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Summary. Progress in the matrix method for the calculation of the seismic 
surface wave dispersion function for a layered elastic media started with the 
beginning of the electronic digital computer age. 

The use of Thomson-Haskell formulation, Knopoff’s method or any 
other published method has had the persistent problem of loss of precision 
at high frequencies. The severity of the high-frequency limitation problem 
varies among the approaches but exists in all of them. 

In this paper we present a novel method to determine the dispersion 
function for Rayleigh waves in layered elastic media. In this method there is 
no limitation on the value of the frequency. 

Introduction 

The determination of the dispersion function of seismic surface waves in layered elastic 
media is an essential part of solving the wave propagation problem in that media. 

Since the electronic digital computer has become available for geophysical iesearch, great 
efforts have been directed towards further developing the numerical determination of the 
dispersion function of layered elastic media. The theoretical formulation for this function 
was developed by Thomson (1950) and Haskell (1953). The numerical efforts started by 
Press, Harkrider & Seafeldt (1961) were followed by Knopoff and his co-workers in the 
years 1964 to 1972, as well as by other investigators including Dunkin (1965), Thrower 
(1965) and Watson (1970). 

The use of the original form of the Thomson-Haskell formulation, Knopoff’s method 
or any other published method has had the persistent problem of loss of precision at high 
frequency. The severity of the high-frequency limitation problem varies among the published 
approaches but exists in all of them. 

The calculation of the dispersion function requires the subtraction of two quantities. At 
very high frequencies where the thickness of a layer is greater than several wavelengths, 
these two quantities become very close to each other and differ only in the less significant 
digits. The determination of each quantity separately would make the difference lose some 
of its significant digits. This loss of significant digits would occur as a chain reaction in the 
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computation. Algebraic subtraction should be made so that the computer calculates only 
the difference and not the original quantities. 

In our approach, we have succeeded in avoiding this subtraction error by transforming the 
problem to one where the different frequency factors are separated. Using matrix manipula- 
tion and taking advantage of all the symmetry, we believe that this approach offers the 
fastest algorithm at the high-frequency range. 

Notation 

p =density, 
d = thickness, 
X , p  = Lam6 elastic constants, 
a = [(A + 2P)/Pl l iZt 

P = [PIPI"', 
f = frequency, 
c 
0 =2llf, 
k = wlc, 
i =A. 

= phase velocity of the free wave along the x axis, 

u 
w 
uz = normal stress, 
7,. = tangential stress, 
P = exp (r,kd), 
Q = exp (rllkd). 

= x component of displacement, 
= z component of displacement, 

Formulation of the problem 

Consider a horizontally layered elastic solid half-space with plane wave travelling in the 
positive x direction as shown in Fig. 1 .  Each layer is assumed to be isotropic, homogeneous 
and perfectly elastic. The mth layer is bounded by the two boundaries (m - 1) and (m). 

Free surface 

( 2 )  

Figure 1 .  Diagram of layered structure and the numbering of the layers and the boundaries. 
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Dispersion function computations 93 

Within each medium, the displacement of u and w and the stresses u, and T,, can all be 
derived from a scalar potential @ and a vector potential J/ (Ewing, Jardeszky & Press 1957). 
These potentials are obtained for each layer as solutions of the equations: 

Subject to boundary conditions at each surface of the layer. Assuming time periodicity of 
both @ and J/ and recognizing that the waves are plane then the potentials can be taken as 

4 = @o(z) exp - kx)l (3) 

J/ = J/o(z)  exp [ i (w t  - kx) ] .  (4) 

Equations (1) and ( 2 )  then becomes 

- -  - k2(l  - C ~ / C U ~ ) @ ~  
d ' $ 0  

dz 

d Z + o  
- = k2( 1 - cz/pz) $0. 
dz2 

Solutions to equations (5) and (6)  are 

40 = b 1 cosh (r,kz) + bz sinh (r,kz) 

$ 0  = b3 cosh (rpkz) + b4 sinh (rpkz). 

(5) 

The four constants b l ,  appearing in equations (7) and (8) are to be determined for each layer 
from the boundary conditions at its surfaces. The stresses u, and T,, and the displacements 
u and w are related to @ and J/ as follows: 

Inserting equations (7) and (8) into (9)-(12) produces a set of equations relating the stress 
displacement vector to b l ,  b z ,  b3 and b4 as follows: 

u = - ikbl cosh (r,kz) - ikbz sinh (r,kz) 

- rpkb3 sinh (rpkz) - rpkb4 cosh (rpkz) 

- ikb3 cosh (rGkz) - ikb4 sinh (rpkz) 

(1 3) 

(14) 

w = r,kbl sinh (r,kz) + r,kb2 cosh (r,kz) 
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94 A. Abo-Zena 

u, = P(Y - l)kzczbl cosh (r,kz) + p(7  - l)k2c2bz sinh (rakz) 

- ik2rp2pb3 sinh (rpkz) - irp2pk2b4 cosh (rpkz) 

rxz = - 2ipPzra k2b, sinh (r,kz) - 2ir,p02k2b2 cosh (r,kz) 

- (7 - l)pkZc2b3 cosh (rpkz) - (7 - l)k2c2pb4 sinh (rpkz) 

where the factor exp [i(ot - Icx)] has been suppressed. 
Equations (I  3)-( 16) could be arranged into matrix form 

[WI = [4&)l P I  
where 

[WIT = [iu/k, w/k, uz/kZc2, i ~ , , / k ~ c ~ ]  

[BIT = [b,, bz, -ib3, - ib4] 

and 

1 
rp 1 

+ 

- 

- 1 exp(r,kz) 0 0 0 

0 exp(r&z) 0 0 

0 0 exp(rpkz) 0 

0 0 0 exp (rpkz) 

0 0 

exp (- r,kz) 0 0 

0 exp(-rpkz) 0 

Boundary conditions 

Due to the continuity of the quantities of the matrix W at the boundary of any layer, a 
relation between the displacement at the boundary (m) and the boundary (m - 1) would be 

[Wl(m) = A m  [ W l ( m - ~ )  (21) 
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Dispersion function computations 95 

J =  [un(0 ) ] -1An4An4  ... A2A1 

It may be useful to note that ?h [ V1V2V3V4] [H1H2HJI,IT is a unit matrix. 
By repeated application of equation (2 1 )  one obtains 

[WI(n-1) = A n - 1 . .  DA2-41 [WI(O). (27) 

[Bin = [~n(o) l - lAn- l  . . . A  2Al[WI(O). (28) 

Then by applying the inverse of equation (17) with z = 0, equation (27) becomes 

In the case where there is no source at infinity bln = - b2, and b3, = - b4n. In addition, if 
uo = 0 and T~ = 0 then equation (28) becomes 

1 0  

0 1  

0 0  

-0 0, 
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It follows that 

and that the matrix 

should be singular. 
From the definition of J in equation (30) one can express the matrix LS as 

EA 

where 

0 0  

0 0  /I 
and 

K = A n - l A n - 2  ... AZAI. 

From equation (34) it follows that 

[=I = 

from which the dispersion function D could be expressed as 

(34) 

(3 5 )  

(36) 

(37) 
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Dispersion function computations 97 

Numerical analysis 

Using equation (38) to determine D shows that at the high-frequency range the two terms on 
the right side become very close to each other as the frequency increases. This causes a loss 
of the significant digits. The closeness actually occurs because both numbers become 
dominated by the same exponential frequency factor. The basic element in the computation 
is a linear expression of the terms P, Q, l/P and l/Q. The dispersion function is a sum 
of the products of two of these elements. This makes the dispersion function’s final 
composition a linear expression of the terms Pz, Qz, l/Pz, l/Qz, PQ, l/PQ, P/Q, Q/Pand a 
constant. The largest factor would be Pz if the real part of r, is positive. 

In general without any limitation on a, p or k the largest factor would be Pz, Q2, 1 P z  
or l/QZ. Such a factor would overshadow the smaller factors. The resultant value D would 
lose some or maybe all of the significant digits at high frequencies. To avoid this difficulty 
we use the factored matrix form, equation (24), to determine the constant and the 
coefficients of the factors which represent the dispersion function D. 

With some matrix manipulation the function D could be expressed as 

or 

lil D =  [l 0 0 01 [KIT {[EAIT[EB] - [EBlT[EAI} [Kl (39) 

In the analysis we will use the second expression as it is more useful in extending this work 
to study reflectivity (Fuchs 1968; Kind 1976). If we define 

T Ym = A m  . . . A:- 1 f [EA] [EB] - [EB] [EA]) A ,  - 1 * * . A m  

then 

Ym = A 2  Ym+lA, .  

For the computation start with 

Ym+,  = Y, = {[EAIT [EB] - [EBIT [EA]) 

and A, - and repeat app-jing equation (41), n - - times, to obtain Yl. 
The intersection of the first row with the second column in Yl is the value of the dispersion 
function. 

[EAIT [EB] - [EBIT [EA] 

is an antisymmetric matrix and if M is antisymmetric then CTMC is also antisymmetric. By 
substituting from equation (24) in (41) one obtains 

to obtain Y, - 

In the computation, one should note that 

1 
t QV3H3 t - E,H~J. (43) e 

Y m = %  

4 
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Since Ym 
quantity equal to zero. It follows that one can put Ym in the following form 

is antisymmetric and V,: is a column vector, then f iT IYm+l ]  J$ is a scalar 

4ym = [ H T v T  +H,Tv,TI [ym+lI [ ~ 2 ~ 2  + V1H1I 

+ [HTVZ +H?V?I [Ym+lI [V4H4+ V3H3I 

+PQ[H,TVT +HZVZI [Ym+lI [T/;HJ+ V1H1I 

1 
+- [H~TvT+H~TV~TI [ym+lI [ ~ 4 ~ 4 +  ~ 2 ~ 2 1 .  (44) 

PQ 

The above expression shows that the coefficients of P2, Q2, 1/P2 and l/Q2 are all zero. The 
absence of these terms is also a feature of the work by Knopoff (1964), Thrower (1965) 
and Dunkin (1 965). 

For the special case (3 < c, the magnitude of Q and l /Q would be one. For this case one 
could define 

1 
SQ = QV3H3 +-  V4H4. 

Q 
(45) 

By using equation (43) one obtains 

4Ym = sQT [Ym + 11 SQ 

+ [ H W  +H,TVTJ [Ym+1l [VlHl+ V2H21 

+P{[HTVT +SQTI [ Y m + l l  [VIHI +SQ1 -SQT[Ym+1IsQI 

+ - { [HT V,T + sQT1 [ Ym + 1 1 [ V, H2 + SQI - sQT [ Ym + I I SQ . (47) 
1 

P 

For the special case c > a > (3 the magnitude of P and Q would be one. In this case the 
direct use of the Thomson-Haskell matrix would be justified. But if one would prefer to 
follow the present scheme, a new matrix should be defined 

1 

P 
SP=PViHI +-V2H2. (48) 

Then equation (42) becomes 

4Ym = [SPT +SQT] [Ym+l] [SP+SQ]. (49) 
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Dispersion function computations 99 

To facilitate writing a computer program to carry the computation, we have listed in the 
Appendix all the matrices referred to in this text. 

Numerical results 

In an attempt to avoid the difficulty associated with the loss of precision in calculating the 
dispersion function at high frequencies, there are at least three independent investigators 
(Knopoff 1964, Dunkin 1965 and Thrower 1965) who have succeeded in omitting 
mathematically the exponential terms Pz, l/Pz, Qz and l/Qz from the computation process. 
The approach of Thrower as well as Dunkin is usually known as the delta matrix technique, 
which is given in detail by Pestel & Leckie (1963). 

From reading Knopoff (1964) and Dunkin (1965) as well as Thrower (1965), I received 
the impression that the problem of the loss of precision had already been solved by each of 
the scientists. However, Schwab & Knopoff (1970) and Schwab (1970) reported limitations 
on the frequency values due to the loss of precision when an actual computer program was 
developed utilizing the best of the work published by Knopoff (1964), Dunkin (1965), 
Thrower (1965), Randall (1967) and Watson (1970). Schwab & Knopoff (1970) measured 
the limitation by the ratio of the total thickness of the layers above the half space to the 
wavelength. They found that a loss of precision occurs if such a ratio is greater than 5% 
with the use of a single precision eight decimal digit computer (IBM 7094). 

In the delta matrix technique and Knopoffs method, the layer computation is started 
by linear expressions of the terms PQ, P/Q, Q/P and l/PQ for each matrix element. Only 
the largest term in each of these expressions would take advantage of the total number of 
the decimal digits allowed in the computer. The smaller terms may lose some of their 
significant digits. As these expressions interact with each other during matrix multiplication, 
a loss of precision may occur. 

The advantage of our method over all other published methods is that the matrix 
multiplications for a layer computation are done independently of its thickness (see 
equation (44)  and Appendix). 

We have written a computer program using our method to determine the dispersion 
function. The program is in single-precision mode. We chose one of the layered structures 
used by Haskell (1953) to demonstrate the use of this program. The model consists of two 
layers on the top of a half-space. The parameter for the first layer, the second layer and the 
half-space are (a = 6.14, 5.50 and 8.26 km/s), (0 = 3.39, 3.18 and 4.65 kmls), ( p  = 2.7, 2.7 
and 3.0) and (d = 13.60, 11.85 and -). We have calculated the dispersion function for a grid 
of frequency and phase velocity values. The frequency range is O+ to 10 HZ and the phase 
velocity range is from 3.1 to 3.5 km/s. The data are presented in Fig. 2 where the positive 
and negative values are represented by the white and dark bands respectively. The boundary 
between these two bands represents the zero values of the dispersion function. Fig. 3 is an 
expansion of the dispersion function data near the shear velocity of the first layer. The 
frequency range in Fig. 3 is from 0, to 20 Hz. In the program the actual values of the 
dispersion function are kept on the computer storage unit for further use. Information drawn 
from the storage unit can be used to find the roots of the dispersion function and/or to 
determine the group velocity. 

The computations for Figs 2 and 3 were done on an eight decimal digit computer (Univac 
1108). For the highest frequency in Fig. 3, the thickness of one of the layers corresponds to 
more than 80 wavelengths. This result is a partial confirmation of the title of this paper, 
that there is no frequency limitation with our technique as there has been with a11 previously 
published methods. 
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Figure 2. Dispersion function of the model described in the text. The frequency range is (0,-10 Hz).  
The phase velocity range is (3.1-3.5 km/s). 

Figure 3. Espansion of the dispersion function data near the shear velocity of the first layer. The 
frequency range is (0,-20 Hz). The phase velocity range is (3.388-3.396 kmls). 

One of the reviewers of this paper claimed that Knopoffs method has no loss of precision 
but only an overflow. The reviewer provides us with modification to  take care of the over- 
flow problem. The modification consists of adding the following block of code in front of 
GO TO 230 and in front of 230 CONTINUE in the computer program (Schwab & Knopoff 
1972, p.  126). 
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Dispersion function computations 101 

AMXINV = 1 .OD t 00/DMAX1 (DABS(UKNP), 
DABS (VKNP), DABS (SKNP), 
DABS (WKNP), DABS (RKNP)) 

UKNP = AMXINV*UKNP 
VKNP = AMXINV*VKNP 
SKNP = AMXINV*SKNP 
WKNP = AMXINV*WKNP 
RKNP = AMXINV*RKNP 

To support our claim that all the published methods for calculating the dispersion 
function suffer from the loss of precision problem, we have carried numerical tests to 
examine the delta matrix method and Knopoff’s method in its published form as well as in 
its form after the reviewer modification. 

To examine the delta matrix method we used a program developed for using this method 
at Gulf Research Center. To test Knopoff’s method we used the published computer 
program (Schwab & Knopoff 1972, p. 126), with and without the modification suggested 
by the reviewer. 

The numerical test was to reproduce Fig. 3 of this paper, using the same computer, 
Univac 1108, in its single precision mode. The result of the test is that all the three programs 
lost precision beyond certain frequency value. Specifically, the delta matrix holds up to 
2.5 c/s which corresponds to about 10 wavelengths in the thckest layer. Knopoff’s method 
produced correct results up to 2.1 c/s. By incorporating the modification for the overflow 
suggested by the reviewer in Schwab & Knopoff’s program, the correct computations 
extended to 3.9 c/s which corresponds to about 15 wavelengths in the thickest layer. 

The above numerical results confirm our claim that the use of the Thomson-Haskell 
formulation, Knopoff’s method or the delta matrix approach, has had the persistent 
problem of loss of precision at high frequency. The severity of the high-frequency limitation 
problem varies among the approaches, but exists in all of them. The two tests on Knopoff’s 
method show that even in the same approach with some manipulations in the computations 
as this supplied by the reviewer, the severity of the limitation could be improved by as 
much as a factor of 2 ,  but there are still limitations. 

Conclusions 

The present approach offers the numerical solution for the dispersion of layered elastic 
media without restriction on the value of the frequency. The approach bsed here is not 
restricted to real or complex material constants, phase velocity and/or frequency. Such 
generality makes this approach useful for elastic as well as anelastic media (Schwab & 
Knopoff 1971), and also the analysis of normal mode as well as leaking modes (Phinney 
1961, Gilbert 1964, Dainty 1971 and Watson 1972). 
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