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Franson’s paradigm for nonlocal dispersion cancellation [J. D. Franson, Phys. Rev. A 45, 3126 (1992)] is studied
using two kinds of jointly Gaussian-state signal and reference beams with phase-sensitive cross correlations. The
first joint signal-reference state is nonclassical, with a phase-sensitive cross correlation that is at the ultimate
quantum-mechanical limit. It models the outputs obtained from continuous-wave spontaneous parametric down-
conversion. The second joint signal-reference state is classical—it has a proper P representation—with a phase-
sensitive cross correlation that is at the limit set by classical physics. Using these states we show that a version
of Franson’s nonlocal dispersion cancellation configuration has essentially identical quantum and classical
explanations except for the contrast obtained, which is much higher in the quantum case than it is in the classical
case. This work bears on Franson’s recent article [J. D. Franson, Phys. Rev. A 80, 032119 (2009)], which asserts
that there is no classical explanation for all the features seen in quantum nonlocal dispersion cancellation.
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I. INTRODUCTION

Nonlinear interactions in χ (2) materials have long been used
to produce nonclassical light, including optical parametric
amplifier sources of squeezed states [1], optical parametric
oscillator sources of photon twin beams [2], and spontaneous
parametric down-conversion sources of polarization-entangled
photon pairs [3]. Whereas Gaussian-state quadrature statis-
tics are invariably employed to understand the behavior of
squeezed states and photon twin beams, the biphoton state
is commonly used to describe down-converter experiments
that employ coincidence counting and postselection. Yet, as
shown in Refs. [4–6], there is a unified Gaussian-state analysis
capable of treating all of these nonclassical phenomena and
more, e.g., the dispersion cancellation experiment of Steinberg
et al. [7] and the ghost imaging experiment of Pittman et al. [8],
both of which relied on biphoton explanations. Recently, Fran-
son [9] has argued that his dispersion cancellation paradigm
[10] differs from that of Steinberg et al. in that the former
is nonlocal, whereas the latter is not. More importantly, in
Ref. [9] Franson reviews various classical strawmen that have
been suggested as providing explanations for his nonlocal
dispersion cancellation and shows that each of them fails
to reproduce one or more of the major features of quantum
nonlocal dispersion cancellation. Hence, he concludes that
nonlocal dispersion cancellation is a fundamentally quantum
effect akin to violation of Bell’s inequality.

The list of classical strawmen that Franson considers
does not include the classical Gaussian state that most
closely resembles the nonclassical Gaussian state emitted by a
continuous-wave down-converter. In this article that omission
is rectified, and it is shown that the key feature of nonclassical-
state dispersion cancellation that is not reproduced by this
classical counterpart is the high-contrast nature of the pho-
tocurrent cross-correlation pattern. This result is in keeping
with what we have previously established [4] for the Steinberg
et al. experiment and for a similar comparison between
classical-state and nonclassical-state ghost imaging [6]. In
essence, we will see that the dispersion cancellation from
Ref. [10] is a consequence of classical-physics propagation
of the phase-sensitive cross correlation between the signal

and reference beams through the dispersive elements, but the
observability of the effect is greatly enhanced by the use of
nonclassical light.

The rest of the article is organized as follows. In Sec. II
we describe the measurement configuration to be analyzed.
In Sec. III we derive the ensemble-average photocurrent
cross correlation for the Sec. II apparatus when its signal
and reference beams are in a zero-mean, continuous-wave,
jointly Gaussian state whose baseband field operators have
phase-insensitive autocorrelations and a phase-sensitive cross
correlation but no phase-sensitive autocorrelations or phase-
insensitive cross correlation. Depending on the strength of
the phase-sensitive cross correlation in comparison with the
phase-insensitive autocorrelations, this state could be classical,
i.e., a classically random mixture of coherent states for which
the joint density operator has a proper P representation
and semiclassical photodetection may be employed [11].
Alternatively, it could be a nonclassical state, for which no
proper P representation exists and quantum photodetection
is required to properly analyze the measurement statistics
[6]. Thus, in Sec. IV, we exhibit the consequences of this
dichotomy by evaluating our photocurrent cross correlation
from Sec. III when the joint state of the input beams either
has a phase-sensitive cross correlation that is at the ultimate
quantum limit or that cross correlation saturates the tighter
bound associated with classical physics. Here we shall see that
dispersion cancellation occurs with both the nonclassical and
classical states, but their contrasts differ dramatically. In Sec. V
we close with some concluding discussion, which includes
connecting our Gaussian-state analysis to the more frequently
employed biphoton treatment of dispersion cancellation.

II. MEASUREMENT CONFIGURATION

Consider the version of Franson’s nonlocal dispersion
cancellation experiment shown in Fig. 1. Here, signal and
reference beams propagate through dispersive elements whose
dispersion coefficients are equal in magnitude but opposite
in sign. The fields emerging from the dispersive elements
illuminate a pair of photodetectors whose photocurrents will
be cross correlated to test for dispersion cancellation. In
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FIG. 1. (Color online) Configuration for Franson’s nonlocal dis-
persion cancellation. The light source produces signal and reference
fields with a common center frequency ω0 and baseband field
operators ÊS(t) and ÊR(t), respectively. The joint signal-reference
state has a nonzero phase-sensitive cross correlation. These fields
pass through linear, time-invariant, dispersive filters—with baseband
impulse responses hS(t) and hR(t)—after which they are photode-
tected. The resulting photocurrents, iS(t) and iR(t), are subsequently
cross correlated (in apparatus that is not shown) to seek a signature
for nonlocal dispersion cancellation.

particular, the signature of dispersion cancellation is that this
photocurrent cross correlation has a peak whose width is the
same with or without the presence of the dispersive elements
in the signal and reference paths. Note that Franson considers a
Fig. 1 arrangement with the source emitting a biphoton whose
signal and reference components are maximally entangled
in frequency such that one red detunes when the other blue
detunes from frequency degeneracy, i.e., the twin-beam (|TB〉)
state from Ref. [12]. Also, he assumes that the measurement
which is made on the light emerging from the dispersive filters
is photon-coincidence counting. We shall consider continuous-
wave Gaussian-state sources—including spontaneous para-
metric down-conversion (SPDC)—and a photocurrent cross-
correlation measurement. At first blush it might appear that
our treatment does not include Franson’s case. However, we
shall see later that the low-flux, low-gain limit of an SPDC
source’s output state consists of a predominant vacuum-state
term plus a weak |TB〉-state component. Furthermore, as also
will be seen below, the low-flux limit of our photocurrent cross-
correlation measurement is equivalent to photon-coincidence
counting. Thus the Fig. 1 arrangement does permit meaningful
comparison with Franson’s work.

For simplicity, we will suppress the spatial and polar-
ization characteristics of the signal and reference beams,
treating them as time-dependent, scalar, positive-frequency,√

photons/s-units field operators, ÊS(t)e−iω0t and ÊR(t)e−iω0t ,
respectively [13], with a common center frequency ω0 and the
usual δ-function commutator brackets for their baseband field
operators, [

Êin
J (t), Êin

K (u)
] = 0 (1)[

Êin
J (t), Êin†

K (u)
] = δJKδ(t − u), (2)

for J = S or R and K = S or R. The baseband field operators
that these inputs produce at the output of the dispersive
elements are then

Êout
J (t) =

∫
duÊin

J (u)hJ (t − u), for J = S or R, (3)

where

hJ (t) =
∫

dω

2π
HJ (ω)eiωt , (4)

gives the baseband impulse response of the dispersive element
in the signal (J = S) or reference (J = R) path in terms of its
associated frequency response

HJ (ω) = eiω0τp e−i(ωτg+ω2βJ ), (5)

with τp and τg being its phase and group delays and βJ

its dispersion coefficient [14]. In keeping with the usual
construct for nonlocal dispersion cancellation, we assume
that βS = −βR = β �= 0. Because the dispersive filters are
lossless, commutator-bracket preservation is ensured without
the need for additional quantum noise, viz., we have that[

Êout
J (t), Êout

K (u)
] = 0 (6)[

Êout
J (t), Êout†

K (u)
] = δJKδ(t − u), (7)

for J = S or R and K = S or R.
The photodetectors in Fig. 1 produce classical photocur-

rents, iJ (t) for J = S or R, whose measurement statistics are
equivalent to those of the photocurrent operators,

îJ (t) ≡ q

∫
duÊ

′†
J (u)Ê′

J (u)g(t − u), for J = S or R, (8)

where q is the electron charge,

Ê′
J (t) ≡ √

ηÊout
J (t) +

√
1 − ηÊηJ

(t), (9)

with the {ÊηJ
(t)} being baseband field operators that are in

their vacuum states, and 0 < η � 1 is the detector quantum
efficiency [15]. The real-valued function g(t) is the pho-
todetectors’ baseband impulse response, which obeys the
normalization condition∫

dt g(t) = 1. (10)

The photocurrents from the two photodetectors are pro-
cessed in a time-average cross correlator to yield an estimate
of the ensemble-average cross correlation

C(τ ) ≡ 〈îS(t + τ )îR(t)〉, (11)

where our notation anticipates the fact that the joint signal-
reference states we shall consider will lead to a cross-
correlation function that only depends on the time difference
between the photocurrent time samples. Also, for the purposes
of this article, it suffices to focus on the ensemble average
behavior, because the dispersion cancellation effect we are
seeking presents its signature there. Note that the classical
photocurrents {iJ (t)} associated with measurement of the
{îJ (t)} take the form

iJ (t) = q
∑

n

g(t − tJn
), (12)
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where the {tJn
} are the times at which the signal (J = S)

or the reference (J = R) detector emits a charge carrier in
response to its illumination. When the joint signal-reference
field state has sufficiently low photon flux in each beam, the
preceding photocurrents will consist of nonoverlapping pulses
representing individual photon detections, i.e., operation is in
the photon counting regime. Using

g(t) =
{

1/Tg, for 0 � t � Tg ,

0, otherwise
(13)

in this low-flux limit then leads to

C(τ ) = (q/Tg)2Nc(τ ; Tg), (14)

where Nc(τ ; Tg) is the average number of detected signal-
reference photon coincidences in Tg-s-long detection intervals
that are offset by τ s. Thus, as promised earlier, our analysis
includes Franson’s photon-coincidence counting measurement
when we constrain our sources to operate within the low-flux
regime.

III. PHOTOCURRENT CROSS CORRELATION FOR
GAUSSIAN INPUTS

In all that follows we shall restrict our attention to cases
in which the joint signal-reference state produced by the
source block in Fig. 1 is a zero-mean, continuous-wave,
jointly Gaussian state that is completely characterized by the
following nonzero correlation functions [16]: their normally
ordered (phase-insensitive) autocorrelation functions,

K
in(n)
JJ (τ ) ≡ 〈

Ê
in†
J (t + τ )Êin

J (t)
〉
, for J = S or R, (15)

and their phase-sensitive cross-correlation function,

K
in(p)
SR (τ ) ≡ 〈

Êin
S (t + τ )Êin

R (t)
〉
. (16)

These stationary correlation functions have associated spectra
[17] given by

S in(n)
JJ (ω) ≡

∫
dτK

in(n)
JJ (τ )eiωτ , (17)

and

S in(p)
SR (ω) ≡

∫
dτK

in(p)
SR (τ )eiωτ , (18)

which will be of use in determining the correlations of the
output field operators. As shown in Ref. [18], proper choice of
the preceding correlation functions yields the correct quantum
statistics for single-spatial-mode outputs from a continuous-
wave spontaneous parametric down-converter in the absence
of pump depletion.

Before proceeding with our analysis, it is germane to
underscore the distinction between the outputs from the
continuous-wave sources we shall consider and a succession
of signal and reference pulse pairs that are emitted at definite
times. In the latter case, when the inter-pulse interval is
sufficiently long relative to the dispersion of the filters and
the response time of the photodetectors, we can distinguish
individual pulses at each detector and separately observe the
dispersion on the signal and reference pulses. For example, at
low-enough flux these dispersions can be inferred by forming
detection-time histograms of signal and reference photocounts

(singles counts) relative to their source-to-detector group
delays. In this case Franson’s nonlocal dispersion cancellation
manifests itself as a narrowing of the signal-reference photon-
coincidence signature relative to the dispersion seen on the
signal and reference singles. However, with a low-brightness,
low-flux, continuous-wave SPDC source—for which the sig-
nal and idler outputs may be understood as a stream of photon
pairs that are well separated in time—we do not know when
any particular photon pair was emitted. As a result, to infer
dispersive spreading of the signal from singles counts at the
output of its Fig. 1 filter, we must use reference counts at
the source’s output to herald signal-photon emissions. But
when we use such heralding we can no longer perform
photon-coincidence measurements on the outputs from the
two filters in Fig. 1, so we cannot simultaneously exhibit
signal dispersion and signal-reference dispersion cancellation
using a common data set. With this distinction in mind,
let us proceed taking as our hallmark of continuous-wave
dispersion cancellation the invariance of the photocurrent cross
correlation—after subtraction of any background term arising
from accidental coincidences—to the equal-magnitude but
opposite-sign dispersion coefficients of the filters in Fig. 1.

Because zero-mean Gaussian states with stationary corre-
lations are closed under linear time-invariant transformations,
we have that the joint signal-reference state at the output of
the dispersive elements in Fig. 1 is also a zero-mean Gaussian
state that is completely characterized by its nonzero correlation
functions, which are

K
out(n)
JJ (τ ) ≡ 〈

Ê
out†
J (t + τ )Êout

J (t)
〉

(19)

=
∫

dω

2π
Sout(n)

JJ (ω)e−iωτ (20)

=
∫

dω

2π
S in(n)

JJ (ω)|HJ (ω)|2e−iωτ (21)

=
∫

dω

2π
S in(n)

JJ (ω)e−iωτ (22)

= K
in(n)
JJ (τ ), (23)

and

K
out(p)
SR (τ ) ≡ 〈

Êout
S (t + τ )Êout

R (t)
〉

(24)

=
∫

dω

2π
Sout(p)

SR (ω)e−iωτ (25)

=
∫

dω

2π
S in(p)

SR (ω)HS(−ω)HR(ω)e−iωτ (26)

=
∫

dω

2π
S in(p)

SR (ω)e−iω2(βS+βR )e−iωτ (27)

=
∫

dω

2π
S in(p)

SR (ω)e−iωτ (28)

= K
in(p)
SR (τ ). (29)

Equations (23) and (29) embody dispersion cancella-
tion for both quantum and classical Gaussian states with
phase-sensitive cross correlations. This is because zero-mean,
continuous-wave Gaussian states are completely characterized
by their nonzero correlation functions. Suppose, as we have
assumed in this section, that the nonzero correlation functions
at the input to the dispersive elements are K

in(n)
JJ (τ ), for J = S
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or R, and K
in(p)
SR (τ ). Further suppose, as we have assumed

in Sec. II, that the dispersive elements have identical phase
delays, identical group delays, and dispersion coefficients
that are equal in magnitude and opposite in sign. Then, as
we have just shown, the nonzero correlation functions at the
outputs of the dispersive elements—K

out(n)
JJ (τ ), for J = S or R,

and K
out(p)
SR (τ )—coincide with their counterparts at the inputs

to the dispersive elements. Consequently the state of—i.e.,
the joint density operator for—the output fields is the same
as the state of the input fields. Inasmuch as the signal and
reference fields encounter dispersive elements that do not
change their joint state, it is certainly appropriate to say the
dispersion has been canceled in the Fig. 1 setup. Moreover,
because the signal and reference fields encounter spatially
separated dispersive elements and the resulting output fields
do not interact or interfere with each other prior to their
being photodetected, it might seem appropriate to say that
this dispersion cancellation is a nonlocal effect. However,
nonlocality, in quantum mechanics, is a special property
that is not found in classical physics. So, because the state
preservation we have just exhibited—and hence the dispersion
cancellation it implies—occurs regardless of whether the input
state is classical or quantum, i.e., regardless of whether it has a
proper P representation or does not, employing the appellation
“nonlocal” for this effect in all the cases subsumed by our
analysis is problematic. To make this completely explicit, for
the dispersion cancellation measurement in the Fig. 1 setup,
let us use our correlation-function results to evaluate C(τ ).

Starting from Eqs. (8) and (11), we find that

C(τ ) = q2
∫

du

∫
dv〈Ê′†

S (u)Ê′
S(u)Ê′†

R (v)Ê′
R(v)〉

× g(t + τ − u)g(t − v) (30)

= q2η2
∫

du

∫
dv

〈
Ê

out†
S (u)Êout†

R (v)Êout
S (u)Êout

R (v)
〉

× g(t + τ − u)g(t − v) (31)

= q2η2
∫

du

∫
dv

(〈
Ê

out†
S (u)Êout

S (u)
〉〈
Ê

out†
R (v)Êout

R (v)
〉

+ ∣∣〈Êout
S (u)Êout

R (v)
〉∣∣2)

g(t + τ − u)g(t − v), (32)

where Eq. (31) follows from Eqs. (7), and (9) and Eq. (32)
follows from the Gaussian-state moment factoring theorem
plus our assumption that the joint signal-reference state is zero
mean with no phase-insensitive cross correlation [4]. Using
our results for the output field-operators’ correlations, Eq. (32)
reduces to

C(τ ) = q2η2

[
K

in(n)
SS (0)K in(n)

RR (0) +
∫

du

∫
dv

∣∣K in(p)
SR (u − v)

∣∣2

× g(t + τ − u)g(t − v)

]
(33)

= q2η2

[
K

in(n)
SS (0)K in(n)

RR (0)

+
∫

dz
∣∣K in(p)

SR (z)
∣∣2

Rgg(τ − z)

]
, (34)

where

Rgg(τ ) ≡
∫

dtg(t + τ )g(t) (35)

is the autocorrelation integral of the photodetectors’ impulse
response g(t).

The first term in Eq. (34) is rightfully termed the accidental
coincidences, inasmuch as it would still be present were there
no correlation between the Gaussian states of the signal and
reference beams. It is the second term in which dispersion
cancellation occurs. This is because: (1) it comes from the
phase-sensitive cross correlation between the output signal and
reference beams; (2) each individual output has encountered
a different dispersive element, because βJ �= 0 for J = S

and R with βS �= βR; and (3) this term does not suffer any
dispersion, because K

out(p)
SR (τ ) = K

in(n)
SR (τ ) when βS = −βR =

β �= 0. Note that the derivation of Eq. (34) only assumes that
the joint signal-reference state at the input to the dispersive
elements in Fig. 1 is zero-mean and Gaussian with nonzero
correlations given by Eqs. (15) and (16). Thus, it applies
to both quantum and classical states by appropriate choice
of these correlations. Furthermore, although we have used
quantum notation in our derivation of Eq. (34), the same
result would be obtained for classical-state light if we used
the semiclassical theory of photodetection as follows [13]. (1)
We assume that the baseband signal and reference fields at the
input to the dispersive elements in Fig. 1 are zero-mean, jointly
Gaussian classical random processes, Ein

S (t) and Ein
R (t), that

are completely characterized by their nonzero correlations

K
in(n)
JJ (τ ) ≡ 〈

Ein∗
J (t + τ )Ein

J (t)
〉
, for J = S or R, (36)

and

K
in(p)
SR (τ ) ≡ 〈

Ein
S (t + τ )Ein

R (t)
〉
. (37)

(2) We calculate the photocurrent statistics by assuming the
event times {tSn

} and {tRn
} comprise independent Poisson point

processes, conditioned on knowledge of the fields illuminating
the photodetectors, and that the conditional rate functions for
these Poisson point processes are

µJ (t) = η
∣∣Eout

J (t)
∣∣2

, for J = S or R. (38)

In the next section we will instantiate Eq. (34) in two
special cases of zero-mean, continuous-wave, jointly Gaussian
states. In the first, the input signal and reference fields have
the maximum phase-sensitive cross correlation permitted by
quantum mechanics, i.e., they are in a nonclassical state. In the
second, the joint signal-reference state has a phase-sensitive
cross correlation that is at the tighter limit set by classical
physics. Hence, it is has a proper P representation and is thus
a classical state.

IV. QUANTUM VERSUS CLASSICAL-STATE DISPERSION
CANCELLATION

Suppose that the signal and reference correlation functions
at the input to the dispersive elements in Fig. 1 are as follows
[19]:

K
in(n)
SS (τ ) = K

in(n)
RR (τ ) = K in(n)(τ ) ≡ Pe−τ 2/2T 2

0 , (39)

and K
in(p)
SR (τ ) = K

(q)
SR(τ ) or K

in(p)
SR (τ ) = K

in(c)
SR (τ ), where

K
in(q)
SR (τ ) ≡ Pe−τ 2/2T 2

0 + i
√

P

(
2

πT 2
0

)1/4

e−τ 2/T 2
0 , (40)
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and

K
in(c)
SR (τ ) ≡ Pe−τ 2/2T 2

0 . (41)

The superscripts (q) and (c) denote quantum and classical
states, respectively, as the following discussion will justify. Be-
fore doing so, however, there is an important point to be made.
Because we are assuming that the signal and reference fields
are in a zero-mean, jointly Gaussian state, then—regardless of
their phase-sensitive cross-correlation function—their reduced
density operators are zero-mean Gaussian states. So, because
the quantum and classical signal-reference states in this section
have the same autocorrelations, there is no single-beam (signal
only or reference only) measurement that can distinguish
between them. It is only when joint measurements are made
on the signal and reference beams—e.g., the photocurrent
cross-correlation measurement employed in the dispersion-
cancellation experiment from Fig. 1—that any difference can
be discerned between these quantum and classical signal-
reference states. With this point in mind, let us review the
quantum and classical limits on the cross spectra associated
with the preceding cross-correlation functions.

The spectra associated with the correlation functions from
Eqs. (39)–(41) are

S
in(n)
SS (ω) = S

in(n)
RR (ω) = S in(n)(ω)

= P

√
2πT 2

0 e−ω2T 2
0 /2 (42)

S
in(q)
SR (ω) = P

√
2πT 2

0 e−ω2T 2
0 /2 + i

√
P

(
2πT 2

0

)1/4
e−ω2T 2

0 /4

(43)

S
in(c)
SR (ω) = P

√
2πT 2

0 e−ω2T 2
0 /2. (44)

Quantum mechanics sets the following bound on |S in(p)
SR (ω)|

[4,20],

∣∣S in(p)
SR (ω)

∣∣ �
√

S
in(n)
SS (ω)

[
1 + S

in(n)
RR (−ω)

]
, (45)

which Eqs. (42) and (43) saturate, implying that the joint
signal-reference Gaussian state with these spectra is maxi-
mally entangled in frequency [21]. On the other hand, Eqs. (42)
and (44) satisfy, with equality, the tighter bound required by
classical physics [4],

∣∣S in(p)
SR (ω)

∣∣ �
√

S
in(n)
SS (ω)S in(n)

RR (−ω), (46)

indicating that the the joint signal-reference Gaussian state
with these spectra is classical, with the maximum possible
phase-sensitive cross correlation. Indeed, if E(t) is a complex-
valued, zero-mean, Gaussian random process with

〈E(t + τ )E(t)〉 = 0 (47)

and

〈E∗(t + τ )E(t)〉 = Pe−τ 2/2T 2
0 (48)

then the joint signal-reference Gaussian state with K
in(n)
SS (τ ) =

K
in(n)
RR (τ ) = K in(n)(τ ) and K

in(p)
SR (τ ) = K

in(c)
SR (τ ) is a classical

mixture of continuous-time coherent states |Ein
S (t)〉|Ein

R (t)〉 in
which ES(t) = E(t) and ER(t) = E∗(t).

Using the results of the preceding paragraph in Eq. (34), in
conjunction with the convenient choice

g(t) = e−t2/T 2
g√

πT 2
g

, (49)

we find that

C(c)(τ ) = q2η2P 2

⎛
⎝1 + e−τ 2/(T 2

0 +2T 2
g )√

1 + 2T 2
g /T 2

0

⎞
⎠ , (50)

and

C(q)(τ ) = C(c)(τ ) + q2η2P
e−2τ 2/(T 2

0 +4T 2
g )√

π
(
T 2

0 /2 + 2T 2
g

) , (51)

with the superscripts distinguishing between the quantum
and classical-state cases. In both of these expressions the
constant term q2η2P 2 comes from the accidental coincidences
noted earlier. Thus we see that the contrast between the
dispersion-cancellation terms and the accidental coincidences
degrades for Tg � T0, i.e., when the photodetectors’ response
time is long compared to the coherence time of the signal and
reference. So, to best understand the difference between the
quantum and classical cases, let us assume we have detectors
that are fast enough to yield

C(c)(τ ) ≈ q2η2P 2(1 + e−τ 2/T 2
0 ), (52)

and

C(q)(τ ) ≈ q2η2P 2(1 + e−τ 2/T 2
0 ) + q2η2Pe−2τ 2/T 2

0 /

√
πT 2

0 /2

(53)

≈ q2η2P 2

(
1 + e−2τ 2/T 2

0

PT0
√

π/2

)
, (54)

where we have used the low-brightness condition PT0 
 1
[22] to obtain (54).

Comparison of Eqs. (52) and (54) reveal that both of
these photocurrent cross correlations consist of the same
background term, Cacc ≡ q2η2P 2, arising from accidental
coincidences, plus a Gaussian-shaped term that is the signature
of the nonzero phase-sensitive cross correlation between the
signal and reference fields. In both cases this signature term
enjoys dispersion cancellation, because it is independent of
the nonzero value of the dispersion coefficients, βS = −βR =
β �= 0. Moreover, Eqs. (27) and (32) imply that both the
classical and the quantum signature terms would increasingly
broaden from dispersion, for βS �= −βR , as |βS + βR| grows
without bound. What then are the differences between C(c)(τ )
and C(q)(τ ) in this fast-detector, low-brightness regime?
There are two. First, as we have previously found for a
comparable spatial case in ghost imaging [6], the width of
the dispersion-canceled signature term for the quantum case
C

(q)
dc (τ ) is different from that of the corresponding classical

case C
(c)
dc (τ ), despite the individual signal and reference fields

having the same fluorescence bandwidths in both instances
[23]. Second, and more significantly, the contrast between the
dispersion-canceled quantum term C

(q)
dc (τ ) and the accidentals
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term Cacc, given by

C(q) ≡ max
τ

C
(q)
dc (τ )

Cacc
≈ 1

PT0
√

π/2
� 1, (55)

dramatically exceeds that for the classical-state case

C(c) ≡ max
τ

C
(c)
dc (τ )

Cacc
≈ 1. (56)

This too is a feature that has been seen in comparing quantum
and classical-state versions of ghost imaging [6].

V. DISCUSSION

We have applied Gaussian-state analysis to a version
of Franson’s nonlocal dispersion cancellation paradigm. In
the fast-detector regime using a low-brightness source of
signal and reference beams with phase-sensitive cross cor-
relation we showed that both quantum (maximally entangled)
and classical-state (maximally correlated) sources produced
ensemble-average photocurrent cross correlations composed
of a constant background term, arising from accidental
coincidences, plus a dispersion-canceled signature term. The
signature-term widths obtained with the classical and nonclas-
sical sources are different, for Gaussian fluorescence spectra
of the same bandwidth, but this is not an essential feature
[23]. The major difference between these two cases is in
their contrast. The quantum source yields very high contrast
(�1) dispersion cancellation, while the classical-state source
has a contrast equal to 1. Nevertheless, both dispersion-
canceled signatures—quantum and classical—arise from the
propagation of a phase-sensitive cross correlation through the
dispersive elements in the signal and reference paths, i.e.,
their physical origins are identical and essentially classical.
It is the greatly enhanced observability of the quantum case—
which persists well into the slow-detector (Tg � T0) regime
at low source brightness—that really distinguishes it from
its classical counterpart. Indeed, for reasonable experimental
parameters for a down-converter source and single-photon
detection system—P = 106 pairs/s, T0 = 1 ps, and Tg =
1 ns—we find that

C(q) ≈ 1√
2πPTg

≈ 399, (57)

whereas

C(c) ≈ T0√
2Tg

≈ 7 × 10−4. (58)

Inasmuch as this low-brightness, slow-detector regime is the
norm for down-converter coincidence counting—including
dispersion-cancellation experiments—these contrast values
show the dramatic benefit of having a quantum, rather than
a classical-state, source available.

As final elaboration on the conclusions reached in the
preceding paragraph, we shall discuss two additional lim-
its of our Gaussian-state analysis for the quantum signal-
reference state, plus a culminating example illustrating a
smooth transition from quantum to classical-state sources.
The first limiting case is low-flux operation, which will
connect our work for the quantum case to the more frequently
employed biphoton treatment. The second limiting case is

high-brightness operation, which will link our work for the
quantum case to the results we obtained for the classical
signal-reference state. The final example uses the bandlimited
spectra specified in Ref. [23], in conjunction with additive
noise, to study contrast degradation in the dispersion-canceled
photocurrent cross correlation as the input signal-reference
state is continuously varied from maximally entangled to
maximally correlated to partially correlated to uncorrelated.

A. Low-flux operation

Consider the single-spatial-mode signal (S) and idler
(I ) outputs from a frequency-degenerate continuous-wave
parametric down-converter. In the absence of pump depletion,
they are in a zero-mean jointly Gaussian state that is completely
characterized by the nonzero correlation functions of the
associated baseband field operators, namely

K
(n)
JJ (τ ) ≡ 〈Ê†

J (t + τ )ÊJ (t)〉, for J = S or I (59)

and

K
(p)
SI (τ ) ≡ 〈ÊS(t + τ )ÊI (t)〉. (60)

For type II phase matching with a timing-compensation crystal
employed at the down-converter’s output, the spectra associ-
ated with these correlation functions in the low-brightness
regime are [18]

S
(n)
JJ (ω) = (γ |EP |	)2

[
sin(ω
k′	/2)

ω
k′	/2

]2

, (61)

and

S
(p)
SI (ω) = iγEP 	

sin(ω
k′	/2)

ω
k′	/2
, (62)

where γ is the nonlinear coefficient from the coupled-mode
equations, EP is the classical baseband phasor for the pump
field, 	 is the crystal length, and 
k′ is the phase mismatch
coefficient, i.e., ω
k′ is the phase mismatch at detuning ω from
frequency degeneracy. When the source flux is low enough that
K

(n)
SS (0)T = K

(n)
II (0)T 
 1, where T � Tg is the maximum

|τ | for which we are trying to estimate the ensemble-average
photocurrent cross correlation C(τ ), we can neglect multiple-
pair emissions. Hence the jointly Gaussian state of the signal
and idler can be taken to be a predominant vacuum term plus
a weak biphoton (|TB〉-state) component [18], viz.,

|ψ〉SI ≈ |0〉S |0〉I + iγEP 	

∫
dω

2π

sin(ω
k′	/2)

ω
k′	/2
× |ωP /2 + ω〉S |ωP /2 − ω〉I . (63)

Here, ωP is the pump frequency, |0〉J denotes the multimode
vacuum state, and |ωP /2 ± ω〉J denotes a single photon
state of the signal (J = S) or idler (J = I ) at frequency
ωP /2 ± ω. Replacing the sinc phase-matching function with
the Gaussian approximation to its main lobe [24] will then
lead to an ensemble-average photocurrent cross correlation
equal to the dispersion-canceled signature term from Eq. (54)
without any background, once the proper identifications have
been made for P and T0 [25]. Note that the absence of
the background term in the biphoton analysis is due to that
treatment’s neglecting the multiple-pair contributions that are
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present in the full Gaussian-state characterization of the down-
converter’s output. Also note that the close connection between
biphoton analysis and our Gaussian-state approach—in this
and more general quantum imaging scenarios—follows from
the fact that the biphoton wave function propagates according
to the same transformation rule as the phase-sensitive cross-
correlation function cf. Refs. [6] and [26].

B. High-brightness operation

Here we turn to what happens to dispersion cancellation
when the source in Fig. 1 operates at high brightness.
Specifically, let us revisit the behavior of the photocurrent
cross-correlation functions found in Sec. IV when the quan-
tum and classical signal-reference Gaussian states have the
spectra given in Eqs. (42)–(44) but satisfy the high-brightness
condition, PT0 � 1, instead of the low-brightness condition,
PT0 
 1. At high source brightness the photocurrent cross
correlation for the classical signal-reference state is still
given by Eq. (50) for arbitrary Tg and T0. For the quantum
signal-reference state, on the other hand, Eq. (51) still applies,
but the high-brightness condition reduces it to

C(q)(τ ) ≈ C(c)(τ ), (64)

indicating that both the quantum and classical signal-reference
states give virtually identical dispersion-canceled photocur-
rent cross correlations. This occurs because at high source
brightness the difference between the quantum and classical
bounds on the phase-sensitive cross spectrum disappears, cf.
Eqs. (45) and (46). Note, however, that the high-brightness
quantum state is extremely nonclassical: combining its signal
and reference beams on a 50-50 beam splitter will result in
outputs that exhibit very strong quadrature-noise squeezing
[4]. The photocurrent cross-correlation measurement is not
sensitive to that effect, hence the high-brightness quantum
state looks classical in the Fig. 1 experiment. Furthermore,
high-brightness operation when Tg � T0 violates the low-flux
condition under which the photocurrents from Eq. (12) contain
easily resolvable individual charge-carrier emissions. Thus in
high-brightness operation the photocurrent cross-correlation
measurement will no longer correspond to photon-coincidence
counting [4].

C. Dispersion cancellation with additive noise

Suppose that the signal and reference beams in the Fig. 1
setup are obtained as follows. A continuous-wave down-
converter is used to produce a zero-mean, jointly Gaussian
signal-reference state fully characterized by the following
nonzero spectra for the baseband field operators of the signal
and idler,

S
(n)
JJ (ω) =

{
πP/�, for |ω| � �

0, otherwise,
(65)

for J = S or I , and

S
(p)
SI (ω) =

{
πP/� + i

√
πP/�, for |ω| � �

0, otherwise.
(66)

(These spectra could be obtained, in principle, by passing
the output fields from a very broadband down-converter

through an ideal passband filter.) The input fields in Fig. 1
are then obtained by passing the signal and idler through
identical transmissivity-κ beam splitters followed first by
identical phase-insensitive amplifiers with gain G = κ−1 � 1
and minimum (vacuum-state) noise level and then by identical
ideal passband filters. The resulting signal and reference fields
will then be in a zero-mean, jointly Gaussian state that is fully
characterized by these nonzero spectra for their baseband field
operators:

S
in(n)
JJ (ω) =

{
πP/� + (G − 1), for |ω| � �

0, otherwise,
(67)

for J = S or R and

S
in(p)
SR (ω) =

{
πP/� + i

√
πP/�, for |ω| � �

0, otherwise.
(68)

The state-propagation calculation performed in Sec. III will
show, once again, that this joint signal-reference state is
preserved when the dispersive elements have identical phase
delays, identical group delays, and dispersion coefficients that
are equal in magnitude and opposite in sign. The photocurrent-
correlation calculation from Sec. III now leads to

C(τ ) = q2η2[P + (G − 1)�/π ]2

+ q2η2(P 2 + P�/π )

[
sin(�τ )

�τ

]2

, (69)

in the fast-detector limit.
Let us explore the behavior of this C(τ ) result as κ decreases

from one to zero. For any value of κ we have that C(τ ) con-
sists of an accidentals term Cacc ≡ q2η2[P + (G − 1)�/π ]2,
plus a dispersion-canceled term Cdc(τ ) that—regardless of
the down-converter’s brightness and the amount of noise
injected by the phase-insensitive amplifier—is proportional
to [sin(�τ )/�τ ]2. All that remains, therefore, is to examine
the contrast between the dispersion-canceled term and the
accidentals. Here we find that

C ≡ max
τ

Cdc(τ )

Cacc
= 1 + �/πP

[1 + (G − 1)�/πP ]2
. (70)

When κ = G−1 = 1, the joint signal-reference state is a
maximally entangled pure Gaussian state and Eq. (70) yields

C = Cmax-ent ≡ 1 + �/πP, (71)

which monotonically decreases from Cmax-ent � 1, at low
source brightness to Cmax-ent ≈ 1 at high source brightness.
On the other hand, for any source brightness we see that C
decreases monotonically with decreasing κ (increasing G).
Moreover, when

G = Gc ≡ 1 + πP

�

(√
1 + �

πP

)
, (72)

we have that |S in(p)
SR (ω)| =

√
S

in(n)
SS (ω)S in(n)

RR (−ω), so that the
joint signal-reference state is a maximally correlated classical
Gaussian mixed state. In this case C equals the maximally
correlated result,

C = Cmax-corr = 1. (73)
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Further decreases in κ (increases in G) continue to degrade C
until it goes to zero as κ → 0 (G → ∞).

In conclusion, the preceding example undergoes a contin-
uous progression of the joint signal-reference input state—as
κ decreases and G increases—from a maximally entangled
Gaussian pure state (when G = 1), to a nonclassical mixed
Gaussian state (when 1 < G < Gc), to a maximally correlated
classical Gaussian mixed state (when G = Gc), to a classical
mixed Gaussian product state (when G → ∞). Accompany-
ing this continuous progression of states is the continuous
progression of C from Cmax-ent (for G = 1), to Cmax-corr < C <

Cmax-ent (for 1 < G < Gc) to C = Cmax-corr (for G = Gc) to
C → 0 (for G → ∞). Throughout this progression of states
and contrasts, the Fig. 1 setup yields a photocurrent cross-
correlation function composed of an accidentals term plus a
fixed shape dispersion-canceled term. For 0 < ε 
 Gc − 1
the experiment requires quantum photodetection to exactly
account for its behavior when G = Gc − ε, but semiclassical
photodetection suffices when G = Gc + ε. Absent a discon-
tinuity in the physical mechanism for dispersion cancellation,
when G crosses from G < Gc to G > Gc, then the physical

explanations for the dispersion-canceled terms in these two
regimes must be the same. We assert that there is no such
discontinuity. It is state preservation for zero-mean jointly
Gaussian states with a phase-sensitive cross correlation—
implied by classical coherence-theory propagation of that cross
correlation—that is responsible for the dispersion cancellation
in the Fig. 1 experiment.

In short, our Gaussian-state analysis supports Franson’s
assertion from Ref. [9]: there is no classical explanation that
can account for all the features of his nonlocal dispersion-
cancellation experiment. However, our work shows that the
only intrinsically quantum-mechanical feature in this experi-
ment is the high contrast that is achieved with a maximally-
entangled (biphoton) source.
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