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The influence of hydrodynamic dispersion on thermal convection 

in porous media is studied theoretically, The fluid-saturated 

porous layer is homogeneous, isotropic and bounded by two infinite 

horizontal planes kept at constant temperatures. The supercritical, 

steady two-dimensional motion, the heat transport and the stability 

of the motion are investigated. The dispersion effects depend strong

ly on the Rayleigh number and on the ratio of grain diameter to layer 

depth. The present results provide new and closer approximations to 

experimental data of the heat transport:. 
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1. INTRODUCTION 

The subject of this paper is buoyancy-driven convection in a 

fluid-saturated porous medium. Horton & Rogers (1945) showed theo

retically that convection currents are possible in a porous layer 

heated from below. Since then, much theoretical and experimental 

research has been reported in this field. We refer to Combarnous & 

Bories (1975), who also outlined important geophysical and technical 

applications. 

A porous medium is described in terms of an average continuum 

representation (Bear, 1972). Local deviations from the average velocity 

and pressure are significant, and are accounted for, implicitly, 

in the macroscopic concept of permeability. Local temperature and 

velocity deviations give rise to the macroscopic concept of hydro

dynamic dispersion. The influence of heat dispersion on porous con

vection is investigated in this paper. 

Hydrodynamic dispersion is always present in the macroscopic 

description of a diffusion process taking place in a fluid flow 

through a porous medium. Its magnitude relative to the molecular 

diffusion is an increasing function of the Peclet number. 

The theory of hydrodynamic dispersion was initiated by Taylor 

(1953) and reached an advanced level through the works by Saffman 

(1959,1960). Saffman's theory is complemented by Bear (1969) who 

used a different approach. The short, but valuable contribution by 

Poreh (1965) is worth mentioning. 
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Hydrodynamic dispersion has usually been connected with 

spreading of solutes and miscible displacement (Fried & Combarnous, 

1971). This is due to the important applications in oil production 

(Pfannkuch,1963) and groundwater pollution (Fried,1975). 

Hydrodynamic dispersion may also be important in connection 

with buoyancy-driven convection in porous media. The onset of con

vection when a basic flow is present has been analyzed by Rubin (1974), 

Weber (1975) and Tyvand (1977). When the Peclet number is large, 

dispersion causes a strong delay of the onset of convection. 

In finite amplitude convection without basic flow the Peclet 

number may become large enough for the heat dispersion to be im

portant, even in the moderately supercritical regime of stable rolls. 

This is the case when the medium is relatively coarse, i.e. the 

ratio of layer depth to grain diameter being small. This has been 

pointed out in the nonlinear study by Neischloss & Dagan (1975). 

They solved the stationary problem to sixth order in the series 

expansion proposed by Kuo (1961). In the present paper this sta

tionary problem is solved numerically. The stability of the motion 

is also investigated. Our main results for the heat transport 

sharply contradict the corresponding results by Neischloss & Dagan 

(1975). There is agreement at slightly supercritical Rayleigh num

bers only. 

Straus (1974) and Kvernvold (1975) have performed similar 

analyses with neglect of dispersion. The present results provide 

improved approximations to experimental data of convective heat 

transfer through a horizontal porous layer heated from below. 
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2. FORMULATION OF THE MATHEMATICAL PROBLEM 

A fluid saturated porous layer between two infinite horizontal 

planes is considered. The boundaries are impermeable and perfectly 

heat-conducting. The planes are separated by a distance h and have 

constant temperatures T0 and T0 - t1T, the lower plane being the 

warmer. The saturated porous medium is homogeneous and isotropic. It 

has permeability K and molecular thermal diffusivity K • 
m 

We choose 

( 2.1) 

as units of length, timet, velocity~= (u,v,w), temperature T and 

pressure p, respectively. cp is the specific heat at constant 

pressure, p the density, Po a standard density, /.. the thermal 
m 

conductivity of the saturated medium and v the kinematic viscosity 

of the fluid. Subscript m refers to the mixture of solid and fluid. 

According to Bear (1972, p.652), the dimensionless equations 

may be written 

-+ -+ 
v + Vp - RaT k = 0 (2.2) 

-+ 
0 (2.3) Vov = 

aT + -+ Vo ( f/) o VT) (2.4) 
at 

V•VT = 

Here Darcy's law and the Boussinesq approximation have been applied, 

and the density is assumed to be a linear function of the temperature~ 
-+ 
k is a unit vector directed opposite gravity. Ra is the Rayleigh 

number 



Ra = Kgyf~Th 
K 'V 
m 
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(2.5) 

where g is the gravitational acceleration and y the coefficient 

of thermal volume expansion. ~ is the dimensionless dispersion 

tensor. 

Assuming that the Peclet number is less than 10, say, the 

dispersion tensor is with good accuracy written as 

(2.6) 

where ~ is the unit tensor. This tensor form has been derived by 

Poreh (1965) and, in a different way, by Bear (1969). E 1 and E 2 

are coefficients of longitudinal and lateral dispersion, respectively, 

relatively to the flow direction (Weber, 1975). 

The Peclet number is defined as 

(2.7) 

where U is a characteristic, dimensional fluid velocity, the 

thermal diffusivity of the fluid and d is a characteristic pore 

length. The porous medium is assumed to be composed of grains. Then 

d is taken equal to the average grain diameter. It is reasonable to 

regard Pe as a field variable. From (2.1) and (2.7) we then find 

K 

Pe = 1~1~ d (2.8) 
Kf h 

Saffman (1960) has determined the dispersion coefficients E 1 

and E 2 theoretically : 
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(2.9) 

Here D is defined by 

(2.10) 

D is a dimensionless number t which will be termed "the dispersion 

factor". 

Existing measuremenes cannot be regarded as acid tests on the 

validity of Saffman's formulae (2.9). This is due to experimental 

difficulties. Mechanical dispersion is measured as the difference 

bet·ween the two factors "effective diffusion" and ''molecular diffusion". 

In the relevant range of Peclet numbers (Pe < 10), the uncertainty in 

each of these factors is highly comparable to the mechanical disper

sion itself. See, for example, the data presented by Fried & Com

barnous (1971) 

Saffman's analysis is only concerned with the case of a solid 

matrix being insulating with respect to the diffusive component. The 

formulae (2.9) will also be assumed valid in the case of a thermally 

conducting matrix. This is compatible with the experiments by Green 

(1963). Theory is lacking at this point. But heuristic arguments with 

emphasis on dispersion as a mechanical mixing phenomenon may be put 

forward, favouring the assumption above. 

A cartesian coordinate system is introduced in our model. The 

z-axis is directed opposite gravity, and the x- and y-axes are located 

-+ -+ -+ 
at the lower boundary. i, j and k denote unit vectors in x-, y- and 

z-direction, respectively. 
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From (2.2) it follows that 
+ + 
k•Vxv = 0, and the velocity field 

is solenoidal (2.3). Then the velocity is a peloidal vector 

(2.11) 

given by a scalar function ~. 

The temperature field is written as 

T = T 0 /~T - z + e(x,y,z,t) (2.12) 

By eliminating the pressure from (2.2), we obtain 

-1 2 
e = - Ra v ~ (2.13) 

By introducing (2.13) into (2.4) and utilizing (2.11), we obtain the 

governing equation : 

(V 4 + RaV 1 2 - ~tv 2 )~ = vovv2~ 

- 2£ 2 Rav·~~ + (£ 1 -£ 2 )Rav•vv 1 2 ~ 

- £2v2v4~ - £2vv2·vv2~ 
(2.14) 

The requirements of perfectly heat-conducting and impermeable 

boundaries lead to the boundary conditions 

e= w = o at z = 0,1 (2.15) 

Written in terms of ~' this is equivalent to 

at z = 0,1 (2.16) 

Dispersion enters our problem solely through nonlinear terms, 

see (2.14). Therefore dispersion does not influence the onset of con

vection, see Neischloss & Dagan (1975). The critical Rayleigh number 



- 8 -

for the onset of convection is 

Ra = 4~2 (2.17) 
c 

corresponding to half-cell width equal to layer depth, i.e. critical 

wave number C4c = ~. These results were first obtained by Horton & 

Rogers (1945). 

3. SOLUTION OF THE NONLINEAR EQUATIONS 

We are going to study the finite amplitude motion occurring at 

moderately supercritical Rayleigh numbers. To obtain satisfactorily 

accurate solutions, it is necessary to apply numerical methods. By 

means of Galerkin's procedure we will find a stationary solution (2.14) 

and examine the stability of this solution with respect to small dis-

turbances. 

It can be shown, along the lines of Schluter, Lortz & Busse 

(1965) that only two-dimensional rolls may be a stable solution of the 

stationary problem (2.14) for small supercritical Rayleigh numbers. 

This stationary two-dimensional solution subject to the boundary 

conditions (2.16) is formally written as an infinite series : 

CXI CXI 

I I ( 3. 1 ) 
p:-CX> q:1 

where each term satisfies the boundary conditions. The symmetry of 

the problem implies the restriction 

A = A . pq -pq 
( 3. 2) 
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corresponding to convection cells without tilt. 

The expression for ~ (3.1) is substituted into (2.14). 

The resulting equation is multiplied by e-inaxsinm nz and 

averaged over the whole fluid layer. An infinite set of algebraic 

equations for the unknown amplitudes Anm is found : 

G A + U A A + V A A A = 0 
pqnm nm pqnmrs nm rs pqnmrskl nrn rs kl (3.3) 

The matrix G is a function of a and Ra. The matrices U and V 

are functions of a, Ra, and D. 

In order to solve the set (3.3) the series must be truncated. 

We choose to retain only terms with 

lnl + (m+1)/2 ~ N (3.4) 

where N is a sufficiently large nurnber 1 termed the truncation 

parameter. Due to the symmetry of the equations (3.3) the solution 

contains only amplitudes with n+rn even, giving N(N+1)/2 equations 

to be solved. 

Ra/Rac = 10, a/n = 1.8, 
1 

D = 150 

Truncation 

n + (rn+1) /2 < G 

n+(m+1)/2 < 7 

n·+ (m+3)/4 < 5 

n+m <1 0 

Nusselt number 

6.78 

6. 81 

6.83 

6.75 

TABLE 1. Convergence of numerical solution indicated 

by values of Nu for different truncations. 
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With our choice of truncation computer capacity forbids us to 

make any careful examination with N larger than 6. This is due to the 

triple term in (3.3), represented by the matrix V. To test the con

vergence, we have compared the solutions corresponding to N = 6 and 

N = 7. Two other truncations have also been tried. The results are 

given in table 1. The physical quantity concentrated upon is the 

Nusselt number 

Nu = Qh 
A.mt:.T 

= [ 1 

+ Vi 
=- k•(~•t:.T) 

z=o 

(3.5) 

E u 2 e l 
2 z z=o 

Q is the heat transport per unit time and area through the layer. The 

overbar denotes a horizontal average. 

After having obtained a solution, ~s' of the stationary problem, 

the stability of this solution with respect to small disturbances is 

examined. By introducing ~ = ~ + ~' s 
into (2.14) and linearizing witp 

respect to the infinitesimal disturbances ~·, the following equation is 

found: 

(v 4+Rav 12- i-v 2 )~' = 
at 

+ + + 2 + + 
- E 2 (2o~'·o~ v4w +(o~) v 4 ~')-e (2V(o~'·o~ )•vv2~ s . ·s ff 2 s s 

+ + + 
+ V ( 0 ~ )2 • \l V 2 ~ I ) - ( € l - € 2 )[ 0 ~ I • V ( 0 ~ • V V 2 ~ ) 

s s s 

with boundary conditions 

~~ = ~~ = 0 at z = 0.1 zz ., 

(3.6) 

(3.7) 
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If there exists a solution of (3.6) with growing time 

dependence, the stationary solution is said to be unstable. Other-

wise it is stable. 

A general expression for the perturbation, ~',is given by 

~' = I 
p,q 

A eipax ei ( ax+by) +at sin q 'IT z 
pq 

(3.8) 

where a and b are free parameters. The series (3.8) is intro-

duced into the equation (3.6). The resulting equation is multiplied 

by e-inax e-i(ax+by)-atsin n 'IT z and averaged over the whole fluid 

layer. As in the stationary problem only terms with lnl + (m+1)/2~ N 

are retained. The system of linear homogeneous equations constitute 

an eigenvalue problem for a, giving 

a = a(Ra,a,D,a,b) ( 3. 9) 

The most unstable disturbances correspond to a = 0 and b ~ 0 

as in ordinary porous convection, see Straus (1974) and Kvernvold (1975). 

These disturbances are termed cross-rolls if b is of the same order 

of magnitude as a, and zig-zags if b is very small. 

4. DISCUSSION OF SOLUTIONS 

In this chapter some characteristic features of the numerical 

solutions will be discussed. We first concentrate on the two-dimen-

sional stationary problem. 

The heat transport is a quantity of major physical interest. 

It is given by the Nusselt number defined by (3.5). In addition to 

the ordinary diffusion term , (-ez)z=o which contains dispersion 
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implicitly, there are two new terms with explicit dispersion de~ 

~endence. These are a term of second degree, (e 2u2 )z=o' and one of 

2-
third degree (-e 2 u e;)z:o• 

positive. 

The sum of these two terms has to be 

The calculations show that dispersion always reduces the 

average temperature gradient at the boundary. Up to Ra/Rac = 1.63 

the Nusselt number is also reduced, compared with ordinary porous 

convection. In table 2 some values of Nu at small supercritical 

Rayleigh numbers are given. The analytical result is given by the 

first approximation in nonlinear theory : 

~ Ra/ 

Analytical 

Numerical 

-"-
-"-

ii 

1 • 2 

1 • 2 

1.4 

1 • 6 

1 • 8 

0 

1. 400 

1.352 

1. 6 34 

1. 870 

2.072 

1 1 
600 150 

1.399 1.394 

1 • 351 1.349 

1. 633 1 . 6 31 

1.870 1.869 

2.074 2.076 

1 1 
96 24 

1. 391 1. 364 

1.347 1 . 333 

1. 629 1.613 

1. 869 1.860 

2.079 2.086 

TABLE 2: Analytical (formula (4.1)) and numerical 

results for the Nusselt number when a = n. 

(4.1) 

which was first derived by Neischloss & Dagan (1975). It only gives 

the slopes at i':hich the Nusselt number curves start out. Due to the 

strong curvature of.these curves (see fig. 1), form~la (4.1) is not 

a good approximation. However, it agrees qualitatively with the 

numerical results for small supercritical Rayleigh numbers. 

The heat transport is increased by dispersion when Ra > 1.63 Ra0 • 
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At first this increase is very small, but it grows rapidly with 

the Rayleigh number. From four or five times the critical Rayleigh 

number, the dispersion effects on the heat transport become important. 

See fig. 1, where Nu is displayed as a function of Ra/Rac for 

different values of D. Here the Nusselt number has been maximized 

with respect to the wave number. If D is not too small, the Nusselt 

number curve possesses an inflexion point. 

The strong increase in the Nusselt number at large Rayleigh 

numbers primarily arises from the third degree term. This is shown 

in table 3, where the contributions to the Nusselt number from the 

first, second and third degree terms are listed for some cases. Some 

approximations for these terms are also listed, disclosing the impor-

tance of solving the full problem. It is indicated that the basic 

contribution to the third degree term is expressed by (~e 2 ~ 2 ez)z=o· 

There are fundamental discrepancies between our numerical results 

and the corresponding analytical results by Neischloss & Dagan (1975). 

Only ~slightly supercritical Rayleigh numbers the theories agree. 

In fig. 1, we choose the wave number which gives maximum 

Nusselt number. The variation of the Nusselt number with the wave 

number is exhibited in figure 2, for the case D = 1/80 • Curves for 

Ra/Rac equal to 2, 4, 6, 8 and 10 are shown. For comparison the 

corresponding curves for D = 0 are also displayed (dashed curves). 

Dispersion turns out to reduce the wave number of maximum heat 

transport considerably. 
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R/Rc 3 6 6 6 

ahr 1 1 1 2 

D 1/60 1/60 1/100 1/100 

1 - (ez)z=o 2.775 3.588 3.810 4.099 

£2(u 2)z=o 0.122 0.522 0.292 0,179 

-e:2(u2 ez)z=o 0.203 1 .215 0.739 0.520 

Nu 3.100 5.325 4.841 4.798 

Nu(D=O) 2,927 4,070 4.070 4,435 

[u2 (D=O)] 
£2 z=o 0.122 0.406 0.243 0.165 

-£ [u2e (D=O)l 
2 z z=o 0.218 1,147 0,689 0,536 

£2(u2ez)z=o 0.216 1.351 0.820 0.555 

TABLE 3: Comparison of the different contributions 

to the Nusselt number, and some approximations 

of these. 

In figure 3 some dispersion effects on the temperature field 

are shown. ~he isotherms may be significantly distorted, The solid 

curves are isotherms for the case D = 1/150, while the dashed curves 

are corresponding isotherms for D = 0. The effects increase strongly 

with increasing Rayleigh numbers. It is interesting to study the 

vicinity of the lower boundary: In the region of up-going fluid the 

temperature gradient is reduced by dispersion. In most of the region 

of down-going fluid the gradient is steepened. The former effect is 

always the stronger, so that the average temperature gradient is re

duced due to dispersion. 
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The streamline pattern is never distorted significantly· by 

dispersion in our range of computation. The velocity amplitude 

however, is influenced by dispersion. Following Palm, Weber and 

Kvernvold (1972), the root mean square velocity of a cell is 

approximately given by 
1 

--+-- 2 1 1 

(<v2>) = Ra2 (Nu-1) 2 (4.2) 

where the pointed bracket denotes vertical average. By means of 

(2.8), this enables us to estimate the average Peclet number de-

fined by 

Pe(ave) l l Km d 
= Re 2 (Nu-1) 2 

Kf h 
( 4. 3) 

Deviations from our theory become significant when Pe(ave) is about 

10. We notice that Pe(ave) cannot be expressed by D alone, so 

that formula (4.3) must be applied to each specific case. 

We have investigated the stability of this steady nonlinear roll 

solution in the case of D = 1/150. The results are displayed in 

figure 4, and compared with the case of D = 0. The zig-zag instabi

lity is not significantly influenced by dispersion. The rest of the 

stability domain is bounded by cross-roll disturbances, which may be 

strongly influenced by dispersion. 

At moderately supercritical Rayleigh numbers (Re < 5 Ra ), dis
c 

persion slightly reduces the range of stable wave numbers. However, 

at larger Rayleigh number a strong extension of the stability domain 

is present. The second critical Rayleigh number, above which no stable 

steady solution exists, is drasticly delayed. Actually, our choice 

D = 1/150 is not small enough to determine this upper limit, within 

our range of computation. 
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5. COMPARISON WITH EXPERIMENTS 

In this chapter the results from the analysis above will be 

compared with some experimental data of the heat transport. In 

figure 5 some data from Buretta (1972) are shown. This experimental 

series was performed with glass beads saturated by water, where 

KmiKf = 3.75 and d/h = 1/15. The corresponding value of the dis-

persian factor is 1/60. Our theoretical curve for D = 1/60 shows 

excellent agreement with Buretta's experiments. For comparison the 

theoretical curve for neglect of dispersion is displayed. This clearly 

demonstrates the importance of dispersion. 

From formula (4.3) the average Peclet number at the termination 

of our theoretical curve in figure 5 is about 15. Then our theory may 

be inappropriate. Only up to Ra about 200 - 300 the conditions of 

our theory are fulfilled. The average Reynolds number does not exceed 2, 

In figure 6 two sets of experimental data by Combarnous (1970) 

are compared with the present theory. Also these experiments are per

formed with glass beads in water. It is interesting that the theore

tical trend of increased heat transport for increased coarseness of the 

porous medium is actually confirmed by these experiments. The upper 

and lower theoretical curve corresponds to D = 1/60 and D = 1/107, 

respectively. We have chosen to terminate these curves at Peclet num

bers of 15 and 10, respectively, and Reynolds numbers less than 2. 

The experimental data of figures 5 and 6 indicate an inflexion 

point in the Nusselt number curves. This phenomenon was explained by 

Combarnous (1970) by the occurrence of a new linearly unstable mode. 

However, such a point of view lacks foundation within nonlinear theory. 
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The present theory gives an alternative explanation which seems very 

good. One must, however, keep in mind that these effects become im

portant at Peclet numbers not far below the value at which our 

approximations become uncertain. 

There are many other experiments confirming the trend of our 

theory giving a Nusselt number above the value of ordinary porous 

convection. See the review article by Cheng (1978). It is, however, 

desirable to perform experiments with a systematic variation of the 

dispersion factor. D. Most experiments involve a ratio d/h not. small 

enough for dispersion effects to be neglected. Experiments on more 

finely grained media are wanted. They are hoped to give· a closer 

approximation to the theory of ordinary porous convection (Straus 

1974). 

When the pore Reynolds number exceeds unity, the flow resistance 

is higher than predicted by Darcy's linear law, due to a nonlinear 

friction term (see Bear 1972,p. 126). In this regime the velocity 

amplitude is smaller than predicted by our theory. This will cause a 

considerable reduction in the heat transport, which is observed in the 

experiments by Schneider (1963) and Elder (1967). Heat dispersion 

will be strongly reduced, as it is a quadratic function of velocity. 

The effect of dispersion compared with the nonlinear term in Darcy's 

law is indicated by the Prandtl number of the fluid 

(5.1) 

In the present study we have assumed that dispersion is more im

portant than the nonlinear term in Darcy's law, which means that 

Pr > 1. 
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6. SUI>1MARY 

The influence of hydrodynamic di_spersion on thermal convection 

in a porous layer has been investigated theoretically.· The steady, 

supercritical motion, the heat transport and the stability of the 

motion have been examined. 

The magnitude of the dispersion effects is characterized by 

the dispersion factor D = (Km1Kf)(d/h) 2 , depending strongly on the 

coarseness of the porous material. Hydrodynamic dispersion slightly 

reduces the heat transport when Ra < 1.63 Rae, but increases it with 

rapidly growing strength when the Rayleigh number increases further. 

Hydrodynamic dispersion strongly extends the range of Rayleigh numbers 

giving stable convection rolls. 

The present theory should be useful at average Peclet numbers 

smaller than 10 and average Reynolds numbers not above the order of 1. 

Our theoretical predictions of the heat transport show good agreement 

with experimental d~ta by Buretta (1972) and Combarnous (1970). This 

accordance lends support to the dispersion theory by Saffman (1960) 

on which this study is based. 
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