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ABSTRACT

Dispersion curves are plotted for the extraordinary branch of
the electron and ion cyclotron harmonic waves propagating per-
pendicularly to the static-magnetic field in a non-relativistic,
hot Maxwellian plasma, without invoking the electrostatic
approximation. It is found that, except in the vicinity of

the cyclotron harmonics and the hybrid resonances, either

the cold-plasma or the electrostatic approximation are accurate
representations of the exact solution. The hybrid resonances

of the cold-plasma model become monotonically shrinking regions
of low group velocity as the temperature is increased, till

all discernible evidence of these resonances disappears as

the parameters corresponding to the thermonuclear plasmas are

approached.




1. INTRODUCTION

In this paper, numerically computed dispersion curves are
presented for the electron and ion-cyclotron harmonic waves
propagating perpendicularly to the static magnetic field in a
hot Maxwellian plasma. Since the electrostatic approximation
is not used and only the extraordinary waves are considered,
the resultant modes are referred to as the generalized Bern-
stein modes, in the manner of Fredricks (1968). Instead of the
usual Stepanov (Stix 1962) form of the hot plasmé dielectric
‘tensor, an equivalent derivation (possessing, however, greater
elegance and symmetry) due to Derfler and Omura (1967) is

employed in the computations.

Following the work of Gross (1951), Sen (1952), Gordeyev
(1952), and Bernstein (1958), Dnestrovskij and Kostomarov (1961)
undertook a detailed study of the hot Maxwellian plasma dis-
persion relation, both for the ordinary and the extraordinary
electron modes, without invoking either the electrostatic
approximation or the small parameter expansion used by the
previous authors. They give accurately computed dispersion
curves obtained from the complete hot-plasma dielectric tensor
for a wide range of parameters, as well as their comparison
with the cold-plasma and electrostatic approximations. Extensive
computations of the electrostatic electron-cyclotron-harmonic
waves with several different velocity distributions, as well
as a bibliography of related work, are given by Crawford (1965)
and Tataronis (1967). Work of Canobbio and Croci (1966) and
Dougherty and Monaghan (1966) contain a thorough qualitative

examination of the generalized electron Bernstein modes.



Outstanding among the studies of ion waves is the paper
of Fredricks (1968) which, as we shall see later, is an un-
cannily accurate qualitative description of the generalized

ion-Bernstein modes.

In addition to comparing our results with the references
quoted above, the region of applicability of the electrostatic
and the cold-plasma approximations, as well as the electric
field polarizations, will be discussed. The relativistic effects
are excluded at the outset, and a collisionless plasma model
with a Maxwellian velocity distribution of equal electron and
ion temperatures is assumed. Unless otherwise specified, the
units used are relationalized MKS. The presentation of the
electron and ion dispersion curves in § 4 and § 5, respectively,
is preceded by brief descriptions of the cold-plasma dispersion
in § 2 and of the Derfler-Omura hot plasma dielectric tensor

in §S3.

25 COLD~-PLASMA DISPERSION

The dispersion relation for the extraordinary wave in a

cold, uniform plasma is given by (Stix 1962),
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is satisfied with the upper sign for w = w_, and with the lower
sign for w = Waoe and where Woh is the lower hybrid resonant

frequency
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and N is the upper hybrid frequency
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The two resonances W and ®ih together with the two cut-off
frequencies Wy and .o combine to give a dispersion curve
with three distinct branches (Fig.l) which will be referred

to as the lower, the middle and the upper branch, respectively.

The hybrid resonances act as regions of strong wave ab-
sorption (Budden 1955) and have long been coatenders for the
heating of thermonuclear plasmas. One of the objectives of
this work is the careful examination of the hot-plasma dis-

persion in the vicinity of these resonances.

3. HOT~-~-PLAGSMA DI SPERSION

Instead of the Stepanov hot-plasma dielectric tensor (Stix
1962) in which the entire particle current is treated as the
polarization current, we shall use the alternate description
of Derfler and Omura (Omura 1967) in which the first order
current density is subdivided into polarization and magnetization

currents, so that the Maxwell’s equations become
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where the dielectric and diamagnetic tensors e and/u, respectively,
are given as
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For an isotropic Maxwellian particle velocity districution the

dielectric tensor components are given by
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j denotes the particle type, sj =T 1 is the sign of the charge
carried by the particle,r] is its charge to mass ratio, 6 is
the temperature expressed in volts, T, is the cyclotron radius,
In(l) is the modified Bessel function in the notation of Watson
(1922) and & = Z(%IQ is the Fried function (Fried and Conte

1961l) defined as
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Relations similar to (11 - 13) exist for the/u tensor also.

We stress that, apart from appearance, the Stepanov and
the Derfler-Omura tensors are entirely equivalent (Omura 1967).
This has been independently confirmed by Leuterer and Tutter |

(1972). In fact, O‘Sullivan (1972) has derived the Derfler-Omura




tensor from the relativistic tensor of Trubnikov (1959) using
appropriate limits. Although, in the context of the présent
undertaking, no significant computational advantage accrues by
using either one of the two forms of the dielectric tensors,

we prefer the Derfler-Omura description which, unlike the Stepanov
tensor, satisfies the Onsager relations even when both kx and k

are non-zero (see Cato et al. 1971).

For the parameter ranges used in this paper, we have con-

firmed through direct computations that
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where I is the identity tensor. If we confine our attention to
<> <>
the frequency region defined by (18), we may replace/u by I.
With this provision, the dispersion relation for perpendicular

propagation can be factored into ordinary and extraordinary

waves in the standard manner. For the extraordinary mode.
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In the subsequent sections, dispersion curves obtained by the

humerical solution of (19) are presented.



4, T HE ELECTRON MODES

For perpendicular propagation 4 _-—>° , Z, —7 __4/-6“‘ >

so that (11) and (13) become
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For the electron modes further simplication occurs by neglecting

the small icn contribution because wpiz/h2<¢<l so that (20) and

(21) vyield,
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where To = wpe/w and Q,

and (23) are truncated for some N such that the inequalities
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are satisfied. The second of these inequalities (Abramowitz and
Stengun 1964, § 9.6.38) constitutes an independent check on the

accuracy of In(r). The two inequalities together ascertain that
>
the tensor components of € are computed with an accuracy ex-

ceeding one part in a thousand in the frequency region defined

by (18). Substituting the values of € and GXY obtained from

X
(22) and (23), the dispersion relation (19) can be solved using

standard iteration techniques. In general, an infinite set of
solutions exists for the transcendental dispersion relation.
However, we shall confine our attention to the solutions with

real w and k wvalues.

The dispersion curves so obtained for two different values

of r 2

s the

are shown in Figs.2 and 3. At low values of o *

upper-hybrid resonance of the cold plasma is replaced by a
"plateau" of low group velocity (Fig.2) which in turn vanishes

for higher values of T, .

o (Fig.3). A somewhat different

qualitative behaviour at the hybrid frequency occurs (Fig.4)

for the case Wog ¢ W & zwce when no real solutions exist in

uh

the region wh <0< 2mc so that the "plateau" near W, X~

e

tends over a much wider range of k. Apart from contributing
these observations in the vicinity of the upper-hybrid fre-
quency, our results are essentially similar to the dispersion
curﬁes of Dnestrovskij and Kostamorov (196l1). We shall not dwell

and w

on other cases involving different values of w 9 &0

w
uh’
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because the structure of the dispersion curves is predictable

and resembles that of Figs.2 and 3.

A comparison of the generalized Bernstein modes with the
electrostatic and cold-plasma approximations is shown in Figs.
5 and 6 for the parameters of Figs.2 and 3, respectively. (In
these and some later plots, parts of the dispersion curves have
been omitted to facilitate clearer presentation.) It is seen
that these two approximations yield between them accurate in-
formation about the exact solution except near the upper-hybrid
frequency, where the exact solution lies somewhere between the
two approximations. For the set of modes lying just underneath

v __, however, there is no counterpart in either the cold plasma

ce

or the electrostatic approximations.

The generalized Bernstein modes are elliptically polarized
being electrostatic (k || E) fcr large k. This is clearly seen
from Fig.7 where dashed lines (dotted in regions of uncertain
computational accuracy) represent contours of constant value
of the ratio R given by

R = Ex/Ey
where Ex and Ey are the electric field components along the
directions k and k x B, respectively. R typically exceeds loo
in the region of validity of the electrostatic approximation.
At the two cutoffs w.y and Y R = 1 corresponding to circular

polarization (Pfirsch and Tutter 1963).
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For the ion modes by << 1, and (20) and (21) simplify to
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The exact solution, as well as the cold-plasma and electrostatic
approximations for two different values of rciz, are shown in

Figs.8 and 9. As in the case of the upper-hybrid resonance,

the cold-plasma resonance at the
placed by a plateau of low group
disappears as the temperature is
clusions regarding the behaviour
have been just reported by Nambu
of this manuscript. For the case

lutions exist for Wep & O <‘2wci

lower-hybrid frequency is re-
velocity (Fig.8) which gradually
raised (Fig.9). Similar con-

at the lower-hybrid frequency
(L972) during the preperation

no real so-

' < Wpp & 2wci

as in the case of the electron

modes. These results are in exact agreement with the qualitative
curves of Fredricks (1968). Finally, the polarization of the

ion modes characterized by the ratio R defined in (26) is

shown in Fig.lo. All ion mode computations have been performed

using the Deuterium mass.




6. DI SCUSSION AND CONCLUSIONS

The electron and ion modes of Fig.3 and 9, respectively,
drawn for parameters resembling thermonuclear conditions show
that the hybrid resonances can not be expected to play a direct

role in the rf heating of thermonuclear plasmas.

Unlike the electron modes, the ion modes posséss a fast
electromagnetic branch below the hybrid frequency. This fast
wave has a cutoff (k—o0 as w—rNw_ 4 from above) and a region
of low group velocity ( 2w/0k->o0 as w—nw from below). The
inclusion of damping either due to collisions or finite k
could lead to ion heating (Wharton 1971) if the waves launched
in a high magnetic field region approached a "beach" where
W —> Nw_; - similar effects may cause the slow wave to damp in
either a decreasing or an increasing magnetic field as w-—snw_y
from either below or above. It may then be possible that in
thermonuclear plasmas, the cyclotron-harmonic absorption
mechanism will be an effective replacement for the heating

at the hybrid resonances.
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Fig. 6 Comparison of the exact solution of the electron

modes with the electrostatic and cold-plasma

approximations with rce2 = 1.13 x 1o™° cm® and
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The polarization of the generalized electron Bern-
stein modes. The dashed lines (dotted in regions of
uncertain computational accuracy) are contours of
constant R defined in (26)
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Fig. 9 Comparison of the exact solution of the ion modes
with the electrostatic and cold-plasma approximations
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The polarization of the generalized ion Bernstein
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certain computational accuracy) are contours of
constant R defined in (26)




