pulse width is (a) 200 and
(b) 100 fs. The input energy is (a) 400 and (b) 50 pJ.
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At the second stage of our iteration procedure ( j = 2),

we find  ≈ 5.3 × 10–3 ps2,  ≈ 1.7 × 10–4 ps3,

and  ≈ –1.3 × 10–6 ps4 for the input pulses of the

first type and  ≈ 6.0 × 10–3 ps2,  ≈ 1.8 ×

10−4 ps3, and  ≈ 1.1 × 10–4 ps4 for the second-type
input pulses.

The second iteration thus improves the compensa-
tion of the second- and third-order dispersion in the
stretcher–compressor system by more than an order of
magnitude. Indeed, introducing the ratio ρk =

 to quantify the improvement in the sec-
ond- and third-order dispersion compensation (k = 2, 3)
by the second iteration in our procedure, we find ρ2 ≈
0.028 and ρ3 ≈ 0.058 for the input pulses of the first type
and ρ2 ≈ 0.03 and ρ3 ≈ 0.063 for the input pulses of the
second type.

We now continue our iterative procedure by includ-

ing the coefficients  from the jth iteration into the

equations for the fiber lengths  to adjust the fiber
lengths for the best compensation of the second- and
third-order dispersion:

(20)

where p = 2, 3, …, q + 1, with q being the maximum
order of dispersion to be compensated. The solution to
Eq. (20) is given by

(21)

where

(22)

is the determinant of the matrix obtained from  by
replacing the ith column by the column composed of

the free terms –θp –  in set of Eqs. (20).

To compensate for the stretcher–compressor disper-
sion up to the third order (q = 3), we set p = 2, 3 and
M = 2 as before. Solution (21) then reduces to

(23)
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After the third iteration ( j = 3), we have  ≈

1.0 × 10–5 ps2,  ≈ –8.0 × 10–6 ps3, and  ≈
2.0 × 10–7 ps4 for the input pulses of the first type and

 ≈ 1.5 × 10–4 ps2,  ≈ –1.0 × 10–5 ps3, and

 ≈ 1.1 × 10–4 ps4 for the second-type input pulses.
This gives a nearly perfect stretcher–compressor
group-delay compensation for the input pulses of the
first type (Fig. 7a). For the second-type input pulses, a
noticeable improvement in the stretcher–compressor
dispersion compensation can be achieved by the fourth

iteration (Fig. 7b), yielding  ≈ 4.0 × 10–5 ps2,

 ≈ –5.0 × 10–6 ps3, and  ≈ 1.1 × 10–4 ps4.

8. SHORT LASER PULSES IN OPTIMIZED 
STRETCHER–COMPRESSOR SYSTEMS

Due to the optical nonlinearity of the pulse stretcher,
the spectrum of a laser pulse at the output of the
stretcher–compressor system is noticeably broader than
the spectrum of the input pulse (Figs. 4a, 4b). The joint
action of the third-order dispersion and fiber nonlinear-
ity gives rise to a slight asymmetry of the output spec-
trum. In the time domain, the unbalanced dispersion of
the stretcher–compressor system and nonlinear effects
generally distort the output pulse. However, the pro-
posed strategy of the fiber stretcher design allows these
distortions to be minimized through a careful optimiza-
tion of the structure of the PCF used at the second stage
of the stretcher and the proper choice of the fiber
lengths.

As shown in Fig. 8, each iteration of the above-
described procedure reduces the pulse distortions at the
output of a stretcher–compressor system. For input
pulses of the first type (Fig. 8a), a fiber stretcher opti-
mized through a three-step iteration process permits the
generation of a nearly Gaussian pulse at the output of
the grism compressor. Due to the nonlinearity-induced
spectral broadening of the laser pulse in the stretcher,
the temporal width of the output pulse in this case
(about 80 fs) is substantially shorter than the input pulse
width (200 fs). Because of the losses in the PCF, the
peak power of the output pulse in Fig. 8a is approxi-
mately three times lower than the peak power of the
input pulse. For input pulses of the second type
(Fig. 8b), the stretcher optimization enables the forma-
tion of a compressor output with a low-energy pedestal
with most of the field energy concentrated within the
central peak, whose duration is approximately equal to
the pulse width of the input pulse. The peak power of
the output pulse is approximately two times lower than
the peak power of the input pulse.
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While we mainly focused in this work on the pro-
cesses that are of critical importance for the design of a
PCF-based stretcher for a fiber laser system, we expect
that the design rules for the overall oscillator–stretcher–
amplifier–compressor system should be sensitive to
such additional factors as optical nonlinearities and
gain spectral effects in the fiber amplifier chain, as well
as the PCF fabrication tolerances. In particular, with
light pulses amplified to maximum attainable levels,
the additional self-phase modulation on top of the
chirped pulses may give rise to additional effective dis-
persion orders, which may require additional iterations
in the stretcher optimization procedure. The role of the
gain spectral effects in the fiber amplifier chain is two-
fold. On the one hand, gain narrowing in the amplifier
stage may impose an additional limitation on the output
pulse width. On the other hand, due to this spectral nar-

rowing before the final compression stage, some of the
nonlinear phase compensation considered above might
not be needed. Finally, the methods of compensating
for inaccuracies in the PCF fabrication include varia-
tions in the fiber lengths, input pulse parameters, and
adjustment of the grism compressor.

9. CONCLUSIONS

The analysis presented in this work shows that PCFs
with a specifically designed dispersion profile and non-
linearity allow an accurate broadband compensation of
the group delay originating from the functional compo-
nents in fiber oscillator–amplifier sources of high-peak-
power ultrashort light pulses involving pulse stretching,
chirped-pulse amplification, and pulse compression.
We show that, for a broad class of such systems, the
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nonlinear phase shift can partially compensate for the
fourth-order dispersion in a carefully optimized
sequence of fibers. The developed algorithm for the
design of PCF-based stretcher–compressor systems
allows the group delay of a pulse compressor to be
compensated to the fourth order by using a sequence of
only two fibers—a standard passive fiber and a PCF.
Examples of short-pulse dynamics in stretcher–com-
pressor systems presented in this work demonstrate the
performance of optimized PCF-based stretchers for the
generation of high-peak-power femtosecond light
pulses.
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