// / | - y v -,‘ . 2
/4 /l P Physics of [ /
/ / A / ,/1 4

/
/
/

'

Dispersion due to electroosmotic flow in a circular microchannel with slowly
varying wall potential and hydrodynamic slippage
Chiu-On Ng and Qi Zhou

Citation: Phys. Fluids 24, 112002 (2012); doi: 10.1063/1.4766598
View online: http://dx.doi.org/10.1063/1.4766598

View Table of Contents: http://pof.aip.org/resource/1/PHFLE6G/v24/i11
Published by the American Institute of Physics.

Additional information on Phys. Fluids

Journal Homepage: http://pof.aip.org/

Journal Information: http://pof.aip.org/about/about_the_journal
Top downloads: http://pof.aip.org/features/most_downloaded
Information for Authors: http://pof.aip.org/authors

ADVERTISEMENT

Running in Circles Looking
for the Best Science Job?

Search hundreds of exciting
new jobs each month!

http://careers.physicstoday.org/jobs
physicstoday JOBS

Downloaded 13 May 2013 to 147.8.230.52. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions


http://pof.aip.org/?ver=pdfcov
http://careers.physicstoday.org/post.cfm?ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Chiu-On Ng&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Qi Zhou&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4766598?ver=pdfcov
http://pof.aip.org/resource/1/PHFLE6/v24/i11?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://pof.aip.org/about/about_the_journal?ver=pdfcov
http://pof.aip.org/features/most_downloaded?ver=pdfcov
http://pof.aip.org/authors?ver=pdfcov

PHYSICS OF FLUIDS 24, 112002 (2012)

Dispersion due to electroosmotic flow in a circular
microchannel with slowly varying wall potential
and hydrodynamic slippage

Chiu-On Ng? and Qi Zhou
Department of Mechanical Engineering, The University of Hong Kong,
Pokfulam Road, Hong Kong

(Received 18 April 2012; accepted 23 October 2012; published online 12 November 2012)

An analysis using the lubrication approximation is performed for the dispersion of
a neutral non-reacting solute due to electro-osmotic flow through a circular channel
under the combined effects of longitudinal non-uniformity of potential and hydro-
dynamic slippage on the channel wall. The wall is periodically patterned for the
charge and slip distributions, with a wavelength much longer than the channel ra-
dius. It is shown that the presence of slip can greatly amplify the increased dis-
persion caused by induced pressure gradient brought about by the non-uniformity
of wall potential. Non-uniform wall potential interacting with non-uniform slip can
give rise to effects much different from those when the potential and slip are both
uniformly distributed and equal to the averages of the non-uniform distributions.
Mobility and dispersion associated with recirculating flow resulting from oppositely
charged slipping region is also examined. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4766598]

. INTRODUCTION

Mixing and separation of chemical species are two major fluidic processes to be performed
in a lab-on-a-chip or micro-total-analysis system. The two problems of mixing and separation are
opposite to each other in terms of operating conditions for the mass transport. While mechanisms
like diffusion and dispersion are desirable in the case of mixing, they are unwanted in the case of
separation. In microfluidics, increasing the efficiency of either the mixing or separation is not a trivial
matter.! Dispersion or band broadening will limit the performance of chemical analysis systems such
as capillary zone electrophoresis and capillary liquid chromatography with electro-osmotic flow. This
has motivated many studies to investigate dispersion in flow driven by electrokinetics.

The electrokinetic method viz. electroosmosis (EO), which mobilizes fluid utilizing the unbal-
anced charge density in an electric double layer (EDL), has now been widely applied to microfluidics
as it offers the ability to control and drive fluid by external means without mechanical moving parts.
The application of an electric field, together with the electric double layer formed at the contact
interface of an electrolyte and a solid surface, gives rise to electro-osmotic flow (EOF), which is in
several aspects superior to pressure-driven flow.

Compared with transport in pressure-driven (Poiseuille) flow, electro-osmotic flow under the
condition of a thin EDL may generate much weaker hydrodynamic dispersion. This is because when
the EDL is thin, the electro-osmotic flow has an essentially flat profile, which, in the absence of
any velocity shear, produces negligible dispersion. In sharp contrast, Poiseuille flow has a parabolic
profile, which may produce significant dispersion if the velocity (more precisely, the Péclet number)
is sufficiently large. This fundamental difference has made EO a better choice of driving mechanism
when transport with limited dispersion is wanted.
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One of the earliest theoretical studies on dispersion in EO flow is due to Martin and Guiochon,?
who analyzed zone broadening resulting from EO flow and retention in open-tubular capillary
liquid chromatography. Their analysis was, however, based on an approximated EO velocity profile.
Electrokinetic dispersion in circular capillary electrophoresis without adsorption was then studied by
Datta and Kotamarthi,? accounting for the combined effects of Poiseuille and EO flows for the case
of low wall potential (also known as zeta potential). Griffiths and Nilson* analytically determined
the dispersion in EO flow, for both a circular tube and a parallel-plate channel, by solving the time-
dependent diffusion-advection equation in transformed coordinates, where the dispersion coefficient
arises as an eigenvalue satisfying the boundary conditions. For zeta potentials not necessarily
small, these authors® numerically computed the dispersion coefficient over a broad range of the
EDL thickness and the zeta potential. Zholkovskij et al.® and Zholkovskij and Masliyah’ further
examined, under the condition of a thin EDL and hence using the Smoluchowski approximation,
hydrodynamic dispersion due to purely EOF or combined (pressure-driven and EO) flow for arbitrary
potential, electrolyte type, and cross-section geometry.

All these above-mentioned works are based on the assumption that the capillary surface is
homogeneous carrying a uniform charge density, and hence the flow is essentially unidirectional.
Wall heterogeneity, which may occur either naturally or artificially by construction, can lead to
opposite effects on the dispersion depending on whether the flow is driven by pressure or electric
field. Dispersion is reduced for pressure-driven flow, but is increased for EO flow, when there
are heterogeneities on the channel walls. It is because surface non-uniformity, such as surface
topography® or opposite charges on opposing walls,” can generate transverse or secondary flow,
which enhances mixing in the cross section, and will therefore reduce dispersion in the case of
pressure-driven flow. Meanwhile, surface non-uniformity also leads to an induced pressure gradient,
which is required in order to maintain the flow continuity. When this happens to an EO flow, the plug-
like uniform velocity profile will be contaminated by the parabolic velocity profile of the induced
pressure-driven flow. This explains why dispersion can be increased by surface non-uniformity in
the case of EO flow. This undesirable effect due to surface heterogeneity on dispersion in EO flow
has been studied in the context of electrokinetic chromatography or electrophoretic separation, as
noted below.

Through numerical simulations, Potocek et al.'® showed that the plug-like EO flow cannot be
materialized when the zeta potential is longitudinally inhomogeneous, which may lead to significant
dispersion of sample peaks. Effects of flow perturbations due to surface defects on dispersion in
capillary electrophoresis were analytically examined by Long et al.!' Pressure jump is induced by
the presence of surface defects, resulting in possible occurrence of recirculating flows. They showed
that a single defect, from which the velocity perturbation decays only algebraically, can cause
hydrodynamic dispersion over a large distance. The same problem was investigated analytically and
experimentally by Herr et al.,'> who considered discrete step change in the zeta potential (from EOF
supporting to EOF suppressing) introduced at various distances along the length of a cylindrical
capillary. They provided empirical evidence showing that the dispersion in the EOF-supporting
region increases as the percentage of the EOF-suppressing length increases. The theory of Herr
et al.'” was applied by Ghosal'® to compare with the experiments by Towns and Regnier,'* in an
attempt to show that decreased resolution in capillary zone electrophoresis is caused by dispersion
arising from pressure gradient brought about by the non-uniformity of wall potential. Ghosal'” also
presented an asymptotic theory for the electrophoretic transport of species when the wall potential
is locally modified by adsorption of the species onto the wall from the fluid stream. More recently,
Zholkovskij et al.'® studied band broadening of a neutral solute in EO flow through a submicrometer
channel with longitudinal non-uniformity of zeta potential. Their model is more general in the sense
that it is applicable to arbitrary cross-section geometry, electrolyte composition and potential.

All the existing studies on electrically driven hydrodynamic dispersion is based on flow subject
to the no-slip boundary condition on the capillary surface. In microchannels, such a boundary
condition may not be valid. The channel wall can be engineered to form a stick—slip micro-pattern, or
chemically treated to become hydrophobic, resulting in a low-viscosity or depletion layer lubricating
the flow over the surface, amounting to boundary slip. It has been well known that even a small
amount of boundary slippage can substantially enhance electro-osmotic flow, since the first analysis
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by Muller et al.'” In the thin EDL limit, the EOF is enhanced by a factor equal to the ratio of the
effective slip length to the Debye length (the thickness of the EDL). Such a linear factor of EOF
enhancement due to boundary slip was proposed by Churaev et al.'® and verified with molecular
dynamics simulations by Joly er al.'® By this factor, slip lengths in the nano- to micrometer range
can result in a very large enhancement, as much as two orders of magnitude, owing to the much
thinner electric double layer.?”

Since EO flow can be sensitively affected by hydrodynamic slip, it is of interest to study how
dispersion in EO flow can be affected by slip. No such study exists in the literature, however. This
has motivated the present problem, which aims to look into dispersion arising from electrically
driven flow in a circular microchannel with longitudinal non-uniformity of both wall potential
and hydrodynamic slippage. It is our objective here to demonstrate how the presence of slip may
dramatically change the effect of non-uniform wall potential on the dispersion. Non-uniform wall
potential interacting with non-uniform slip can lead to effects more intensive than those when
the wall potential and slip are both uniform and equal to the system averages of the non-uniform
distributions. EO flow through a channel with inhomogeneously charged superhydrophobic surfaces
has been recently investigated by Squires,”! Bahga et al.,’> Zhao,”® Vinogradova and Belyaev,”*
Belyaev and Vinogradova,” and Ng and Chu.?® Solute transport is, however, not covered in these
studies. Belyaev and Vinogradova® showed that it is possible to form convective rolls when the
slipping region is oppositely charged; such recirculating flow is conducive to mixing. In the present
study, the dispersion associated with recirculating flow over an oppositely charged slipping surface
is examined in particular.

Our problem is described in further detail in Sec. II, where we derive expressions for electro-
osmotic flow through a circular microchannel with axial variations in both wall potential and
hydrodynamic slip length. The electric double layer is of arbitrary thickness as long as it is not
strongly overlapped at the center of the channel. The slip length is of the same length scale as the
channel radius, which is much smaller than the length scale for variations of wall charge and slip along
the axis of the channel. The sharp contrast in length scales enables the application of the lubrication
theory to the present problem. For electrokinetic flow problems, the lubrication approximation has
been applied previously by Ajdari,?”-?® Long et al.,'! Ghosal,'>?° and Ng and Zhou.*" We shall then
derive in Sec. III an expression for the hydrodynamic dispersion coefficient arising from the flow.
It is shown that the coefficient, which appears to have essentially the same formal expression as
that for flow in a no-slip channel, is subject to the combined effect of non-uniform charge and slip
distributions through the induced pressure gradient. Results are then discussed in Sec. IV, where we
examine in some detail the effects of non-uniform wall potential, when interacting with boundary
slip, on the system average as well as the axial distribution of the dispersion coefficient. We shall
identify various scenarios corresponding to high/low EO mobility with strong/weak dispersion.

Il. FLOW

We consider hydrodynamic dispersion of a neutral non-reacting species in steady EO flow
through a circular channel, on the wall of which the electro-hydrodynamic properties vary gradually
and periodically with axial position. The zeta or wall potential ¢ and the hydrodynamic slip length §
are periodic functions of the axial coordinate z, where the wavelength of one periodic unit L, which
is the length scale for variations in the axial direction, is much longer than the channel radius R,
which is the length scale for variations in the radial direction. The sharp contrast in length scales,
i.e., ¢ = R/IL < 1, implies that the rate of change is much slower in the axial direction than in
the radial direction. We further assume that the Reynolds number Re of the flow is such that ¢Re
« 1, by which the inertial terms are much smaller than the leading viscous diffusion term. These
two conditions of smallness, one geometric and one dynamic, are the basic requirements for the
lubrication approximation.?! Under these conditions, the inertia is negligible and the flow is nearly
one-dimensional; the radial velocity is an order smaller than the axial velocity. Also, the pressure
is locally uniform across the channel, and derivatives with respect to the axial coordinate z are
subdominant compared with those with respect to the radial coordinate r. Axisymmetric flow is
assumed.
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For sufficiently low zeta potential («25 mV) and a non-overlapped EDL, the linearized Poisson—
Boltzmann equation for the electric potential ¥/ (r, z) of a symmetric binary electrolyte reads in the

lubrication approximation as follows:
19 oy
——( —) =Ky, (1)

-
ror ar

where « is the Debye—Hiickel parameter, or the inverse of the Debye length (a measure of the
thickness of the EDL). Subject to the boundary conditions: ¥ = ¢(z) at the wall »r = R, and v is
finite at the center » = 0, the potential can be readily found to be

Io(kr)

Y(r,z) = C(Z)m, (@)

where I, is the modified Bessel function of the first kind of order n. The solution is valid for any
distribution of the zeta potential £ (z) that is a slow function of z, as long as the potential remains
smaller than 25 mV at room temperature. We leave the function unspecified for the time being.

Flow is driven by an applied electric field E, in the z-direction. There are no externally applied
pressure gradients. Pressure is, however, locally induced in order to maintain continuity of flow. In
the lubrication limit, the flow is nearly unidirectional along the axis of the channel. The approximate
Z-momentum equation reads

19 u 13p' ex’E
——( )——i+ y, 3)

r— | =
ror \_ or JT 4 %
where u(r, z) is the z-component velocity, p is the fluid dynamic viscosity, € is the dielectric constant
of the electrolyte, and p'(z) = p — ex??/2 is the effective pressure (the electrostatic pressure being
subtracted from the pressure p).
The flow is subject to a first-order partial-slip condition at the wall

9
U+8S =0  atr=R, @)
or

where §(z) is the local hydrodynamic slip length, which can be any slow function of z. We also leave
it unspecified for the time being. Slip length can be interpreted as the distance into the wall where
the velocity profile extrapolates to zero.

The axial velocity satisfying the slip condition at the wall and the condition of zero stress at the

center is
R* op’ 22 E I I(cR
w0 =~ (1 T B - g |y D) D, )
A 9z R R 1 IkR) " Io(kR)

which, in the case of zero slip, agrees with the one deduced by Rice and Whitehead.>> We introduce
the following normalized variables (distinguished by an overhead caret):

t=z/L, 8= 8/R, k=«kR, {=2¢/, (6)

where L is the wavelength of the wall pattern, R is the channel radius, and ¢g = kgT/(zpe) (kp is
the Boltzmann constant, T is the absolute temperature, z is the valence of the electrolyte, e is the
elementary charge) is a scale for the wall potential, which should be of a magnitude much smaller
than 25 mV at room temperature for a binary electrolyte. On averaging across the section, the
section-mean EO velocity is given by

1
=2 / Fud? = A(2)Upo(2) + B(2)Uro., (N
0
where
R? op’ €
Uo®) = — = o= —p, ®)
8u 0z nw

are forcings terms with dimensions of velocity, and

AG) =1+452), 9)
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(10)

BG) = £) [1 + (:«5( )— —) “(K)]

lo(k)
The term Upg is equivalent to the mean velocity of Poiseuille flow in a no-slip circular tube, while
Uko is the Helmholtz—Smoluchowski velocity of EO flow.

By continuity, the section-mean velocity i is independent of the axial coordinate Z. On rear-
ranging Eq. (7),

i BQ)
AQR)  AQ)
We here introduce angle brackets to denote averaging over one wavelength along the channel. For
any function f(2), the average along the length of channel is given by

Upo(2) = 1)

1
_ /0 rdz. (12)

We consider the flow to be induced without an externally applied pressure gradient. Therefore,
the pressure drop across one periodic unit is zero, or (Upp) = 0, by which the axial averaging of
Eq. (11) gives

0—12<—l >—<B(2)>U (13)
AG) | \ae| ™
or
it = MUkgo, (14)
where
B(3Z)/A(
_ {B®)/ A(z)) (15)
(1/A(2))
is the EO mobility. Putting Eq. (14) back to Eq. (11), the induced pressure gradient is
Uro(2) = G(2)Uko, (16)
where the dimensionless function
M — B(2)
G3Z) = 17
(2 A0) (17)

can be interpreted as the ratio of the induced hydrodynamic forcing to the applied electrokinetic
forcing. The velocity in Eq. (5) can now be written in a dimensionless form as

Q(F,2) = u/ Uno = 2G) (1 +28() — ) + ¢ >[F( ) — Ifo(é”))} (18)
where
FG)=1+#32) ;‘EK; (19)
The dimensionless streamfunction is then given by
o d . e P2 P L(RTF)
V(2= / rid G2 [(1 + 25(2)) 5 - —] +4® [F( )5 —A} - (20)
0 Io(k)

If we consider the flow to be driven instead by an applied pressure gradient K such that (Upp)
= KR?/p, the effective hydrodynamic slip length can be deduced from Eq. (11) as

8-—1< : >_l ! @1
T a\ae) 4

We now consider two particular cases. First, for uniformly distributed slip length, i.e., §= Sconst
= constant, the effective slip length can be checked to be simply equal to the constant slip length

Downloaded 13 May 2013 to 147.8.230.52. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



112002-6  C.-O. Ng and Q. Zhou Phys. Fluids 24, 112002 (2012)

Seff = 8consl7 and the section-mean EO velocity is then given by

1 (%)
Io(k)

which agrees with the steady-state limit deduced by Yang and Kwok,>* who studied oscillating
EO flow in circular channels under the effect of hydrodynamic slippage. Second, for uniformly
distributed wall potential such that gc = Ecomt = constant, the section-mean EO velocity can be
found to be

i = (B)Ugo = (8) [1 + (ms - 2)

z ] Uro for constant §, (22)
&

o= 14 (0= ) 1) ”
= Ceonst | | + | KOett — = ) ——= | Uro for constant ¢. 23)
k) Ik)
This is a result reminiscent of a previous finding by Squires.?! In the limit of a very thin EDL
& — 00, by which #~! — 0 and the ratio of the two modified Bessel functions I;(8)/Io(k) — 1,
Eq. (23) reduces to

Ali)ngo U= Econst [1 + ’egeff] Uko, (24)
which is identical in form to the expression for EO velocity deduced by Squires.?! His finding is as
follows. For flow over a heterogeneous plane surface (i.e., very thick channel) under the condition of
a very thin EDL, Squires theoretically showed that when the wall is uniformly charged, the effective
EO velocity is given by exactly the same expression as would be obtained by naively assuming
homogeneous slip with a slip length equal to the effective slip length of the heterogeneous surface.
We have formally proved that this statement will remain true even when the channel is of finite
thickness and the EDL is not necessarily very thin,?® or even when the flow is oscillatory.** Here,
we may infer from Eqgs. (22) and (23) that Squires’ statement is also applicable to EO flow through
a circular channel where the EDL is not necessarily very thin.

lll. HYDRODYNAMIC DISPERSION

The dispersion coefficient controls the rate of spreading of a solute cloud about its center of
distribution. In the present problem, as a result of the velocity profile changing axially, the dispersion
coefficient is a function of axial position. In the lubrication limit, we may, however, assume that
the dispersion coefficient depends on the axial coordinate only parametrically. It is formally given
by the same expression as the one for strictly unidirectional flow. The long-time fully developed or
steady-state dispersion coefficient Dr, also known as the Taylor dispersion coefficient, is given by
(e.g., Mei et al.,>> Ng*%)

Dr = Nii — Nu, (25)

where the overhead bar denotes averaging across the section, and the function N(r) is governed by
D d dN
——(r—):u—ﬁ, in0 <r <R, (26)

where D is the molecular diffusivity. The equation above is subject to the boundary conditions that
N is finite at r = 0 and dN/dr =0 at r = R.
Substituting Eqgs. (14) and (18) for u and i, we may readily solve Eq. (26) for N(7) to get

. N e Y S (3 7
NG =26 | (1+28) 3 = 1 |+ | Fy — ey |~ M5 27)

(RZUEO

On putting this into Eq. (25), and after some lengthy but straightforward algebra, the following
expression for the dispersion coefficient can be obtained:

R*UZ,

Dr = {X,G* @) + X, GO @) + X L2} —

: (28)
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where
X, =2 (29)
TS

1 4 32\ L&) 16
X,y == -~ 22\ 2 30
re®) <6;e @3 /e5> L) & (30)

3 8\ I2k) 2 L& 1
X, (%) = S e S A et AN 31
(&) (2;22 ;e4) k) Bk @ 31

The total diffusion constant (also known as the Taylor—Aris dispersion coefficient) is the sum of the
molecular diffusivity and the Taylor dispersion coefficient

Doy = D + Dr = D (1 + DyPe?), (32)

where ﬁT = D7/ (RZU]%O /D) is a normalized form of the dispersion coefficient, and Pe = RUgo/D
is the Péclet number. Taylor dispersion will dominate over molecular diffusion when Dy Pe? >> 1.

The normalized dispersion coefficient Dy = X ,G* + X ,,G¢ + X,¢? is to vary parametrically
with axial position through the dependence on 2 of G and . It is a function of the local values, as
well as the system averages, of the slip and wall potential. Note that the three prefactors X,,, X,
and X, are all independent of the slip length. Hence, the dispersion coefficient is affected by the slip
only through the function G, which depends on the slip length §(2), as can be seen from Egs. (9),
(10), (15), and (17). Also note that G and  are, respectively, the terms associated with the flows
driven by the pressure gradient and electric field. Hence, the three components for the dispersion
coefficient given in Eq. (28) are the components arising from the pressure-driven flow alone (as
can be recognized by the well-known factor of 1/48), from the interaction between the pressure-
driven and EO flows, and from the EO flow alone, respectively. These three components, with their
prefactors given above, can be checked to match with those deduced by Datta and Kotamarthi.? For
flows caused by independent forcings of pressure difference and electric field in a no-slip circular
capillary with uniform surface charge density, Datta and Kotamarthi® derived an expression, also
consisting of three components, for the dispersion coefficient accounting for the combined effects of
hydrodynamic and electrokinetic flows. In our problem, the two forcings are not independent of each
other (as the pressure is induced), and a heterogeneous wall with spatially varying slip and potential
is considered. Despite these differences, we have under the lubrication approximation obtained an
expression that is formally the same as theirs.

In the particular case when the wall is homogeneous so that both the wall potential and slip
are uniformly distributed, § and 2 are constants (say, 2 = 1), and G = 0 as no pressure needs to be
induced. The dispersion coefficient then reduces to

Dr = X, for constant § and E =1, (33)

which is completely independent of §, as expected. This limiting dispersion coefficient is the same as
the one previously deduced by Griffiths and Nilson* for electrokinetic dispersion in a no-slip circular
tube. As has been pointed out and shown by Ng,?’ the dispersion coefficient will not be affected by
uniformly distributed slip. This is because the boundary slip, which is constant everywhere, is to
shift uniformly the velocity profile, but will not change the velocity gradient, which determines the
dispersion coefficient. Hence, in the particular case of a homogeneous wall, the slip is to enhance
the flow, but will have no effect on the dispersion coefficient. One can analytically show that the
function X,(k) tends to zero at the two limits: & — 0 and £ — oo (i.e., very thick and very thin
EDL, respectively). Although beyond the bound of our theory, the limit ¢ — 0 is considered here
only to demonstrate the trend of the physical phenomena. The two asymptotic limits are as follows.
For a very thick EDL,

54

3072

X, >

ask — 0, (34)
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which asymptotically tends to zero because the mean velocity decreases according to % as & — 0.
As slip has no effect on dispersion in this particular case, the mean velocity that we are referring to
is
fip = lim a6 =0)=r%8, (35)
R—
as can be deduced from Eq. (23). Therefore, the limit Eq. (34) can also be written as X, — ﬁ(z) /48 as
& — 0. In this limit, the EO flow has a parabolic profile, thereby leading to a dispersion coefficient

that has the same numerical factor (1/48) as the one for pressure-driven flow.*> In the other limit of
a very thin EDL,

1
2i2
which asymptotically tends to zero because the EO flow is increasingly like a plug flow as &
increases. The numerical factor of 1/2 was also theoretically obtained by Zholkovskij et al.® for
electro-osmotically driven dispersion in a no-slip circular channel with a thin EDL. This limiting
value is practically achieved when & > 10°. From Eq. (33) and the two limits above, one also finds
that, as pointed out by Griffiths and Nilson,* the ratio of the dispersion coefficient to the molecular
diffusion coefficient, D7/D, is proportional to the square of the Péclet number as in Eq. (32), which is
based on the channel radius R when & < O(1) (thick EDL), or based on the Debye length « ! itself
when £ > 1 (thin EDL). Furthermore, one can numerically show that the function X,() reaches
the maximum value of 0.00382775 when k& = 4.68. The dispersion coefficient in Eq. (33) therefore
has the peak value of

X, — as k — oo, (36)

max Dy = 0.003828 at & = 4.68, for constant § and = 1. (37)

The Debye length is typically very small, ¢ > O(1), for which the dispersion coefficient is
Dy < 0(107%). The dispersion coefficient is indeed very small in this limiting case of a homo-
geneous wall. We shall show in Sec. IV that the dispersion coefficient can be enhanced by het-
erogeneities of the wall. Uniformly distributed wall slippage will have no effect on the dispersion
coefficient when the wall potential is also uniformly distributed, but can have significant effect on
the dispersion coefficient when the wall potential is non-uniformly distributed.

IV. DISCUSSION

Let us assume that the wall is sinusoidally modulated with the same wavelength for the slip
length and the wall potential, as given below

8(2) = 8o [1 + o cos(272)], (38)

£(2) = a + bcos(2m2). (39)

In these expressions, 8y and a are the system average values (i.e., the steady components) for the slip
length and potential of the wall, respectively, and b is the amplitude of the alternating modulation
component of the wall potential. The parameter o is an integer equal to 1 or 0, corresponding to a
non-uniform or uniform distribution of the slip length. For validity of the lubrication approximation,
we require that 8y and b must not exceed order unity. Slip length may vary between the maximum
value of 2§y and the minimum value of zero. Negative slip length is not considered here. The wall
potential, however, may be positive or negative (a positive/negative normalized potential { means
that the potential ¢ is of the same/opposite sign as the reference potential ¢ ). A value of & = 10 for
the Debye—Hiickel parameter is used in all the cases discussed below. We compare the dispersion
coefficient of different cases based on the spatially averaged dispersion coefficient

1
(Dr) = / Drd3. (40)
0
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FIG. 1. For uniform slip (¢ = 0) and £ = 10, (a) the mobility M and (b) the averaged dispersion coefficient (ﬁy), as
functions of the slip length 8y, where the solid and dashed lines are for = 1 and a = 0, respectively. See Figs. 2 and 3 for
the cases marked with a symbol.

For a sinusoidal slip length distribution 8(2) given above, the effective hydrodynamic slip length can
be deduced from Egs. (9) and (21) as follows:

o 1 ~
Ocff = 1 (\/ 1+ 85 — 1) foro = 1. 41)

In practice, the slip length and the potential distributions are independent of each other. There-
fore, there can be an arbitrary phase shift between the two distributions when they are both peri-
odically modulated. However, for the sake of simplicity, we only consider two particular cases of
phase shift in our discussion here: in-phase when b is positive, and half-period out-of-phase when b
is negative.

A. Uniform slip

We first consider the case when the slip length is uniformly distributed, i.e., o = 0 and § = §;.
For this particular case, the EO mobility, as already given in Eq. (22), is

M=a [1 + <:e$0 - 3) M'f)} . (42)
&) Iy(k)

Hence, the section-mean velocity is affected by the steady component, a, but not the amplitude of
the modulation component, b, of the wall potential. It also increases linearly with the slip length &.
The dependence of M on a and 30 is illustrated in Fig. 1(a).

While M is independent of b, the dispersion coefficient is in sharp contrast much affected by
b, as can be seen in Fig. 1(b). Let us first examine the case @ = 1 (solid lines). When b = 0, the
wall potential is also uniformly distributed, for which Dy is given by Eq. (33). The dispersion
coefficient is independent of slip, and is of order 1073, as already noted above. By introducing
an alternating component to the wall potential, the average dispersion coefficient (D7) can be
significantly enhanced by one or two orders of magnitude for sufficiently large slip. Increasing
the amplitude of the alternating component of ¢ will have no effect on the section-mean flow,
but can appreciably enhance the local dispersion coefficient. Let us then examine the case a = 0
(dashed lines), for which the section-mean flow vanishes. Despite the vanishing of the mean flow,
the dispersion coefficient is similarly enhanced by the introduction of an alternating modulation
component to the wall potential; it has nearly the same value as that for the same b in the case of a
= 1. In summary, for a uniform slip distribution, the EO mobility M is affected only by the mean
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FIG. 2. For the case of uniform slip (6 =0, So=1), alternating wall potential of non-zero mean (a =1, b =2) and ¢ = 10,
(a) contours of the streamfunction W(7, Z), (b) velocity profiles #(#) at Z = 0, 0.25, 0.5, and (c) axial distribution of the
dispersion coefficient Dr(3).

wall potential a, while the average dispersion coefficient (D7) is much affected by the amplitude, b,
of the alternating component of the wall potential. One can choose suitable values of a, b, and §; to
achieve different scenarios of flow and transport (e.g., flow with little mixing, or zero net flow with
mixing, and so on).

We illustrate in Figs. 2 and 3 the flow field and the axial distribution of the dispersion coefficient
for two particular cases, which for easy reference are marked with symbols in Fig. 1. The velocity
profile i(#, Z) and the streamfunction W(#, Z) are calculated by Egs. (18)and (20), respectively.
Figure 2 is for the case (a, b) = (1, 2), while Fig. 3 is for the case (a, b) = (0, 2), where So=1
and o = 0 in both cases. To understand the flow pattern, we need to recall the two components that
contribute to the flow: one directly due to the applied electric field, and one driven by the induced
pressure gradient. The electrically driven flow has an almost plug-like velocity profile for large
&, giving rise to very small dispersion. The indirect, pressure-driven flow has a parabolic velocity
profile, which may give rise to much larger dispersion. The pressure gradient is induced so as to
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FIG. 3. For the case of uniform slip (¢ = 0, So=1), alternating wall potential of zero mean (¢ = 0, b = 2) and £ = 10,
(a) contours of the streamfunction W(#, Z), (b) velocity profiles #(#) at Z = 0, 0.25, 0.5, and (c) axial distribution of the
dispersion coefficient Dr(3).

satisfy the continuity of flow. At places where the wall potential or slip is stronger than the system
average, an adverse pressure gradient is induced, causing a backward flow to counterbalance the
otherwise stronger EO flow. At places where the wall potential or slip is weaker than the average, a
favorable pressure gradient is induced, causing a forward flow to supplement the otherwise weaker
EO flow. This explains why the velocity profile has an inverted parabolic shape (minimum at the
center and maximum near the wall) at Z = 0, where the wall potential is the maximum positive,
but has a nearly parabolic shape (maximum at the center and minimum near the wall) at Z = 0.5,
where the potential is the maximum negative. Such complementary nature of flow profiles has been
observed experimentally by Herr et al.'? At the mid-point, = 0.25, the pressure gradient is zero,
and therefore the profile is purely that of the EO flow. As a result, the velocity shear, and hence the
dispersion coefficient, is locally the largest at Z = 0 and Z = 0.5, and is the smallest near Z = 0.25.
The flow shown in Fig. 2(a) is forward in direction everywhere, mainly because of a sufficiently
large mean wall potential, a = 1. The flow is forward even near Z = 0.5 where the wall potential
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FIG. 4. For non-uniform slip (¢ = 1) and £ = 10, (a) and (c) the mobility M, and (b) and (d) the averaged dispersion
coefficient (Dy), as functions of the slip length 8y, where a = 1 in (a) and (b) and a = 0 in (c) and (d). See Figs. 5 and 6 for
the cases marked with a symbol.

is of an opposite sign. When the mean wall potential vanishes, a = 0, the flow becomes purely
recirculatory with zero net discharge, as shown in Fig. 3(a).

B. Non-uniform slip

We next consider the case when the slip length is non-uniformly distributed, i.e., 0 = 1. The
slip length has the peak value of 28, at Z = n, and has the minimum value of zero at Z = n + 1/2,
where n =0, 1,2,. ... Results are shown in Fig. 4.

A non-uniform slip distribution may bring forth effects dramatically different from those by
a uniform slip distribution. First, the EO mobility M will be affected by both a and b, the mean
as well as the alternating components of the wall potential. Also, the enhancement of (D7) due
to the alternating component of the wall potential can be appreciably amplified when subject to
a non-uniform slip distribution. On comparing Figs. 1(a), 1(b), 4(a), and 4(b), one finds that a
non-uniform slip distribution interacting with a non-uniform wall potential distribution may give
rise to results different from those when the distributions are each uniform and equal to the mean
of the corresponding non-uniform distributions. For (a, b) = (1, 1) and So=1asan example, the
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FIG. 5. For the case of non-uniform slip (o =1, So=1), alternating wall potential of non-zero mean (a = 1, b = 2) and
& = 10, (a) contours of the streamfunction W (7, 2), (b) velocity profiles ii(#) at Z = 0, 0.25, 0.5, and (c) axial distribution of
the dispersion coefficient Dr(3).

mobility is smaller, but the average dispersion coefficient is larger, when the slip is non-uniformly
distributed than when it is uniformly distributed. For given non-uniform distributions for the slip and
wall potential where a > 0, the mobility and the average dispersion coefficient are the largest when
the two distributions are in phase (i.e., the peak slip meets the highest potential while the no-slip
meets the lowest potential), and are the smallest when the distributions are completely out of phase
(i.e., the peak slip meets the lowest potential while the no-slip meets the highest potential). This is
true even if the lowest potential is of an opposite sign to the highest potential when |b| > a > 0.
Recall that in the case of uniform slip, no net flow can occur when a = O for any b. Here, we see
that, as shown in Fig. 4(c), net EO flow can happen when the mean wall potential is zero, a = 0, as
long as the alternating wall potential is non-zero, b # 0, and the slip is non-uniformly distributed.
The fact that an electro-neutral surface may give rise to large EO flow, when under the effect of
non-uniform hydrodynamic slip, has been pointed out by Belyaev and Vinogradova.? Increasing b
will increase not only the flow, but also the average dispersion coefficient, as shown in Fig. 4(d).
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FIG. 6. For the case of non-uniform slip (c =1, So=1), alternating wall potential of zero mean (a =0, b = 2) and k = 10,
(a) contours of the streamfunction W(#, Z), (b) velocity profiles (7)) at Z = 0, 0.25, 0.5, and (c) axial distribution of the
dispersion coefficient Dr(3).

Negating the value of b will reverse the flow direction, but will not alter the dispersion coefficient.
We further find that when a = 0, varying the phase between the slip and wall potential distributions
will have effect only on the mobility (for its sign and magnitude), but not on the average dispersion
coefficient (Dy).

We then illustrate in Figs. 5 and 6 the flow field and the axial distribution of the dispersion
coefficient for two particular cases, which for easy reference are marked with symbols in Fig. 4.
Figure 5 is for the case (a, b) = (1, 2), while Fig. 6 is for the case (a, b) = (0, 2), where §o=1and
o = 1 in both cases. These two cases can be compared with those shown in Figs. 2 and 3, bearing
in mind that the slip is non-uniformly distributed in the former, but is uniformly distributed in the
latter. For the case shown in Fig. 5, the maximum slip (§ = 2) meets the positive peak wall potential
(¢ =3) at 2 = 0, while the zero slip meets the negative peak wall potential ([ = —1) at 2 = 0.5.
Enhanced by the non-uniform slip, the contrast in the EO forcing between these two sections is
larger than that in the uniform-slip case. Consequently, a larger pressure gradient is induced to force
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flow through the section of the highest resistance, resulting in a much stronger velocity gradient and,
hence, dispersion coefficient at Z = 0.5. The case shown in Fig. 6 corresponds to an electro-neutral
wall (i.e., zero average charge). The net flow is forward in this case, because the positive potential,
which is associated with the higher slip of the wall, will dominate. The forward flow encounters
resistance, thereby forming recirculation cells, near the region of negative wall potential. The flow is
convergent and confined to the central part of the channel on passing between two such recirculation
rolls. The flow then spreads out to become an annular stream enclosing a central recirculation zone
on passing through the region of positive wall potential. This kind of successive convergent and
divergent flow is also conducive to mixing. Owing to a larger zone of recirculatory flow near Z = 0,
the dispersion in this case is stronger at Z = 0 than at Z = 0.5.

V. CONCLUDING REMARKS

Using the lubrication approximation, we have analytically deduced the mobility and the disper-
sion coefficient for steady EO flow through a circular channel under the combined effect of charge
and hydrodynamic slip modulation on the wall of the channel. The wall potential and the slip length
are assumed to vary slowly and periodically in the axial direction. We have shown that a variety of
scenarios corresponding to different degrees of flow and dispersion can be achieved by controlling
the slip and wall potential distributions. For given mean values for the slip and the wall potential,
the mobility is the largest and the dispersion is the weakest when both slip and wall potential are
uniformly distributed (i.e., homogeneous wall). For an alternating wall potential distribution with
a zero mean interacting with uniform slip, the mobility is always zero, but the dispersion can be
locally large when both the amplitude of the wall potential distribution and the slip are sufficiently
large. When the slip and the wall potential are both non-uniformly distributed, their interaction can
give rise to effect very different from that when they are uniformly distributed and equal to the
mean values of the non-uniform distributions. When their mean values are non-zero, the maximum
possible dispersion effect happens when the two distributions are in phase, i.e., when the maximum
slip is superposed to the highest wall potential and the minimum slip is superposed to the lowest
wall potential. We have also explained that the dispersion coefficient is locally affected by the axial
pressure gradient that is induced to maintain the continuity of flow. The pressure gradient gives rise
to a parabolic velocity profile, which in general has stronger shear, thereby leading to larger disper-
sion, than the nearly plug-like velocity profile of EO flow. The presence of slip, whether uniformly
or non-uniformly distributed, can significantly amplify the increased dispersion caused by induced
pressure gradient brought about by the non-uniformity of wall potential.
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