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This paper examines dispersion characteristics of sound waves propagating in a tunnel with an array 
of Helmholtz resonators connected axially. Assuming plane waves over the tunnel's cross section 

except a thin b•undary layer, weakly dissipative effects due to the wall friction and the 
thermoviscous diffusivity of sound are taken into account. Sound propagation in such a spatially 
periodic structure may be termed "acoustic Bloch waves." The dispersion relation derived exhibits 
peculiar characteristics marked by emergence of "stopping bands" in the frequency domain. The 

stopping bands inhibit selectively propagat. ion of sound waves even if no dissipative effects are 
taken into account, and enhance the damping pronouncedly even in a dissipative case. The stopping 
bands result from the resonance with the resonators as side branches and also from the Bragg 

reflection by their periodic arrangements. In the "passing bands" outside of the stopping bands, the 
sound waves exhibit dispersion, though subj[cted intrinsically not only to the weak damping due to 
the dissipative effects but also to the weak dispersion due to the wall friction. Taking a plausible 
example, the dispersion relation and the Bloch wave functions for the pressure are displayed. Finally 

the validity of the continuum approximation for distribution of the Helmholtz resonators is 

discussed in terms of the dispersion relations. 

PACS numbers: 43.20.Mv, 43.20.Hq, 43.20.Fn 

INTRODUC•ON 

A tunnel with an array of Helmholtz resonators (called 

simply resonators-hereafter) is promising for future high- 
speed trains such as magnetically !evitated ones. For emer- 

gence of acoustic shock waves generated by traveling of 

trains is expected to be inhibited in this tunnel. The simplest 
architecture is such a tunnel that identical resonators are con- 

nected with equal'axial spacing as shown in Fig. 1. The role 
of ihe array of resonators is to introduce dispersion as well as 

damping into nondispersive sound waves and especially to 

"disperse" pressur.c disturbances before shock formation. Its 
effectiveness is already demonstrated in the context of non- 

linear acoustics based on the "continuum approximation" for 
axial distribution of the resonators. 1'2 This approximation is 
supported by the fact that the pressure disturbances leading 
to shock formation are propagated in the form of so-called 

infrasound. While the continuum approximation is therefore 

expected to hold in practical situations, this paper examines 
linear dispersion characteristics of sound waves over all fre- 

quency domain by taking full account of tbe discreteness in 
arrangements of the resonators. Among many modes of 

propagation in a tunnel as a waveguide, here we are con- 
cemcd only with the plane-wave mode corresponding to the 
lowest mode. 

By connecting the array of resonators, the tunnel has a 

spatially periodic structure. Wave propagation in a spatiaHy 
periodic structure or field typified by the classical lattice 3 or 
the quantum field 4 is known as Bloch waves. They exhibit 
peculiar dispersion characteristics marked by emergence of 
"stopping bands" (or simply "stop bands") in a frequency 
domain. Such properties are expected to hold in the acoustics 

as well where the Bloch waves are not so familiar. Recently 
Bradley • has examined propagation of sound waves in a 
waveguide of rectangular duct loaded periodically with a 

quarter-wavelength tube and also confirmed their dispersion 

characteristics experimentally. This has motivated us to ex- 

amine the Bloch waves in the tunnel with the array of Helm- 
holtz resonators, which had already been proposed indepen- 
dently of Bradley's work, and also tc• check the validity of 
the continuum approximation employed previously. 

The stopping bands are brought about physically by two 

mechanisms in the present problem. One is due to the reso- 

nance with the resonators as side branches when a frequency 

of sound waves coincides with its natural frequency. The side 
branch resonance then blocks forward transmission of sound 

wave. This is also the case when even a single resonator is 
cormacted to the tunnel. Another is due to the Bragg reflec- 

tion when the axial spacing between the neighboring resona- 

tors becomes multiple of a half-wavelength of sound waves. 
In this sense, Bragg reflection is the very outcome of the 

periodic arrangement of the resonators. 

Sound waves in the stopping bands are quickly damped 
spatially, in other words, become evanescent so that they 

cannot be propagated forward. The damping in this case has 
nothing to do with energy loss transformed into heat so it can 

occur in the lossless case. Frequency domains outside of the 

stopping bands are called "passing bands" (or simply "pass- 
bands") in which sound waves can be propagated without 
damping. Then the passing bands are characterized by emer- 
gence of dispersion due to the periodic arrangements of the 
resonators. In the 1ossy case, however, the sound waves are 

always subjected not only to the damping due to both the 
wall friction and the thermoviscous diffusive effect of sound, 
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FIG. 1. A tunnel with an array of Helmholtz resonators. The tunnel is 
divided by the neighboring resonators into infinite number of intervals des- 

ignated by n (=...-1,0,1,...) and the x,, axis in each interval is taken with its 
origin at the midpoint in the interval and along the axis of the tunnel x 
(x.=x-nd). 

but also to the weak dispersion due to the former :fleet. 
Therefore, the stopping bands and the passing bands cannot 

be distinguished sharply from each other unlike in the loss- 
less case. But as far as the dissipative effects remain small, 

the stopping bands can be identified because the damping 

there is enhanced pronou. ncedly relative to the intrinsic 
damping. 

In the following, we recapitulate the linear acoustic 
theory taking account of weakly dissipative effects. The dis- 
persion relation is derived on assuming plane waves over a 
tunnel's cross section displaced by a thin boundary layer. The 
cross-sectional area of the resonators's throat is assumed to 

be so small that the resonators are regarded as being con- 
nected at "points" along the tunnel. By making use of the 
smallness of the resonator's volume relative to the tunnel's 

one per axial spacing, asymptotic behaviors of the stopping 
bands are examined and then the dispersion relation is solved 
numerically.'For a plausible case, the dispersion relation and 
the Bloch wave functions for the pressure are displayed. Fi- 
nally the validity of the continuum approximation is dis- 
cussed in terms of the dispersion relation derived. 

I. UNEAR ACOUSTIC THEORY 

At the outset, we summarize results of the linear acous- 

tic theory necessary to the analysis in the following sections. 
In the tunnel between the neighboring resonators, propaga- 
tion of plane sound waves is assumed over the tunnel's cross 

section displaced by a thin boundary layer on the wall. This 
assumption is justified if the ratio of a typical thickness of 
the boundary layer (v/to) ia to a hydraulic radius of the tunnel 
R is small enough: 

where v and to denote, respectively, the kinematic viscosity 
of the air and an angular frequency. Although this ratio is 
found to be very small, the wall friction due to this thin 
boundary loyer is taken into account. In addition, the diffu- 
sive effect of sound itself is also taken into account. Quanti- 

tatively, this effect is measured by the inverse of the acoustic 
Reynolds number Re defined by 

v(o 1 

(2) 
where a 0 is the sound speed. For a typical infrasound of 
frequency 5 Hz propagating in a tunnel of diameter 10 m say, 
8is of order of 10 -4, while I/Re is very small of order 10-s! 
Hence the latter effect may be neglected. 6 For the sake of 
generality, however, the following formulation takes account 

of both effects only within the lowest order in expansion 
(often made implicitly) with respect to 8 and I/Re. But if 
I/Re is comparable with 8 2 , as is seen just above, the terms 
in I/Re should be discarded or the quadratic terms in 8 
should necessarily be included so far as the first-order terms 
in I/Re are retained. 

Under these assumptions, sound propagation in the tun- 
nel is governed by the following equation for the excess 

pressure p' over the atmospheric pressure Po (see the Ap- 
pendix): 

a9 2-' a•2,O ' + 2Ca021•1/2 •9-1' 2 [ o•2Pr / P 2 

'• "2---a0 -•x -T R •9t --•z'i-• • •x--•] 

- ( a%g;v/= 0, (3) 
with C= 1 +(T- 1)/Pr•a and va= v[4/3+tzollx 
+(¾-1)/Pr], where t and x are, respectively, the time and 
the spatial coordinate along the tunnel. With the Prandtl 

number Pr (= gcv/kr), i x, ixo, %, and kr denote, respec- 
tively, the coefficients of shear and bulk viscosities, the spe- 

cific heat at constant pressure and the thermal conductivity, y 

being the ratio of the specific heats. While the first two terms 

in Eq. (3) correspond to the well-known lossless wave equa- 
tion, the third term represents the effect of the wall friction, 

which is given in the form of the hereditary integral known 
as the fractional derivative of the minus haft-order with re- 

spect to t as follows: ? 

o-/2p ' 1 1 •t_-•--UT• • (t_t,)T•p(x,t'}dt', (4) 
and the last lerm in Eq. (3) represents the diffusive effect, v a 
being the di'ffusivily of sound. 

When a time-harmonic wave solution to p' is sought in 
the form of exp[i(kx-tot)], a wave number k is given in 
terms of an angular frequency to (>0) as 

t,= -- + - + 
a0 

where the minus half-order derivative of the function 

exp(-io•t) is red ned to the Fresnel integrals and is evalu- 
ated simply to be [(l+i)/v•]exp(-itot)=(-ito) -1/2 
Xexp(-imt) as a formal extension of the ordinary rule of 
differentiation. Here note that -k is also a solution for 

propagation towrod the negative direction of x. With this 

excess press.ure p', the axial velocity of the air u is similarly 
in the form of the time-harmonic wave p'/Z where Z is an 
acoustic impedance for the plane wave. Noting that the dis- 
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sipative effects are taken into account only within the lowest 

order in 8 and 1/Re, Z is then given by 

Z = poa o 1 x/• R 2a o •+ /z •rr' 
(6) 

Next we consider the response of the resonator to pres- 

sure fluctuations at the orifice. The cavity's volume is much 

greater than the throat's one, so a motion of the air in the 

cavity is negligible. Hence we consider only the conservation 
of mass in the cavity: 

(7) 

where V and Pc denote, respectively, the cavity's volume and 

the mean density of the air in it, while w c denotes the veloc- 

ity of the air flown into the cavity, averaged over the whole 
throat's cross section. 

In the throat, the compressibility of the air is negligible 
because the throat's length L is much shorter than a typical 

wavelength ao/to (divided by 2,r). Therefore the axial veloc- 
ity w is regarded as being uniform along the throat so that w c 
and w are set to be equal. Then integrating the linearized 

equation of motion along the throat's axis, it follows that 

too L T = --pct-}-p;--Fr, 

where p•' and Pt represent, respectively, the excess pressure 
at the orifice on the cavity side and on the tunnel side and F r 

designates the total friction on the throat wall, which is given 
by the hereditary integral as follows: l 

2po L V 112 0112W 
r 0t i7T' 

This integral takes the form derived by differentiating the 
derivative of minus half-order once with respect to t, so it is 
defined as the fractional derivative of half-order. 

We now eliminate w (= we) from Eqs. (7) and (8). By 
the adiabatic approximation for the air in the cavity, use is 

made of the relation Opc/Ot= (dpc/dPc)Opc/Ot, Pc being the 
mean pressure in the cavity. Furthermore approximating 

dpc/dpc = ao 2, Eqs. (7) and (8) are combined into 

where p•( = Pc - P0) is the excess pressure in the cavity 
and too[= (Ba•/LV) •/2] is a natural frequency of the reso- 
nator. The derivative of three half-order is defined by differ- 

entiating the derivative of half-order once with respect to t. 

Here L is usually lengthened by the so-called end corrections 
and c L is the correction factor for the viscous end 

correction. • But this factor is here considered to be incorpo- 
rated into r formally by adjusting r--,r/cL and therefore cL 
is set equal to unity in the following analysis. 

For p; varying harmonically in the form of P 
Xexp(-itot), the volume flow Bw from the tunnel into the 

throat is induced similarly in the form of Q exp(-itot), 
where P and Q denote complex amplitudes. The ratio P/Q 

defines an acoustic impedance of the resonator Z B depending 
on to. By using Eqs. (7) to (9), ZB is given as follows: 

p: ipoL [ xl•(l +i!(vo•3) '/2] Z S - B w - Boa to2-toø2+ - ' 
(11) 

II. DISPERSION RELATION 

We now derive the dispersion relation of sound waves. 

Let the resonators be connected to an infinitely long tunnel 
with equal axial spacing d. Then the tunnel is separated into 
infinite number of intervals by neighboring resonators as 

shown in Fig. 1. Let caeh interval be numbered as n con- 
secutively from minus to plus infinity (n = ..., -1, 0, 1,...) 
and take the axial coordinate x along the tunnel with its 

origin at a midpoint in the interval n = 0. The throat's cross- 
sectional area B is assumed to be so small compared with the 

tuhnel's one A that the gap between the neighboring intervals 
may be negligible. In other words, the throats are regarded as 

being connected at "points" x = (n + l/2)d. 

(8) Let the excess pressure and the axial velocity in the 
interval n be denoted, with suffix n, by p• and u,, respec- 
tively. Then p• is governed by Eq. (3) in the respective in- 
tervals. Assuming a time-harmonic disturbance in the form 

of exp(- itot), p• is given by the superposition of two waves 
propagating toward the positive and negative directions of x 
as follows: 

p•'=f, exp[i(kxn-tot)]+g, exp[i(-kx,-tot)], (12) 

where k is a wave number given by the relation (5) and 
x.--=x-nd (-dl2•<x•<dl2). Here f• and g• represent the 

(9) respective complex wave amplitudes, which are to be deter- 
mined by relations among the tunnels in the neighboring 
intervals and the resonator in between. Given the excess 

pressure (12), the axial velocity u• in the interval n is de- 
rived immediately by using the acoustic impedance Z as fol- 
lows: 

f" exp[ i( kx,•- tot)]- g" u•=•- •- exp[i(-kx,.- tot)]. (13) 

At the connection point of the resonator x=(n + 1/2)d, 
the boundary conditions require the continuity of mass flux 

Apo(Un-U•+l)=Bpow,, (14) 

(10) and that of pressure 
' ' 05) pn=Pn+l, 

where w n denotes the velocity of the air directed into the 
resonator from the tunnel. 

By the continuity of the pressure, p• must be equal to 
Pn and Thus we can express w n in terms of Pn or Pn+l ' 

p•'+ • by using the acoustic impedance Z•. By the conditions 
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(14) and (15), the relation between (fn,gn) and (fn+l,g•+l) 
is then established through a transmission matrix W as fol- 
lows: 

Xn+l=WXn, 

with 

[gnl 

and 

(16) 

W= [(1 - 1/2•)exp(ikd) - 1/2• ], 1/2.• (1 + 1/2•)exp(- ikd) ] 
(17) 

where •=ZB/ZA and ZA(=Z/A ) is the acoustic impedance 
of the tunnel. Thus Eq. (16) can be solved successively, for 
example, if (f0,g0)' is given. 

But we consider an elementary solution to Eq. (16) in 
the form of Xn = hnC, where C is an arbitrary column vector. 
For this to be a solution, h tums out to be eigenvalues of W. 

When h is set to be exp(iqd), q being allowed to be com- 
plex, q must satisf3, the following dispersion relation so q is 
a complex-valued function of a real •o: 

i 

cos(qd) = cos(kd)- •-• sin(kd), (18) 

where remember titat k is given in terms of •o by (5). This 

dispersion relation is the same in form as that for a wave- 
guide loaded periodically with a shunt impedance, though 

derivation here is different from Bradley's 5 and simple. Us- 
ing the definitions of Za and ZB, i/2• is expressed .as fol- 
lows: 

i KZl(60 ) Ko• 
- (19) 

2• 2Z2(•z} ) 2 ' 

with 

and 

(20) 

r \•o0/ \•o0/ ' 

Here tr ( = V/Ad) raeasures the smallness of the cavity's vol- 
ume relative to the tunnel's one Ad per axial spacing. 'Unless 

the array of resonators were connected, i.e., g=0, q is re- 

duced to k simply :for the 1ossy propagation. Usually •½ takes 

a small value compared to unity. Otherwise the resonators 

would be large unproportionally to the tunnel. As a plausible 
case, suppose a tunnel of diameter 10 m, to which a spherical 

cavity of diameter 6 m be connected through a throat of 

diameter 2 m and of length 3 m with axial spacing 10 m. 
Then s: takes the value 0.144. 

Making use of the smallness of this parameter, Eq. (18) 
can be solved by expanding qd in terms of the power series 

in s:. Neglecting higher-order terms than the first order, it 
follows that 

qd = kd- go•/2 + O(tr2). (22) 

Note that -,1 d is also a solution to Eq. (18), which implies 
propagation toward the negative direction of x. With this 
understanding, only branches of qd having positive real part 
are concerned below. While k involves the intrinsic damping 

and dispersion due to the wall friction and the diffusive ef- 
fect of sound itsell', the second term on the right-hand side 

gives the additional ones, which are small quantities of O(s:) 
so far as • is of O(1). But this approximate solution breaks 

down as • diverges or becomes extremely large. It is further 
to be remarked that it also breaks down as sin(kd) vanishes 
or becomes extremely small s In such exceptional cases, qd 
exhibits a peculiar behavior. We examine these cases in de- 
tail before seeking full numerical solutions. 

A. Lossles.q case 

For the sake o1! simplicity, at first, we consider a lossless 

case by neglecting the terms with v. Then Eq. (18) is reduced 
to 

s:½ sin ½ 

cos(qd) = cos 0+ 2[(w/•o0)2 - 1]' (23) 
where ½ ( = o•d/ac,) is the ratio of the axial distance d to a 
typical wavelength ao/O•. 

Denoting the right-hand side of Eq. (23) by •, types of 
root qd are classified according as I•<1, sC>l or •<-1. For 
I•<l, qd is given simply by -+cos-l•. If cos-l• is defined to 
be the principal value between zero and •, qd is allowed to 
have additive arbit:rariness + 2*rj (j = 1,2,3,...). Of course, 

q is always accompanied with this arbitrariness not only for 

Id<l but altso fo• all values of •. But k [=exp(iqd)] is 
uniquely determined as h = •---i(1- •2)1/2. If Id>l, qd be- 
comes complex. For sO>l, qd=-+ i cosh -1 • where cosh -• ½ 
is defined to be positive by taking 10g[•+(½2-1)1/2], while 
for •<-1, qd= 'rr?' i cosh-ll•. In either case, the product of 
the two roots of h[=•+-(•2-1)1/2], both being real, is unity 
so that the mots are reciprocal. For Ida<l, on the other hand, 
note that they are complex conjugate with each other. 

To check when:her or not Icos(qd)l is greater than unity, 
it is convenient to rewrite Eq. (23) in the following two 
expressions: 

cos(qd)-l=-sin • 2- cot (w/tOo) 2-1 • ' 
(24) 

(•o/m0)2_ 1 ß 
(25) 

If either one or bo•:h of the right-hand sides of Eqs. (24) and 
(25) is positJive, qd is no longer real but complex. For this to 
be so, there are two cases. One occurs as •o•o.• o, while the 

other occurs as tan(C/2) or cot(½/2) diverges, i.e., sin ½•0. 
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The former corresponds to the side branch resonance when a 

frequency of sound wave coincides with the natural fre- 
quency of the resonator. The latter occurs when •od/a o be- 
comes ma' (m = 1,2,3,...), i.e., the axial spacing d becomes 
multiple of a half-wavelength a-ao/o•. This is a Bragg reflec- 
tion by the periodic arrangements of the resonators. When 
the imaginary part of q exists, the wave grows or decays 
spatially because the solutions q to Eq. (23) appear evidently 
in the complex conjugate pair. But only the branch for the 
decay should be chosen in the present context since no en- 
ergy sources exist in the problem. Hence the stopping band 
appears in the frequency. 

Let us first consider the stopping band near o•= o• o. Mak- 

ing use of the small parameter K, the asymptotic behavior as 

o•-•o o is examined by setting •/o•o=l+A. Here IAI is as- 
sumed to be small enough relative to unity. Then •b is also set 
as •b/•=l+A with •bo=o•od/a o. From the relations (24) 
and (25), it is found that • takes unity, within the first order 
of A, at A=A+ given by 

A+= K•-• cot(•), (26) 
while • takes minus unity at A = A_ given by 

A__ K00 (0o) 4 tan -•- . (27) 

Hence the stopping band appears in the range 

l+A_<•/o•o<l +A+ ff tan(•bo/2)>0 or I+A+ 
<•/o•o<l+A_ if tan(q•/2)<0. The width of the stopping 
band is found to be small of order •. As o• approaches %, 
Eq. (23) is asymptotically given by 

•0o sin 00 

cos(qd)= 4A VO(1). (28) 

As A--•0, the imaginary part of qd diverges as 
logicS0 sin 0d2AI. But if sin •>0, then its real part is fixed 
at a- for A<0, i.e., •o/%<1 while zero for A>0, i.e., 
o•/o.,0>1. Conversely if sin •<0, the real part is zero for 
odO•o<l while a- for o.,/o•0>1. Here it is interesting to exam- 
ine a special case in which tan(0o/2) or cot(0d2) diverges, 
i.e., o•od/a o becomes multiple of a-. This is the case when 

the natural frequency of the resonator happens to coincide 
with that for the Bragg reflection. Before going into this case 

in detail, we examine the stopping bands near 
•=ma-ao/d= •o,• (m = 1,2,3 .... ). 

In this case, we set •o/o•,,=l+A (]Alal) so that 
•b/•b m = 1 + A with •b,• = rn a-. Then Eq. (23) is approximately 
given as 

cos( qa)= (-1)'"( l + E ) + O( gA •), (29) 

where 

(ma-) 2 (m a-Am) 2 
E- s ' (30) 

with 

K 

Am- (•o,n/tOo) 2-1' (31) 

The stopping band appears for •>0, i.e., 1 <•o/•o•< 1 + A,• 
ff A,•> 0, while 1 + A,n< •/•o,•< 1 ff A,•< 0. Depending on 
the sign of A,•, the stopping band appears either side of ma- 

only and its width is small of order K. The magnitude of the 

imaginary part of qd is given by (2•) la for •>0. Thus it is 
bounded, unlike the side branch resonance, with its maxi- 

mum given by ma-lA,•l/2 at A=A•/2. As rn increases, the 
width of the stopping band becomes narrower as 1/m 2 and 
the maximum value of the imaginary part becomes smaller 
as 1/m. On the other hand, the real part ofqd is fixed at zero 
or a' according as rn is even or odd, respectively. If the 
additive arbitrariness is employed suitably, the real part may 
be taken as rn a'. 

Here we return to the special case in wMch o• o is equal 
to one of the •Orn'S. Then • in (29) is modified into 

(m•r)2 (A2- ;) +O(•A). (32) E- 2 

Therefore the stopping band appears in the region 
1--(K/2)la<•/O•o<l + (M2) In, which is widened to be of or- 
der x/-•. The imaginary part of qd is given by (2•) •a only 
for E>0. Thus it is found to be bounded to attain the maxi- 

mum (•/2)1/2ma' at A=0. The real part of qd is then fixed 
at rna-. 

B. Lossy case 

Let us next look at the dissipativc effect by reviving the 
terms with v. In this case, qd is always complex, as the 
solution (22) shows, so that the stopping bands are not dis- 
tinguished clearly from the passing bands. Even so, the stop- 
ping bands appear prominently as far as the dissipative ef- 
fects are small. 

The side branch resonance in this case takes place at a 

frequency slightly down from o• o to •o0• given by 

•øø•=•øø 1-•r •oo ' (33) 
where the quadratic terms in (v/too)l/2/r have been ne- 
glected. Here we set aga•o•,=l+A(IA[.•l) so that 
0/0or = I+A with •bo•= too•d/a o. Equation (18) is approxi- 
mated to be 

cos(qd)= K•bø sin •b o +O(1) with tr= (v/tøø)l/2 
4(A+i•r) xfer 

(34) 

Separating q into the real and imaginary parts by setting 
q=q,.+iql, the imaginary part qi in the stopping band is 
given as follows: 

qd= log 12(2+ (35) 
Due to a small but finite value of tr, qid becomes bounded 
and takes the maximum value 

max( q ,d)= log( K •ø[ sin •bø' ) 2a (36) 
at A=0. A half of the maximum value is taken at 
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( t•0.½01sin ½01 )1/2 A + 0 '2 (37) 

On the other h•,nd, the real part q• is given by 

tan-•(o'/A), if sin ½0>0, q,a = (38) 
tan-•(0./A)+yr, if sin ½0<0, 

where tan-•(0./A) is defined by taking the principal value 
between zero and ,r. With this definition, qr d changes 
smoothly across A=0. If sin ½0>0 and 0.411, qr d talkes •' 
for A<0, while it takes zero for A>0. If sin0P0)<0, qr d 
takes 2•' for A<0, while it takes ,r for A>0. On identifying 
2,r to be zero, the result is consistent with that in the lossless 
case. 

Next we consider the stopping bands due to the ]Bragg 

reflection. For the real part of sin(kd) to vanish, a freqaency 
is shifted from 6ore slightly down by the wall friction. Such 
frequencies 6omv (m = 1,2,3,...) are evaluated as 

6omv=6ora[ l_ C 1• . (39) 
By the usual procedure, we set 6o and ½ as follows: 

6o/Wrnv=t,b/lPmv=l+A (IAI41). with Ipmv=6omvdlac,. For 
convenience, we also introduce A through the relation 

-- 1 =rn •'(1 + •). (40) a0 + 2'• . 
Then A and • are related, correctly up to O(t5 ), by 

[ c 1+2--- a. (41) 
Using •, it follows from Eq. (18) that 

cos(qa) = (- 1)'n(1 +E) 

+ O ( K/J'7k, K'•/Re, K/•2, t5,•2, •2/Re), (42) 

with 

and 

C ( la 11/2+ Vd6ora 
V m = 2• \ 6o m / '-•'l-a o ' 

Letting qd = m,r + Or 4- ipi , we have 

oi= -2--' 4'2+ _ 4'2 

-- (•--Am)• , (43) 

(44) 

+4V2m4'2] / , 
(45) 

where 4, =,•- Am/2. It can be easily verified that Oi has a 
single and symmetric peak at 4'=0. Its maximum is given by 
the same value mrlAm[/2 as in the lossless case and its half 
value is taken at 

'4- 

•=-4(AZm -- 2xl/2- (46) -- IOVm) 

While this width should be corrected in A slightly by the 
relation (41), it is almost given by V'JA,n/4 because 

•m41Aml so that the width is found to be of order K. AS 
becomes large, Oi tends to rnrrvm, which corresponds to the 
imaginary part of kd in (22). With the imaginary part Oi thus 
obtained, the real part Or is derived as 

(rn•r)2vm ( •-- •'• m) (47) Or -- [')i ' 

and O• changes antiisymmetrically with respect to ,•= Am/2. 
Finally we examine a special case in which a frequency 

for the side branch resonance coincides with one of the fre- 

quencies for the Bragg reflection, i.e., •o• = •m•, where m is 
fixed to be a certain integer. For this to be so, •o and •m 
must satisfy •the relation: 

1 + (48) 

We set m/w0•=½/qO0•=l+fi (l•l•l). Substituting this into 
Eq. (18) and keeping the lowest terms in fi, it is approxi- 
mated as 

cos(qd)=(-1) m 1+ 4 • A+i•] 
+ O(g•, g8, g/Re), (49) 

where v m • o'. When qd is separated into the real and imagi- 
nary pans by setting qd=m•+pr+ipi, it is found by the 
straightfo•ard calculations that 

It is found that Pi is symmetric with respect to A=0. It de- 

creases monc,tonically •om (g/2)1/2m • at both infinity of 
toward (g/2) 1/2m •'( vm/ff ) 1/2 at • = 0. •e asymptotic value 
for a lmge value of agrees with the maximum in the 
lossless case when the side branch resonance and the Bragg 
reflection overlap. Since v•/• 1, interestingly enough, the 
dissipative effect is found to decrease Pi significantly near 
fi=0. On the other hand, the real pa• qr is given by 

g(m x)2(o '- 

PF- 4(•2+.•pi (51) 
Because of the function •/(•2+•), Pr becomes antisymmet- 
ric with respect to A=0 and tends to vanish as increases. 

C. Numerical results 

Let us show graphically the dispersion relation between 

6o and q by solving Eq. (18) numerically. For an air at 15 øC, 
the following data are used: a0= 340 m/s, y= 1.40, Pr=0.72, 

C= 1.47, /xv//x= 0.60, v=1.45X 10 -5 m2/s, and 
va= 2.49 v. Supposing that the resonator already specified is 
connected to the tunnel of diameter 10 m with the axial 

spacing 10 in, it follows that V=36,r m 3, A=25•' m 2, 
d=10 m, r=l m, B=yr m 2, L=3 m, and K=0.144. The 
natural frequency tzO is then 5.2 Hz and the frequency 6o• for 
the Bragg reflection with m = 1 is 17 Hz. The frequency for 
the higher Bragg reflection with rn •> 2 is simply rn6o•. From 
these data, it is fc,und that (v/6oo)•/2/R=l.3xlO -4 and 
va6oo/ao 2= 1.0 X 10 -•. If a 1/200-scale model is considered, 
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FIG. 2. Dispersion relation of sound waves in the lossless case. (a) and (b) 

show, respectively, the real and imaginary parts of qd as the abscissa and the 
normalized frequency •o/% as the ordinate where the two arrows in (a) 
indicate the real pans fixed at •r and 2•r for the Bragg reflections and the 

imaginary pan vanishes outside of the stopping band. 

they still take such small values as (v/too)t/2/R = 1.9 x 1 O-3 
and Udtoo/a•=2.0XlO -6 for to0=l.04 kHz. Because I/Re 
is comparable with 6 2, we retain only terms in ,5 and ignore 
those in 1/Re. 

Figure 2 exhibits the global features of the dispersion 

relation in the lossless case. Figure 2(a) and (b) show, respec- 
tively, the real and imaginary parts of qd as the abscissa and 
the normalized frequency to/% as the ordinate. Here only the 

branches with the positive real part are drawn so that they 
may become continuous at qd = •r,2•r .... and nondecreasing 
as to increases across there by using the additive arbitrariness 

_+ 2 a'j (j = 1,2,3 .... ). But they may be discontinuous and/or 

decreasing in principle. It is noted that the full dispersion 
relation is given by an infinite number of branches consisting 

of the fundamental branch qd now being obtained together 
with - qd and those differing by _+ 2 •j. Two arrows in Fig. 
2(a) indicate the real parts fixed at • and 2•r during the 
Bragg reflections with m=l and m=2, respectively 
(to1/to0=3.265 and to2/to0=6.530). Figure 2(b) shows that the 
imaginary part appears only in the narrow regions over the 

frequency domain, which constitutes the stopping bands. 

Here the imaginary part due to the side branch resonance 
diverges as to/too•l. 

The local structures of the respective stopping bands are 
enlarged in Fig. 3. Figure 3(a) shows the stopping band for 
to/to o between 0.983 and 1.064. The band width agrees very 

well with (26) and (27) derived asymptotically 
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0.1 0.2 0.3 0.4 0.5 

/rn 

(c) 

FIG. 3. Local structure of the stopping bands. (a), (b), and (c) show, respec- 
tively, the imaginary pans due to the side branch resonance, due to the 

Bragg reflection with rn = 1 and in the degenerate case of the side branch 

resonance and the Bragg reflection with m = 1 where the axial spacing is 
changed from d= 10 m to d=32.65 m. The solid and broken lines repre- 
sent, respectively, the numerical solutions and the approximate solutions 
(2•) 1/2 with (30) in (b) and (32) in (c). 

(1+A_=0.982 and 1+A+=1.066). Figure 3(b) shows the 
stopping band due to the Bragg reflection with m = 1. Here 

and hereafter the solid line represents the numerical solutions 
while the broken line represents the approximate solutions, 
unless otherwise stated. The broken line in this figure is 

drawn according to (2E) 1/2 with (30). The stopping band 
appears for to/too between 3.265 and 3.313 and the maximum 

value of the imaginary part is 2.32X10 -2 . These numerical 
values are to be compared with the approximate ones, i.e., 
the lower and upper bounds of the stopping band are given 

by 3.265 and 3.314 while the maximum value is given by 
2.34x 10 -2. Figure 3(c) shows the stopping band in the de- 
generate case in which the side branch resonance coincides 

with the Bragg reflection with rn = 1. This case occurs when 

the axial spacing is changed from d--10 m to d=32.65 m 
(so that •:=4.41x10-2). The structure of the side branch 
resonance seen in Fig. 2 is destroyed and the one of the 

Bragg reflection prevails instead. The stopping band is now 
widened for to/to o between 0.859 and 1.152 in spite of the 
smaller value of •: compared with the case in Fig. 3(a). The 
approximate lower and upper bounds of the stopping bands 
are given by 0.852 and 1.149. The imaginary part takes the 
maximum value 0.4627 at a frequency slightly shifted above 
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FIG. 4. Dispersion relation of sound waves in the lossy case. (a) and (b) 
show, respectively, the real part of qd minus ,$otO/wo with ½o = •ood/a o and 
the imaginary pan of qd as the abscissa and the normalized frequency m/to o 
as the ordinate where the solid line represents the numerical solutions in the 
1ossy case while the broken line represents the numerical ones in the losstess 
case for reference and the horizontal scale in (b) is magnified by 10 :• times 
that in Fig. 2. 

to to/too = 1.005, which is to be compared with the approxi- 
mate result 0.4665 at to/too= 1. 

Next we take account of the dissipative effects. ff the 
dispersion relation is displayed with the same scalings as in 
Fig. 2, no differences can be recognized except that the 
imaginary part due to the side branch resonance is now sup- 
pressed to be finite. In order to make the differences stand 

out, a kind of deviations from the dispersion relation in the 
lossless case is illustrated. In the lossless case, q approaches 
to/a o as to increases. This means that the sound waves tend 

to be nondispersive in the high-frequency limit just as in the 
tunnel without the array of resonators. In view of this, it 

appears to be informative to illustrate the real part of qd 
subtracted by tod/a o. Figure 4(a) shows the real part 
qd- ½oto/too with ½0 = tood/ao as the abscissa and the', nor- 
malized frequency to/too as the ordinate. The solid line: rep- 
resents the numerical solutions in the 1ossy case while the 
broken line represents the numerical ones in the lossless 

case. Even in this figure, the dissipative effects are found to 
be very small. In Fig. 4(a), the real part is of course bounded 
as to/m0--•l. The real part for the Bragg reflections is seen to 
exhibit a structure similar to that of the side branch reso- 

nance where the real part qd minus ½0to/too vanishes at 
to= tom in the lossless case. On the other hand, Fig. 4(b) 
shows the imaginary part of qd with the abscissa magnified 
by 103 times compared with that in Fig. 2. The imaginary 

FIG. 5. Local structure of the stopping band due to the side branch reso- 
nance in the loss,y case. (a) and (b) show, respectively, the real and imagi- 
nary parts of qd as the abscissa and the normalized frequency •o/•o o as the 
ordinate where the solid lines represent the numerical solutions while the 
broken line represent the approximate solutions (35) and (38). 

part is always present over all frequency domain but it is 
enhanced pronouncedly due to the side branch resonance and 

the Bragg reflections. As to increases, the imaginary part due 
to the intrinsic damping is seen to increase. 

The subsequent figures, Figs. 5 and 6, show the local 
structures of the respective stopping bands due to the side 

branch resonance and the Bragg reflection with rn = 1. In Fig. 
5, the broken lines represent the approximate solutions (35) 
and (38). It is seen that they can describe very well a sharp 
transition behavior in the vicinity of to/too = 1. The frequency 
for the peak in the imaginary part is lowered slightly to 
to0dto0=0.999 according to (33). The maximum value 4.102 

and its half-width 0.01457 agree well with the approximate 
values 4.101 and 0.01450 calculated by (36) and (37), re- 
spectively. In Fig. 6, the broken lines represent the approxi- 
mate solutions (45) and (47). The imaginary part attains the 
maximum value 2.319X10 -2 at to/w0=3.289, which provide 
good agreement with the approximate one 2.342•10 2 at 
to/to0=3.287. The half-width 0.04138 is to be compared with 
the approximate one: 0.04214 based on (46). Finally the glo- 
bal features of the dispersion relation in the degenerate case 
corresponding to Fig. 3(c) is depicted in Fig. 7. Two arrows 
indicate the real parts for the Bragg reflections with rn = 2 
and rn = 3. The very sharp drop in the imaginary part near 
6O/wo=l is observed. Its local structure is shown in Fig. 8 
with the broken lines given by (50) and (51). The minimum 
value 0.1787 agrees well with the approximate one 0.1788. 
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FIG. 6. Local structure of the stopping band due to the Bragg reflection with 
m = 1 in the lossy case. (a) and (b) show, respectively, the real and imagi- 
nary parts of qd as the abscissa and the normalized frequency ta/t.• as the 
ordinate where the solid lines represent the numerical solutions while the 

broken line represent the approximate solutions (45) and (47). 

III. BLOCH WAVE FUNCTIONS 

Since the relation between o• and q (i.e., k) is now avail- 
able, we can specify the pressure field p• given by (12). For 
the respective eigenvalues k*-, the eigenvectors of the matrix 
W are denoted by C -+, respectively. Here and hereafter the 
sign "___" is understood to be ordered vertically and k + and 
k- are defined to correspond, respectively, to propagation 
toward the positive and negative direction of x. A general 
solution X n to Eq. (16) is then represented by the superposi- 
tio n of the two eigenvectors: 

X,=(k+)"C+ + (k-)"C - . (52) 
• + ñxT 

Denoting C -+ by the components •cl ,c 2 ) , T being the 
transposition, and setting k+-=exp(-+iqd) where the real 
part of q is chosen positive, p• is expressed as follows: 

Pn 

= [c•- exp(ikxn) + c• cxp( - ikxn)]exp[i(qnd- o•t)] 

+ [c•- exp(ikxn) + c•- cxp(- ikxn)]exp[i( -qnd- o•t)]. 

(53) 

Here we introduce the functions •-+(Xn): 

•-+(Xn)=[c• exp(ikxn)+c • exp(-ikxn)] exp(-T-iqxn), 
(54) 

where •ñ(Xn) are defined only for -d/2•<x,,•<d/2 and 
ß ñ (xn) takes the same values at both ends x n = _ d/2 due to 

FlG. 7. Dispersion relation of sound waves in the 1ossy and degenerate case 
of the side branch resonance and the Bragg reflection with rn = 1 for the 
axial spacing d=32.65 m. (a) and (b) show, respectively, the real and 
imaginary parts of qd as the abscissa and the normalized frequency o•/{o o as 

the ordinate where the two arrows in (a) indicate the real parts for the Bragg 
reflections and the solid line along ogo•0=l in (b} shows the sharp drop of 
the imaginary part from its peak. 

the boundary condition (15). We then extend (l)•(Xn) peri- 
odically into the outside of the interval of definition with 

period d. Denoting the functions by ß -+ (x) [ = <b -+ (x + d) ], 
p' at an arbitrary point of x can be expressed, with the suffix 
n dropped, in the form of 

p' = ß + (x)exp[ i(qx- o•t) ] + •- (œ)exp[ i( - qx- o•t) ]: 
(55) 

The first and second terms represent the Waves propagatitlg 
toward the positive and negative directions of x, respectively. 
If q is real, i.e., o• is chosen within the passing bands in the 
lossless case, the exponential functions are periodic with pe- 
riod 2•'/q. This period is usually incommensurate With the 
period d of •ñ, so the product of both functions no longer 
become periodic but aperiodic. Note that even if temporally 
monochromatic, it is not so spatially. Each of the solutions 

ß ñ (x) exp[ i( - qx - o•t) ] is called a"Bloch wave function," 
while q is called a "Bloch wave number." 

The functions ß • (x) can be determined except for scale 
factors because only the ratios c•/c• are specified as 

+ - + sin(qd) - sin(kd) + -•- cos(kd) ci- • - : ' 
(56) 

or 
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FIG. 8. Local structure of the stopping band in the 1ossy and degenerate case 
shown in Fig. 7. (a) and (b) show, respectively, the real and imaginary parts 
of qd as the abscissa and the normalized frequency o•/a• 0 as the ordinate 
where the solid lines represent the numerical solutions while the brukc:a line 
represent the approximate solutions (50) and (51). 

--• = - sin(qd) + sin(kd) - -•- cos(kd) (57) ' 

By these relations, it is found that c•/c• is equal to c•/c• 
and that q•- (x) is derived from • + (x), except a scale factor, 
only by reversal of the sign of x. If the approximate solution 
(22) is used in (56) and (57), 9 it follows that 

+ ci- C2 

c•' - c•- - 4 sin(kd) +O(K2)' (58) 
As is seen in (53), c• and c• represent, respectively, the 
amplitudes of the reflected waves by the neighboring resona- 
tors. Since K is sm•l, the reflection is small of order K in the 

passing bands. • • tends to diverge or as sin(kd) tends to 
vanish, i.e., as a frequency approaches the stopping band, the 
relations (58) show that the reflection is enhanced. 

In the stopping bands, however, (58) d•s not hoht. If 

the lossless case is assumed, it can be shown, on setting 
c•/cF=c- exp(ta-•, c • and being real, that Icl=l 
and 

:+-- i sin(qd) 

tan a +- - sin(kd) - (Ko•/2)cos(kd)' (59) 
In the passing band, on the contrary, c•/c• remains real as 
(56) and (57) suggest. 

Figure 9 illustrates explicit profile of the function 
ß +(x) normalized by •+(0) for a frequency in the passing 
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FIG. 9. Profile o•1! the fulaction &+(x) [•-rb+(x)/qb+(0)] in the passing 
band (og•=3); (a) and (b) show, respectively, its real and imaginary parts. 

band while Figs. 10 and 11 illustrate those for frequencies in 
the stopping bands due to the side branch resonance and due 

to the Bragg reflection with m = 1. Assuming the dispersion 
relation in the lossless case shown in Fig. 2, to/to o is chosen 
in Figs. 9, 10, and 11, respectively, to be 3, 0.99, and 3.289. 
On setting •+(x)/•+(0) to be &+(x), (a) and (b) in each 
figure show, respectively, the real and imaginary parts of 
&+(x). Since •-(x) can be reproduced from cb+(x), its 
explicit profile is not given. Next, multiplying &+(x) by 
exp[i(qx-tot)] to derive the normalized Bloch wave func- 
tion for the pressure disturbance in (55), Fig. 12 shows the 
resulting profile in the passing band with its real and imagi- 
nary parts in (a) and (b), respectively. It appears to be sinu- 
soidal locally, but it is aperiodic. Figures 13 and 14 show the 
real part of the normalized Bloch wave function in the stop- 
ping band due to the side branch resonance and the Bragg 
reflection with m = 1, respectively. Their imaginary parts can 
be proven to vanislh identically because of the relation 

c•/C• =exp(ia+). Rut it is to be noted that the imaginary 
part of q• +(x)exp(iq'x), unless normalized , does not vanish 
and.it decays as x increases in a similar fashion. 

Here it should be remarked that the spatial profile of the 
Bloch wave function is discontinuous in slope at the connec- 
tion points x=(n+l[/2)d, although the magnitude of the 
jump is too small to be visible in Figs. 12 and 14. This can be 
understood as follows. For the time-harmonic disturbance, 
the pressure is proportional to the velocity potential if intro- 
duced. The boundary condition (15) for the continuity of 
pressure requires also the continuity of the velocity potential 
there. But the conditilon (14) implies that the spatial deriva- 
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FIG. 10. Profile of the function qb+(x) [--=qb+(x)/qb+(0)] in the stopping 
band due to the side branch resonance (o•/%=0.99); (a) and (b) show, re- 
spectively, its real and imaginary parts. 

tives of the velocity potential are subjected to the jump to be 
balanced with the mass flux into the resonator. 

IV. DISCUSSIONS ON CONTINUUM APPROXIMATION 

In the light of the dispersion relation obtained, we now 
discuss the validity of the continuum approximation intro- 

duced in the previous papertl This approximation exploits the 
assumption that a typical wavelength ao/to is much longer 
than the axial spacing d, i.e., tod/ao• 1 so that the array of 
resonators may be averaged per unit axial length of the tun- 
nel. Then p' is governed by a following equation with the 
effect of the continuous distribution of the resonators on the 

right-hand side (see the Appendix): 

, 02t>, 2Cao2v 1/2 8-1/2 {O2p' I 02P a 02 + -- 

t9 ( t92p' / o•p• ' (60) 
where 1/R* = ( 1 - BR/2A d)/R and R* •R because B •A. 
This equation is closed by Eq. (10) with p[ = p'. In a 
lossless case, these equations are combined into a following 
single equation: 

r/32 ,/32 •2) •2] 2 2 KtO• •-• p --0. (61) 

Assuming p' and p• in the form of exp[i(lxr- •ot)], I being 
a wave number in the continuum approximation, the disper- 
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FIG. 11. Profile of the function qb+(x) [--=qb+(x)/•+(0)] in the stopping 
band due to the Bragg reflection with m = 1 (odm0=3.289); (a) and (b) show, 
respectively, its real and imaginary parts. 
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FIG. 12. Spatial profile of the normalized Bloch wave function for the 
pressure p'+ [--= &+(x)exp(iqx)] in the passing band (•o/m0=3); (a) and (b) 
show, respectively, its real and imaginary parts. 
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FIG. 13. Spatial profile of the normalized Bloch wave function for the 
pressure p'+ [--•+(x)exp(iqx)] in the stopping band due to the. side 
branch resonance (td•=0.99) where only the real part is shown and the 
imaginary part vanishes identically. 

sion relation of Eq. (60) with Eq. (10) is obtained as follows: 

C 

(!d)•[l_x/•(l+i) a• ] 

- I Z2(ro). 0 2, (62) 
where Z:(•o) is defined by (21) and qb= {od/ao(•l ). 

We now examine the full dispersion relation (18) in a 

frequency domain corresponding to this approximation. In a 
lossless case, Eq. (18) is expanded in terms of o•d/a o as 

(qd)2= (1 + re) ½2 + (•o + (63) K •) •/4 + O(06), 
with 00 = o•od/a o provided that o• is assumed to be rmch 

smaller than o• 0. But if m 0 is assumed to be as small as o•, 

then the expansion should take the following form: 

K 4 (qd)2= [ 1 (•/•o0)2_ 1 ] •2+ O(q/). (64) 
This dispersion relation agrees with (62) in the lossless case 

on identifying I to be q. In a low-frequency limit (o>-•0), the 
phase speed {o/l is found to be no longer a 0 but a slower 
value no/(1 + K) x/2. As •o increases and the right-hand side 

1.5 

Re [p'+)O.O 

xld 

FIG. 14. Spatial profile of the normalized Bloch wave function far the 

pressure p'+ [ d,+(x)exp(iqx)] in the stopping band due to the Bragg 
reflection with ra = 1 (odO•o=3.289) where only the real part is shown and 
the imaginary part vanishes identically. 

of (64) becomes negative, the stopping band appears for 
l<odO•o<(l+g)m=l+K/2+O(K 2) but not below 
og%= 1. This result is consistent with (26) and (27), if the 
limit as 00-•0 is taken. In a 1ossy case, qd in (18) is ex- 
panded, on assuming o• 0 to be comparable with to, into 

(qd)2= l+¾t'•(l+i)•[•j + a_•0 Z2(o•' ½2, 
(65) 

where only the lowest dissipative terms are retained and the 

product of these terms with t½ has been discarded because • 

is also assumed small in the continuum approximation. It is 
readily seen that both dispersion relations (62) and (65) agree 
as far as the lowest dissipative terms are concerned and the 

difference R - R* is ignored. 
Next, we discuss a far-field approximation introduced on 

top of the continuum approximation. t In the passing bands, 
both effects of the dissipation and of the resonators are neg- 
ligibly small over • short distance such as several wave- 

lengths. It is a far field that they manifest significantly due to 
their cumulative effects. To focus on this far field, we intro- 

duce a retarded time 0 (= t-x/no) measured by the sound 
speed a 0 instead of t but with the same spatial coordinate X 
(=x). Suppose that both small effects due to the dissipation 

and the array of resonators were ignored completely, the 
sound waves are pro3agated with a 0 in the both directions of 
x. If only the wave propagating in the positive direction is 
pursued, then p' is given by a function of 0 only and is 
independent of X. But when both effects are taken into ac- 
count, p' now' depends on X but weakly. Then a magnitude 
of •p'/•X is much smaller than a•Sp'180 by the order of 
8, Re-t or K. Hence the first two terms on the left-hand side 
of Eq. (60) may be approximated as 

-• "Z--an Ox-• -=2aø o'-•-• -no '• -r•'2aø oX 
(66) 

Further neglecting •e small derivative in X in the third and 

fourth terms o ? Eq. (60), we derive the evolution equation for 
p' in the far-field approximation as follows: 

aX I- ad•, •-•z-Tf- 2a30 • - 2a ø 80' (67) 
where an integration constant depending on X has been set 
equal to zero by assuming a suitable condition. When the 

dispersion relation of Eqs. (67) with (10) is examined on 

assuming p' .and p•': in the form of exp[i(KX-•o0)], K 
being a wave number in the far-field approximation, it fol- 
lows that 

[1+i C (•) t2 ivdoJ g ] + o. (68) 
From the definition of the phase KX- o• 0 
=(K+ ro/ao)x - •ot, K+ m/a o corresponds to I so that Kd is 

nothing but ld- rodin o (=ld- •P0odo•0). In fact, (68) is de- 
rived from (62) as far as the lowest dissipative effects are 
taken and K/Z2(o• ) remains to be of order g. 
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FIG. 15. Comparison of the dispersion relations by the continuum approxi- 
mation and the far-field approximation with the full relation in the 1ossy 
case. (a) and (b) show, respectively, the real part of qd-•boOdO• o 
(ld- •oOdO)o or Kd) and the imaginary part of qd (ld or Kd) where the 
solid lines represent the full dispersion relation (18) while the dotted and 
broken lines represent the continuum approximation (62) and the far-field 
approximation (68), respectively. 

FIG. 16. Comparison of the local dispersion relations by the continuum 
approximation and the far-field approximation with the full relation in the 

1ossy case. (a) and (b) show, respectively, the real part of qd- 
(ld- •oO)/(o o or Kd) and the imaginary part of qd (ld or Kd) where the 
solid lines represent the full dispersion relation (18) while the dotted and 
broken lines represent the continuum approximation (62) and the far-field 
approximation (68), respectively. 

We now compare graphically the dispersion relations 
(62) and (68) by the continuum and far-field approximations 
with the full relation (18) in the lossy case. Figure 15(a) and 
(b) show, respectively, the real and imaginary parts of the 
wave number qd-Ooto/to o and the corresponding ones 
ld-•boto/to a and Kd. The solid lines represent (18) while 
the dotted and broken lines represent (62) and (68), respec- 
tively. Except the Bragg reflections, they agree quantitatively 

and qualitatively as well beyond the low-frequency domain. 
But the imaginary part due to (18) is always greater than the 
remaining two, namely the continuum and far-field approxi- 
mations underestimate the damping. Figure 16 magnifies Fig. 
15 around the side branch resonance where the respective 
lines correspond to those used in Fig. 15. In a very narrow 

domain, three dispersion relations differ considerably. It is 
found that the continuum approximation, especially the far- 

field approximation overestimate both the dispersion and the 
damping in this domain. 

v. CONCLUSIONS 

The dispersion characteristics of sound waves in a tun- 
nel with an array of Helmholtz resonators have been exam- 

ined in detail over all frequency domain. It has been revealed 
that they exhibit the band structure by the side branch reso- 

nance and the Bragg reflections. Effect of the dissipation has 
been examined in detail and compared with the lossless case. 
In a plausible case, the wall friction and the diffusive effect 

of sound are very small except for the stopping bands. In a 
narrow frequency domain around the side branch resonance, 

the dissipative effects play a primary role to render the 

damping rate large but finite. For the Bragg reflection, how- 
ever, the damping rates themselves are finite even in the 
lossless case so that the effects are found to remain second- 

ary. 

Interesting finding is that in case where the side branch 

resonance coincides with the Bragg reflection, the structure 

of the real and imaginary parts due to the side branch reso- 
nance is destroyed and the bandwidth is widened even in the 

lossless case. In the 1ossy case, however, it is found that the 
damping rate is suppressed significantly, though in the very 

narrow region around the frequency of the side branch reso- 
nance. 

The continuum approximation and further the far-field 

approximation can provide a good description of the full 

dispersion relation in the low-frequency domain. Even be- 
yond this domain, they agree well with the full dispersion 
relation, although they fail, of course, to describe the Bragg 
reflections resulting from the discrete distribution of the 

resonators. While both approximations underestimate the 
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damping over most of the frequency domain, it is noted that 
they overestimates the dispersion and the damping in a very 
narrow frequency domain around the side branch resonance. 
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APPENDIX 

The Appendix is devoted to a brief derivation of the 
basic equation (3)ß In a framework of the linear theory, the 
equation of continuity and the equation of motion in the axial 
direction are given by taking account of both the wall fric- 
tion due to the thin boundary layer and the diffusive effect of 
sound itself as follows: 

•+p00U-1 • Ox A pou. ds, (A1) 

Ou op + (A2) po 5 

where p, u, and p denote, respectively, the density, the axial 

velocity and the pressure, all averaged over the tunnel's cross 

section displaced by the boundary layer; vn denotes the ve- 

locity component at the edge of the boundary layer directed 

normally inward of the cross section and the line integral is 
taken along its periphery, ds being the line clement. At the 
edge of the boundary layer, v n is related to u by the follow- 
ing fractional derivative of the minus half-order: •'7 

O-m(Ou) v"=Cvla Ot ---• •xx ' (A3) 

Thus the right-hand side of Eq. (A1) is given by 2pov,/R 
where R is a hydraulic radius of the cross section. In addition 
to (A1) and (A2), wc require the equation of state for the 
ideal gas, which is given fully by 

' ¾ 117 [ S-S0./' (A4) 
P0 

where S denotes the entropy and the subscript 0 implies val- 
ues at the equilibrium state. 

Elimination of u and p from Eqs. (A1) to (A3) leads to 
Eq. (3) for P'(=P-Po). In this process, the small entropy 
change due to the thermoviscous effect 1'? 

(7- l)kr 0u 
S-So = 

7P0 Ox ' 

must be included through 

0p=0 0p 0o os 
0t op s ' 

(AS) 

(A6) 

Since only the lowest dissipative effects are concerned here, 

the lowest relations in the equations 

O2u 1 O2u 1 Oep 
(A7) 

are used to evaluate the dissipative terms to yield Eq. (3). 
Therefore O2o/Ox 2 in the third and fourth terms of Eq. (3) 
may be replaced by a• 2 c)2p/Ot •. Both equations are asymp- 
totically eqmvalent, though mathematically different equa- 
tions, of comse. In view of the number of initial and bound- 

ary conditions to be imposed, however, the alternative 
equation is inappropriate. 

Finally we mention the derivation of Eq. (60) by the 
continuum approximation for the array of resonators. Com- 
paring with the derivation above, only difference lies in 
evaluation of the right-hand side of Eq. (A1). When the reso- 
nators are connected, the integration of the velocity On along 

the periphery is divided into two parts, one being due to the 
boundary layer on the tunnel wall and the other due to the 
resonator. Denoting the velocity (A3) at the edge of the 
boundary layer by v• and the velocity into the resonator by 
-w, respectively, the right-hand side of (A1) is evaluated 
per unit axial length of the tunnel as • 

i_ -Vp0w], (AS) A •povnds=x[(R•------NB)poVb 
where N (= l/d) is the number density of the resonators 
along the tunnel. By using (A3) and Bpow 

2 

= (V/ao)OpffOt derived from (7) with Wc=W and the adia- 
batic approximation, (A8) is written as 

2pøCvl/: c)-•/• ( On) • OPc• (A9) •; O'-t TM •xx -a•o 

where l/R* ts defined as (1-BR/2Ad)/R and R•R* be- 
cause B/A -= (r/R)2• 1 and •= V/Ad. Following the same 
procedure leading to Eq. (3), we arrive at Eq. (60) which 
takes accounl of the array of resonators based on the con- 

tinuum approximation. 
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