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Abstract 

Background: As an alternative to advection, solute transport by shear-augmented dispersion within oscillatory cer-

ebrospinal fluid flow was investigated in small channels representing the basement membranes located between cer-

ebral arterial smooth muscle cells, the paraarterial space surrounding the vessel wall and in large channels modeling 

the spinal subarachnoid space (SSS).

Methods: Geometries were modeled as two-dimensional. Fully developed flows in the channels were modeled by 

the Darcy–Brinkman momentum equation and dispersion by the passive transport equation. Scaling of the enhance-

ment of axial dispersion relative to molecular diffusion was developed for regimes of flow including quasi-steady, 

porous and unsteady, and for regimes of dispersion including diffusive and unsteady.

Results: Maximum enhancement occurs when the characteristic time for lateral dispersion is matched to the cycle 

period. The Darcy–Brinkman model represents the porous media as a continuous flow resistance, and also imposes 

no-slip boundary conditions at the walls of the channel. Consequently, predicted dispersion is always reduced relative 

to that of a channel without porous media, except when the flow and dispersion are both unsteady.

Discussion/conclusions: In the basement membranes, flow and dispersion are both quasi-steady and enhance-

ment of dispersion is small even if lateral dispersion is reduced by the porous media to achieve maximum enhance-

ment. In the paraarterial space, maximum enhancement Rmax = 73,200 has the potential to be significant. In the SSS, 

the dispersion is unsteady and the flow is in the transition zone between porous and unsteady. Enhancement is 5.8 

times that of molecular diffusion, and grows to a maximum of 1.6E+6 when lateral dispersion is increased. The maxi-

mum enhancement produces rostral transport time in agreement with experiments.

Keywords: Perivascular flow, Paravascular flow, Paravenous flow, Spinal subarachnoid space, Cerebrospinal fluid, 

Glymphatic system
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Introduction
Motivation

An attractive avenue for drug transport to the brain is the 

spinal subarachnoid space (SSS). Inconsistent results sug-

gest that more complete understanding of solute disper-

sion in the SSS could improve outcomes. Similarly, solute 

transport in the so-called “glymphatic system” has been 

observed and has been hypothesized to be an important 

route for clearing metabolites and regulating immune 

response, but controversy exists over the mechanisms 

of the transport, and even of the existence of net flow in 

the perivascular spaces. A phenomenological feature that 

these two spaces potentially have in common is the pres-

ence of oscillatory flow (zero net flow component). Oscil-

latory flow offers the possibility that at least a portion of 

the observed solute transport may be due to shear-aug-

mented (Taylor) dispersion, rather than bulk flow. �is 

paper uses a mathematical model and order-of-magni-

tude estimates to evaluate the plausibility of significant 

Taylor dispersion in the SSS and “glymphatic system” 

spaces and the potential that conditions within the spaces 

might be clinically controlled to optimize transport.

�e remainder of this “Introduction” section will first 

describe Taylor dispersion (in “Shear-augmented dis-

persion” section) and then summarize the relatively 

well-known anatomy and flow and transport parameters 

of the SSS (see “Intrathecal flow and transport” sec-

tion), and the same, but so far incompletely understood, 

parameters for the paravascular and perivascular spaces 

(see “Perivascular and paravascular flow and transport” 

section).

Shear-augmented dispersion

Axial transport of solutes can be reduced or enhanced 

by diffusion across streamlines. For example, in steady, 

purely axial pipe flow, a bolus of a passive species is car-

ried forward faster in the center of the pipe than near the 

walls, creating radial concentration gradients that favor 

diffusion toward the walls of the pipe at the leading edge 

of the bolus and toward the center of the pipe at the trail-

ing edge. �e spread of the bolus is, therefore, reduced by 

diffusion from high-velocity to low-velocity streamlines 

on the leading edge, and by diffusion from low- to high-

velocity streamlines on the trailing edge (called Taylor 

dispersion in honor of Taylor [1]). In oscillatory (fluctuat-

ing with zero mean), purely axial flow, net axial transport 

is zero in the absence of diffusion. Transverse diffusion 

similar to the steady case increases axial dispersion by 

leaving some of the tracer behind on streamlines of lower 

velocity as the flow reverses after having been carried 

forward on high-velocity streamlines [2]. Transverse con-

vection can also spread the tracer across axial streamlines 

of different velocities, for instance, by secondary flows 

in a curved pipe [3]. When the time constants for axial 

displacement and transverse mixing are matched, the 

augmentation R of axial dispersion relative to molecular 

diffusion is greatly enhanced, analogous to tiny delivery 

vehicles hauling tracer forward and returning empty with 

each displacement cycle [3, 4].

Perivascular and paravascular �ow and transport

Historically, when only the Virchow-Robin space (VRS) 

was recognized, this space was called perivascular. How-

ever, as the potential was found for transport in two dif-

ferent channels around cerebral blood vessels (Fig.  1), a 

different nomenclature has been adopted. First, perivas-

cular refers to the space within the wall of a cerebral 

artery, specifically in the basement membranes (about 

100 nm thickness) between smooth muscle cells (SMC), 

which form rings about 2–6 μm wide that wrap around 

the circumference of the vessel by about 1.5 turns [5, 6]. 

One layer of SMCs is present in the circumference of the 

arterioles, while 4–20 layers are found in larger arteries 

[6]. Observations on human brains with cerebral amy-

loid angiopathy and experimental studies using tracers 

injected into the parenchyma suggests that interstitial 

fluid (ISF) flows out of the brain tissue via the intramu-

ral periarterial drainage (IPAD) pathways in the direction 

opposite that of blood flow within the artery (Fig. 1). �is 

direction of IPAD is inferred based on tracers of vari-

ous sizes that were injected into the brain parenchyma 

and found in the basement membranes between SMC’s, 

but not in the 30–40  nm thick basal lamina between 

endothelial cells and SMC’s, nor in the basement mem-

brane outside the outermost layer of SMC’s [7]. Identify-

ing a mechanism for retrograde flow is key to validating 

the IPAD concept (e.g., [8–10]). �e tracers eventually 

drain to cervical lymph nodes [11–13]. Failure of this 

process with increasing age and with risk factors for Alz-

heimer’s disease may lead to the accumulation of pro-

teins in the walls of arteries, but not veins, as observed 

in human cases and animal models of cerebral amyloid 

angiopathy [14, 15].

Second, paravascular flow is hypothesized to occur 

outside the vessel wall, i.e., outside the outermost 

SMCs, but enclosed within the astrocyte end feet form-

ing the glia limitans (Fig.  1). Convective influx of cer-

ebrospinal fluid (CSF) is thought to occur from the 

cortical subarachnoid space (CSS) along these paraar-

terial spaces to combine with ISF as it flows into the 

parenchyma near the capillaries [16, 17]. According to 

the glymphatic hypothesis, ISF is cleared along simi-

lar paravenous channels back to the CSS. �e paraar-

terial space has been considered synonymous with the 

Virchow-Robin space (VRS) without a clear description 

of the anatomical structures that form its boundaries 
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[16, 18]. Historically, it was speculated that the VRS 

was bounded on the outside by the pia and freely com-

municated with CSF in the CSS [19, 20]. However, 

electron microscopy revealed that the pial sheath is 

closely associated with the abluminal part of SMC’s 

and blocks such circulation by covering arteries both 

upstream and downstream of the pia mater surround-

ing the brain (see Fig. 1) [21, 22]. �erefore, the inner 

wall of this pathway may be the pia. VRS between the 

pia and glia limitans is found in normal subjects when 

MRI sequences conducive to its detection are used 

[23]. �e VRS is therefore a potential space formed 

between the glia limitans and the pial sheath, enlarg-

ing in ageing and cerebral amyloid angiopathy, possibly 

reflecting excess fluid that is unable to be cleared effi-

ciently. A large, empty VRS, as traditionally envisioned 

(Fig.  1), is not universally presented. In these studies, 

the pia mater and glia limitans were separated only by 

their respective basement membranes [24–26]. Further, 

large paraarterial channels may be an artifact of high 

tracer infusion rates that inflate the space [13, 27]. On 

the other hand, fixation has been observed to reduce 

the paravascular cross sectional area by a factor of 10 

[28]. Rather than judge which channel characteristics 

are most physiologically accurate, this paper will ana-

lyze both, with thin pial-glial basement membranes 

being addressed by the periarterial model, and thicker 

VRS channels by the paraarterial model.

�e intriguing potential exists for simultaneous flows 

in opposite directions within the two different chan-

nels [29]. It should also be noted that the pial sheath is 

not found around veins in the parenchyma [22] which 

has implications for outflow along veins, as proposed as 

a part of the glymphatic circulation [16]. �is outflow, 

if it exists, would have to occur in a different space, for 

instance, the collagen layer between the endothelium and 

the glia limitans [22].

While numerous experiments have documented trans-

port of solutes within these spaces [12, 16], bulk flow of 

fluids has been directly verified only around the middle 

cerebral artery (MCA), in large part due to the difficulty 

of real-time measurements in the extremely small chan-

nels. Around the MCA, a mean velocity of 18.7 μm/s was 

measured by particle tracking [28]. However, this velocity 

corresponds to a flow rate of about 0.00308 μL/min that 

followed an infusion of tracer into the cisterna magna 

of 2  μL/min. �e question is raised whether the rela-

tively large infusion (about 2% of brain volume) inflated 

the cistern and caused the roughly 1000-fold smaller 

flow. �e mechanism by which bulk flow may be driven 

has not been identified, but was thought to be related to 

the blood pressure pulse, because transport ceases after 

the heart is stopped in mice [12]. However, more recent 

modeling has shown that the stiffness of the middle cer-

ebral artery is too large to allow significant flow to be 

driven by arterial wall motion [30]. �e mean pressure 

Fig. 1 Hypothetical perivascular and paravascular flow pathways in an artery. Paravascular flow is hypothesized to move inward to the brain tis-

sue between astrocyte end feet and pia mater. Perivascular flow is hypothesized to move outward from the brain tissue in basement membranes 

between smooth muscle cells. (From [33])
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difference between CSF and the central nervous system 

(CNS) parenchyma is small, about 1  mmHg or less [31, 

32]. �erefore, its contribution to bulk flow may be insig-

nificant. Further, the resistance of the cerebral paraar-

terial tree is too great to support bulk flow [33]. In this 

paper, an alternative hypothesis is evaluated that solute 

transport may occur in the absence of net bulk flow by 

shear-augmented dispersion.

Intrathecal �ow and transport

CSF pulsates with each cardiac cycle around the brain 

and spinal cord with nearly zero net flow. Features of the 

CSF system anatomy (Fig.  2) and physiology were 

reviewed by Martin et al. [34]. Total CSF volume ranges 

from 250 to 400 mL in an adult human [35] with ~ 90 mL 

located in the SSS. CSF is a clear fluid having similar 

properties as water at body temperature with density, 

ρ = 993 kg/m3 and kinematic viscosity, ν = 7 × 10−7 m2/s 

at body temperature [36]. Figure  3 indicates hydrody-

namic and geometric characterization of the SSS for a 

healthy adult male subject in terms of key parameters. 

Computational fluid dynamics modeling of CSF flow has 

estimated Reynolds number based on hydraulic diameter 

to be from 150 to 450 within the SSS [37] and 340 within 

the aqueduct of Sylvius [38], which are both in the lami-

nar range. Studies have indicated that jets and possible 

flow instabilities may be present [39]. �e Womersley 

number1 in the SSS has been estimated to range from ~ 5 

to 15 [40], which is unsteady.

�e SSS can be considered to be a porous medium 

as described previously by Gupta et  al. [41] and others. 

�is is because the SSS is bounded by the pia-arach-

noid complex [42], a fluid space that contains numerous 

microscopic structures including arachnoid trabeculae, 

arachnoid “sheets” with holes [43], and blood vessels. �e 

porosity of the human SSS is not known precisely. �us, 

our approach estimated a range of plausible values based 

on known anatomic dimensions.

Since CSF pulsates around the entire brain and spine, it 

can be leveraged as a conduit to deliver therapies to the 

brain and spinal cord. While CSF-based delivery of drugs 

and biologics to the CNS is promising, there is relatively 

little information about the physics of CSF flow and sol-

ute transport, which has, in turn, slowed therapeutic 

development. At present, targeting and optimizing the 

delivery of these therapies is problematic because virtu-

ally nothing is known about CSF dynamics in many CNS 

diseases. A better understanding of CSF flow and trans-

port could help to optimize delivery parameters and/or 

system design to ensure that the drug reaches targeted 

CNS tissue regions [44]. �is was accented in a recent 

study that concluded, “Assessment of biomarkers that 

report the kinetics of CSF flux in prospective gene ther-

apy patients might inform variable treatment outcomes 

and guide future clinical trial design” [45].

To the extent that flows through the ultrastructures 

within the spinal subarachnoid space and in the perivas-

cular and paravascular channels may be driven by oscil-

latory pressure gradients, and that longitudinal transport 

may be enhanced by the resulting velocity gradients, 

a mathematical model is developed to quantify the 

enhancement.

Objectives

�e plausibility of significant shear-augmented disper-

sion in the SSS and in the paravascular and perivascular 

spaces will be evaluated by two methods. First, an ana-

lytical model of transport in oscillatory flow through a 

simplified channel filled with (Darcy–Brinkman) porous 

media representing the CNS spaces is used to calculate 

a low estimate of the enhancement of dispersion. Model 

results are presented over a wide range of parameters, 

as well as for parameter sets for each space that yield the 

largest plausible enhancement with the Darcy–Brink-

man model, which neglects the transverse mixing that 

can occur in porous media. Second, order-of-magnitude 

1 �e Womersley number has the same form as the earlier-defined Stokes 
number used in this paper (see definition after Eq. 2).

Fig. 2 Anatomic diagram of the CSF system including spinal suba-

rachnoid space (SSS) and cortical subarachnoid space (CSS) with 

ventricles and cisterns of the brain
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analysis is used to estimate the maximum enhancement 

associated with a match between the transverse mix-

ing time and the cycle period of the oscillatory flow. 

Together, these lower and upper bounds test whether 

Taylor dispersion may be significant in these spaces and 

demonstrate the potential for improvement in transport 

by clinical manipulation of the parameters.

Methods
Mathematical model

Flows in the channels are simplified to be that between 

flat plates. (Validity of this and other simplifications are 

discussed in “Values of parameters” section). No-slip 

and no-flux boundary conditions are applied at the walls. 

�e Darcy–Brinkman model is used to approximate the 

resistance to flow of the structures within the channels. 

�is model smooths the local heterogeneities of flow 

through the porous material to a purely axial superficial 

velocity, which is the mean velocity of a hypothetical 

continuum fluid filling the channel. �is approximation 

allows an analytical solution, but has potential implica-

tions for transport that are estimated by order-of-magni-

tude analysis in “Regimes of dispersion” section. For these 

conditions, the dimensional unsteady Darcy–Brinkman 

equation describes the fluid flow

(1)
∂ũs

∂ t̃
= −

1

ρ

∂ p̃

∂ x̃
+ νe

∂2ũs

∂ ỹ2
−

ν

k
ũs,

Fig. 3 Example of geometric and hydrodynamic characterization of the SSS for a healthy adult male subject based on subject specific MRI meas-

urements and engineering post-processing techniques described by Sass et al. [35]. Axial distribution of dura, spinal cord and SSS (dura + spinal 

cord) perimeter (a), dura, spinal cord and SSS area (b), hydraulic diameter (c), Reynolds and Womersley number (d), peak CSF flow rate at systole and 

diastole (e), mean CSF flow velocity at systole and diastole (f). Systolic flow is directed towards the feet
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where k is permeability, p̃ is pressure, t̃ is time, ũs is 

superficial axial velocity, x̃ is the axial coordinate, ỹ is the 

transverse coordinate, ν is the kinematic viscosity of the 

fluid, νe is the effective kinematic viscosity for flow in the 

porous medium, and ρ is the fluid density. �e last term 

on the right-hand side, called the Darcy term, is an addi-

tion compared to the Navier–Stokes equation for flow 

without porous media. �is term is significant for porous 

flow. k → ∞ and νe → ν for nonporous flow.

Equation 1 is nondimensionalized as

where p =
p̃

ρωνe
 is pressure, ω is frequency, t = ωt̃ is time, 

u = ũs/hω is the superficial velocity, x = x̃/h is the axial 

coordinate, y = ỹ/h is the transverse coordinate, h is the 

channel half height, α2
=

h
2
ω

νe
 is the square of the Stokes 

(Womersley) number and Da2 =
h2ν

kνe
 is the square of the 

Darcy number ( Da → 0 for nonporous flow [2]).

Inserting a complex oscillatory pressure gradient 
∂p
∂x

= −Peit , where P =
∂ p̃/∂ x̃
ρωνe/h

 , the oscillatory velocity can 

be described as the real component of separable spatial 

and temporal parts u = Re
[

f
(

y
)

eit
]

 . By inserting these 

pressure and velocity relationships into Eq. 2, the spatial 

part of the equation of motion is

where d2 ≡ M + iN = Da
2
+ iα

2 and the real and imagi-

nary parts m and n of d are defined by d ≡ m + in =

1√
2

√√
Da4 + α

4 + Da2 + i
1√
2

√√
Da4 + α

4 − Da2 . (Note 

that d2 = iα
2 for nonporous flow [2]). Equation 3 has the 

solution

where

Dimensional longitudinal dispersion is described by

where c is concentration of a passive tracer and κ is its 

molecular diffusivity, which can be nondimensionalized 

as

where θ =
c

c0
 , where c0 is a characteristic concentration, 

β2
=

h
2ω
κ

= α2Sc is the oscillatory Peclet number (here-

after simplified to the Peclet number) and Sc = ν/κ is the 

(2)α
2 ∂u

∂t
= −

∂p

∂x
+

∂
2u

∂y2
− Da2u,

(3)∇
2f − d2f = −P,

(4)f =

P

d2
(1 − F),

(5)F =

cosh dy

cosh d
.

(6)
∂c

∂ t̃
+ ũs

∂c

∂ x̃
= κ∇̃

2
c,

(7)∇
2θ − β2 ∂θ

∂t
= β2

u
∂θ

∂x
,

Schmidt number. Equation  7 is the same as the nonpo-

rous case [2], but u is now a function of Da, which leads 

to a Da dependence for θ.

From Eqs.  2 & 7, dimensional analysis reduces the 

number of variables to

Inserting the velocity solution f and a separable concen-

tration profile θ = −γ x + Re
[

γ g
(

y
)

eit
]

 that includes 

an oscillatory component that is independent of axial 

location and steady state longitudinal concentra-

tion gradient that is uniform across the cross section 

γ = −∂θ/∂x = const , gives

which has the solution

where A =
P

d2i
 , B =

Pβ2

d2(d2−r2) cosh d
 , C = −

Bd sinh d

r sinh r
 , 

r2 =
ih

2ω
κ

= iβ2 , r =
√

iβ2 = r̄(1 + i) and r̄ = β/
√
2 . �e 

flux of tracer per unit depth is

which in dimensionless form becomes

Using complex conjugates (desig-

nated by an overbar), velocity becomes 

u = Re
[

f
(

y
)

eit
]

=
1

2

(

feit + f̄ e−it
)

 and concentration 

θ = −γ x + Re
[

γ g
(

y
)

eit
]

= −γ x +
γ
2

(

geit + ḡe−it
)

.

�e product of velocity and concentration is then 

uθ =
1

2

(

feit + f̄ e−it
)

[

−γ x +
γ
2

(

geit + ḡe−it
)]

= −
γ x
2

  
(

feit + f̄ e−it
)

+
γ

4

(

fgei2t + f ḡe0 + f̄ ge0 + f̄ ḡ ei2t
)

 .

Neglecting the oscillatory terms in the product, which 

do not contribute to flux over times long compared to the 

oscillatory period, the flux becomes

�e effective diffusivity is defined (following Watson [2]) 

as

where the enhancement of transport by shear is

(8)u, θ = u, θ
(

P, t, x, y,α,Da, Sc
)

.

(9)∇
2g − iβ2g = −β2f ,

(10)g = A + B cosh dy + C cosh ry,

(11)j̃ =

∫ h

0

(

ũc − κ
∂c

∂ x̃

)

dỹ,

(12)j ≡
j̃

hω
=

∫

1

0

(

uθ −
κ

h2ω

∂θ

∂x

)

dy =

∫

1

0

uθdy +
γ

β2
.

(13)j =
γ

4

∫

1

0

(

f ḡ + f̄ g
)

dy +
γ

β2
.

(14)Deff ≡
j̃

∂c/∂x
= κ(1 + R),

(15)R =
1

4

1
∫

0

(

f ḡ + f̄ g
)

dy.
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Equation 15 is similar to the Watson [2] case, but here f 

and g depend on Da. Having integrated over y and t, the 

remaining independent variables for determining R are

Details of the solution for R are given in Additional file 1: 

Appendix. For validation, this solution reduces to that for 

a channel without porous media [2] for Da → 0.

Values of parameters

Results were obtained for the case of periarterial base-

ment membranes and the paraarterial (Virchow-Robin) 

space within the brain, and for the SSS. For basement 

membranes, the gap height was taken as 100 nm, which 

is 75 times smaller than the radius of the smallest arteries 

(precapillaries ~ 7.5 μm radius), thus the flat plate channel 

model is justified even for the smallest vessels. �e cross 

section of the basement membrane may be irregular, thus 

the simplified flat plate channel represents a baseline 

model from which solutions for more complex geome-

tries may be extended. Molecular diffusivity was taken to 

be that for amyloid-β, κ = 5 × 10−11  m2/s [46]. �is value 

is for monomers of amyloid-β, which have a size of about 

1 nm and thus satisfy the continuum assumption within 

the channel (oligomers and aggregates of amyloid-β, may 

be as large as 100 nm, which would violate the continuum 

model). �e density and kinematic viscosity of the sus-

pending fluid taken to be that of water at body tempera-

ture, ρ = 993  kg/m3 and ν = 7 × 10−7  m2/s. �e Schmidt 

number becomes Sc = 14,000. �e oscillatory frequency 

was taken as that for the heartbeat, ω = 2π rad/s. �e 

Womersley number becomes α2 = 2.24E−8 and the Peclet 

number β2 = 0.000314.

�e pressure gradient driving flow in the basement 

membrane has not been measured and would be difficult 

to obtain, given the small sizes involved. �erefore, the 

approach taken here was to test the ultimate feasibility 

of transport by oscillatory shear-augmented dispersion 

by using the largest possible pressure gradient, charac-

terized by cerebral arterial pulse pressure, approximated 

as 100  mmHg = 13.33  kPa, and a longitudinal distance. 

�is pressure would prevail if the hydraulic resistance 

(or compliance) across the endothelial layer is small com-

pared to that between the basement membrane and the 

parenchyma, which near the capillaries comprises peri-

cytes and astrocyte feet. It should be noted that while 

the intramural pulse pressure in the capillaries has con-

ventionally been thought to be greatly attenuated by flow 

through the arterioles, evidence suggests that high pres-

sure may persist to the capillaries [47], thus a substan-

tial part of the full pulse pressure may apply to channels 

beginning at the arteriole/capillary junctions. �e pulse 

pressure in veins is low, thus the potential for driving 

(16)R = R(P,α,Da, Sc).

flow along perivenous channels by venous intramural 

pressure pulsations is less. Flow might alternatively be 

driven by pulsations in pressure within the parenchyma 

if the hydraulic resistance (or compliance) between the 

intramural space of the vessel (whether artery or vein) 

and the basement membrane is large compared to that 

between the basement membrane and the parenchyma. 

�is pulse pressure can be estimated to be that in the 

CSF, for instance, as measured in the ventricles by a num-

ber of investigators (see the following discussion of the 

SSS). Finally, a longitudinal distance of 0.1 m character-

izing the length of cranial vessels gives a maximum non-

dimensional pressure gradient amplitude of P = 1.526.

Permeability of SMC basement membranes has been 

estimated as 1.432E−18 m2 in a rabbit thoracic aorta [48, 

49]. Whether cerebral arterial SMC or pial-glial basement 

membranes are more or less permeable is unknown. 

Using this value for the current problem makes the Darcy 

number Da2 = 1750.

�e characteristic thickness of the larger paraarte-

rial space was taken as 10 μm [50, 51]. Taking a cortical 

arteriole with radius of 11.5 μm [51] as the characteristic 

vessel size, the gap-to-radius ratio is near unity, thus the 

flat plate model is a simplification. Again using amyloid-β 

as the solute, the Schmidt number is Sc = 14,000. Using 

the same heart beat frequency, the Womersley number is 

α = 0.000224 and the Peclet number β2 = 3.14. �e driv-

ing pressure gradient was assumed the same as for base-

ment membranes, which results in P = 152.6. Using a 

thicker 25 μm channel and a smaller 2.4 Pa/m peak pres-

sure gradient, Bilston et al. [52] nonetheless arrived at a 

comparable value (P = 67) for the paraarterial space of 

arteries entering the spine. Permeability of the paraarte-

rial space has been estimated as 1.8E−14 m2 [53], which 

makes the Darcy number Da2 = 1390. If the paraarterial 

gap is instead comprised by the smaller 100  nm thick 

pial-gial basement membrane [13, 27], then the param-

eter values are the same as for the periarterial space.

For the SSS, the gap height was taken as 3 mm (Fig. 3) 

[34]. �is gap prevails along much of the spine, but is 

considerably larger near the foramen magnum. �e 

perimeter of the SSS (Fig. 3) is only about three times the 

gap height, thus a flat plate channel model is a simplifi-

cation. �e molecular diffusivity was taken to be that for 

methotrexate, κ = 5.26E−10  m2/s ([54] in [55]) (an anti-

metabolite injected intrathecally to treat cancer), thus 

the Schmidt number becomes Sc = 1330. Using the same 

heart beat frequency, the Womersley number is α2 = 20.2 

and the Peclet number β2 = 26,900. A pressure gradient 

amplitude of 453  Pa/m was estimated by dividing the 

pulse pressure of 45.3 Pa [32] by a representative 0.1 m 

longitudinal distance along the SSS. (A similar pulse 

pressure (40  Pa) was found in the fourth ventricle in 
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computational fluid dynamics (CFD) simulations of the 

CSS [38], and this pressure gradient value is comparable 

to the 525 Pa/m calculated in CFD simulations of flow in 

the SSS [55, 56]. Other investigations have found higher 

values, for instance, Williams [57] (pulse pressures of 

572 Pa measured in the ventricle and 548 Pa in the lum-

bar spine in seated subjects) and Heiss et al. [58] (133 Pa 

in the lumbar spine and 213 Pa in the cervical spine). Dif-

ferential ventricular to lumbar pulse pressure from Wil-

liams [57] (609 Pa), divided by an estimated 61 cm height 

difference between the two measurement sites gives 

1000 Pa/m, roughly double that used in this study.) �e 

nondimensional pressure gradient amplitude becomes 

P = 155.7.

Permeability for the SSS has not been measured, how-

ever, permeability in the CSS has been estimated as 

2.36 × 10−8  m2 and porosity as 0.99 [41]. While it could 

be argued that k in the SSS is larger, in the absence of 

data, this value is used with a channel half-height of 

1.5 mm to calculate Da2 ~ 95.3.

Given the uncertainties regarding permeability 

throughout the brain and spine, results are presented for 

several values of Da2.

Regimes of �ow

Before the results of the analytical solution are shown, 

an order-of-magnitude analysis of the expected regimes 

of flow and dispersion is presented in this section. From 

Eq.  2, the parameters controlling the flow are evident. 

�e pressure gradient drives the flow, and the charac-

ter of the flow depends on which of the other terms (the 

unsteady, viscous and Darcy terms) balance it. �e coef-

ficient of the viscous term having been normalized to 

unity and where νe ~ ν, the ratio of the unsteady term to 

the viscous term is α2
=

h
2
ω

ν
 and the ratio of the Darcy 

term to the viscous term is Da2 =
h2

k
 . �ese parameters 

define the following asymptotic regimes of flow: 1. Vis-

cous (Poiseuille) when α2 ≪ 1 and Da2 ≪ 1, 2. Unsteady 

when α2 ≫ 1 and Da2/α2 ≪ 1, and 3. Porous (Darcy) when 

Da 2 ≫ 1 and Da2/α2 ≫ 1. �e viscous velocity profile is 

parabolic, with shear from the wall to the center of the 

channel. For unsteady flow, shear is limited to a boundary 

layer of dimension δ ≈
√

νT  , where T is the cycle period. 

For porous media flow, while shear exists within the 

media, it is not represented by the continuum model of 

the Darcy term. In the case of large Da2, shear is limited 

to a boundary layer near the wall of thickness 
√

k .

Regimes of dispersion

�ese flow regimes impact axial transport by affecting 

the fraction of the cross section over which displace-

ment gradients create transverse concentration gradi-

ents across which diffusion increases axial spread of the 

molecules. In viscous-dominated oscillatory flow, the 

Poiseuille velocity profile dictates that the entire cross 

section participates in enhancing transport. For unsteady 

flow, the region of transport enhancement is limited to 

the viscous boundary layer. For porous media flow as 

modeled by the Darcy term, transport is enhanced only 

in the Brinkman boundary layer. �e effect of transverse 

diffusion on the enhancement of axial dispersion is influ-

enced in each of these flow regimes by the Peclet number 

β2
=

h
2ω
κ

 , which represents the ratio of the time constant 

for diffusion across the channel to the cycle period. Low 

β2 corresponds to diffusive transport in which transverse 

concentration gradients are small throughout the cycle in 

spite of axial flow, and high β2 corresponds to unsteady 

dispersion in which transverse diffusion is slow enough 

that significant transverse concentration gradients are 

caused by the axial velocity gradients.

Shear-augmented axial transport relative to the maxi-

mum advective transport is scaled as [3, 4] 

where wrel is the characteristic axial velocity of diffusing 

molecules relative to the average, tc is the time during 

which the velocity of the molecules remains correlated 

and FA is the fraction of the cross section over which 

molecules experience relative motion. w0 is the veloc-

ity amplitude of the bulk flow, the cyle period scales as 

T ~ 1/ω and augmented transport is considered to be 

additive to molecular diffusion. Maximum axial trans-

port occurs when wrel = w0, tc = T, and FA = 1, thus D = 1 . 

�e augmentation relative to molecular diffusion is found 

by renormalization

�e maximum augmentation, which occurs for D = 1 , 

is Rmax = w
2

0
T/κ . �e possible regimes of transport are 

outlined in the following subsections.

Viscous flow (α2 ≪ 1 and Da2 ≪ 1) and diffusive disper-

sion (β2 ≪ 1)—For this case, the relative velocity scales 

with that of the bulk flow wrel ~ w0, the correlation time 

scales with the time for diffusion across the cross section 

tc ~ h2/κ, and the whole cross section is involved FA ~ 1, 

thus

To estimate R, the characteristic velocity scales as 

w0 ∼ hωP , thus

D =

w
2
rel

w
2
0

tc

T
FA,

R =

w
2

0
T

κ

D

D ∼ β2
.

R∼P
2β4

.
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Maximum enhancement is achieved by reducing lateral 

dispersion such that tc = T

Viscous flow (α2 ≪ 1 and Da2/α2 ≪ 1) and unsteady dis-

persion (β2 ≫ 1)—For this case, the relative velocity is 

limited to the velocity difference across a characteristic 

diffusion distance wrel ∼ w0

√
κT/h , the correlation time 

is limited to the cycle period tc ~ T, while the whole cross 

section is still involved FA ~ 1, thus

Since Rmax always requires tc ~ T and FA ~ 1, it depends 

only on w0, and thus on the type of flow. For this case, 

Rmax is achieved by increasing lateral dispersion such that 

wrel = w0

Unsteady flow (α2 ≫ 1 and Da2/α2 ≪ 1) and unsteady 

dispersion (β2 ≫ 1)—For large Schmidt number, the 

molecular diffusion distance is smaller than the viscous 

diffusion distance. �e relative velocity occurs over 

the smaller distance, while the maximum velocity dif-

ference in exhibited across the viscous boundary layer 

wrel ∼ w0

√
κT/

√
νT  . �e correlation time is limited 

to the cycle period tc ~ T, and the fraction of the cross 

section with velocity gradients is that of the oscillatory 

boundary layer FA ∼
√

νT/h , thus

�e characteristic velocity scales as w0 ∼
ν

h
P , thus

Maximum enhancement is reached by increasing lateral 

dispersion such that wrel = w0 and adding velocity gradi-

ents in the core flow such that FA = 1

For small Schmidt number (which is not characteristic of 

the problems addressed in this paper), the molecular dif-

fusion distance is larger than viscous diffusion distance. 

�e relative velocity is, therefore, that over the whole vis-

cous boundary layer, making wrel ∼ w0 . �e correlation 

time scales with the time for diffusion across the viscous 

boundary layer tc ~ νT/κ, and the fraction of the cross 

section with velocity gradients is that of the oscillatory 

boundary layer FA ∼
√

νT/h , thus

Maximum enhancement is achieved by decreasing lateral 

dispersion such that tc = T and adding velocity gradients 

in the core flow such that FA = 1

Rmax∼P
2β2

.

D ∼ β−2
and R ≈ P

2
.

Rmax∼P
2β2

.

D ∼ β−1
Sc

−1/2
.

R∼P
2
α

−3
.

Rmax∼P
2
α

−2
Sc.

D ∼ α
−1

Sc and R ∼ P
2
α

−3
Sc

2
.

Rmax∼P
2
α

−2
Sc.

Porous flow (Da2 ≫ 1 and Da2/α2 ≫ 1) and diffusive dis-

persion (Da2/β2 ≫ 1)—For large Da
2

α
2

=
ν

kω
 , the Brinkman 

layer is smaller than the unsteady viscous boundary layer, 

thus  FA ~ 
√

k/h . For large Da
2

β2
=

κ
kω

 , the molecular diffu-

sion distance during one cycle is greater than the Brink-

man layer. �e relative velocity is, therefore, that over the 

whole Brinkman layer wrel ∼ w0 . �e correlation time is 

the time for diffusion across the Brinkman layer tc ~ k/κ, 

so

�e characteristic velocity scales as w0 ∼
kω

h
P , thus

Maximum enhancement is achieved by decreasing lateral 

dispersion such that tc = T and adding velocity gradients 

in the core flow such that FA = 1

Porous flow (Da2 ≫ 1 and Da2/α2 ≫ 1) and unsteady dis-

persion (Da2/β2 ≪ 1)—For small Da
2

β2
=

κ
kω

 , the molecu-

lar diffusion distance during one cycle is smaller than 

the Brinkman layer. �e relative velocity occurs over the 

smaller distance, so wrel ∼ w0

√
κT/

√
k  . �e correlation 

time is the cycle period tc ~ T, and

Maximum enhancement is achieved by increasing lateral 

dispersion such that wrel = w0 and adding velocity gradi-

ents in the core flow such that FA = 1

Results
Velocity

Characteristic velocity profiles from the analytical solu-

tion for the three cases are shown in Fig.  4a. When the 

viscous term dominates, the profile is parabolic (Poi-

seuille) and the peak velocity is 1.5 times the average. For 

unsteady, inertia-dominated flow, a core of uniform veloc-

ity develops, with a surrounding intermediate layer that 

can have higher velocity as shown in Fig. 4a, and a viscous 

boundary layer near the wall (shown for α2 = 100). Due to 

the fluid inertia, the velocities of the core and intermedi-

ate layer respond out of phase to the pressure gradient, 

with the lag being greatest for the core and least near the 

wall, which creates the inflection in the velocity profile. 

When the flow is dominated by resistance through the 

porous media, the core has a constant velocity, but a no-

slip boundary condition still applies at the wall (shown 

for Da2 = 200). �e resistance effect dominates that of 

fluid inertia, thus velocity across the whole cross section 

responds in phase with pressure and no inflection occurs.

D ∼ β2
Da

−3
.

R∼P
2β4

Da
−7

.

Rmax∼P
2β2

Da
−2

.

D ∼ β−2
Da and R ∼ P

2
Da

−3
.

Rmax∼P
2β2

Da
−2

.
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Concentration

Although there are six regimes of dispersion, two (dif-

fusive and unsteady) for each of the three flow regimes, 

only four unique concentration profiles occur. When the 

transport is diffusive, regardless of the velocity regime, 

rapid diffusion across the cross section causes the con-

centration to be uniform (Fig.  4b). �e three remaining 

regimes are unsteady dispersion in viscous, unsteady and 

porous flow. For each of these regimes, diffusion is weak, 

thus the concentration profile is driven by the velocity 

gradients. �e concentration profiles mirror the velocity 

profiles (Fig. 4a) except near the wall, where the no-flux 

boundary condition for concentration dictates a concen-

tration gradient of zero.

Enhancement of axial dispersion

For Sc = 1330 and P = 155.7, characteristic of methotrex-

ate in the SSS, enhancement of axial dispersion R reaches 

a maximum of about 3500 over a range of α2 from 0.0001 

to 100, which corresponds to β2 from 0.133 to 1.33E+5 

(Fig. 5a). �e regimes of flow and dispersion are evident 

from the curves. For low Da2, R increases with increas-

ing β2 in the viscous flow/diffusive dispersion regime 

to a level of R ~ 3000 at which the dispersion begins to 

transition to unsteady at around β2 ~ 1. R then increases 

slightly with increasing β2 in the viscous flow/unsteady 

dispersion regime to another transition at about α2 ~ 1 

(β2 = 1330). Beyond this transition, the flow becomes 

unsteady while the dispersion remains unsteady, and R 

decreases. �e porous media decreases R beginning at 

about Da2 = 1, and also softens the transition between 

steady and unsteady dispersion, as well as between steady 

and unsteady flow (most evident in the Da2 = 100 curve), 

because both the viscous and unsteady boundary layers 

are both small. As predicted by the order of magnitude 

scaling, R increases proportional to β4 for diffusive dis-

persion, is relatively insensitive to β for viscous flow/

unsteady dispersion and for porous flow/unsteady dis-

persion, and decreases proportional to β−3 for unsteady 

flow/unsteady dispersion. (�e curve for Da2 = 100 

does not transition to unsteady flow, which requires 

Da2/α2 ≪ 1, within the bounds of the plot. �is param-

eter only reaches Da2/α2
= 1 for the maximum value of 

β2 = 1.33E+5.) �e nearly identical curves for Da2 = 0.1 

and the non-porous case Watson [2] show that the effect 

of the porous media is small for values of Da2 ≤ 0.1 . 

�e convergence of all the curves for large β2 regardless 

of Da2 indicates transition to the unsteady flow regime, 

where the viscous boundary layer is smaller than the 

Brinkman layer.

For Sc = 14,000 and P = 1.526, characteristic of 

amyloid-β in cerebrovascular basement membranes, 

enhancement of axial dispersion R is minimal, rising only 

to about 0.3 over a range of α2 from 1E−8 to 10, which 

with the higher Sc corresponds to β2 from 0.00014 to 

1.4E+5 (Fig.  5b). �e dispersion transitions from diffu-

sive to unsteady at the same β2 ~ 1, however the peak R 

is much lower. �e flow again transitions from viscous to 

unsteady around α2 ~ 1, though due to the higher Sc, this 

transition appears in Fig. 5b at β2 ~ 14,000. �e same flow 

a

b

Fig. 4 a Characteristic dimensionless velocity (relative to the mean 

velocity) profiles versus dimensionless distance from the center of the 

channel (relative to the channel half height) for the three regimes of 

flow. The viscous profile is parabolic (Poiseuille). The porous profile 

is flattened by the resistance to flow through the porous media. The 

unsteady profile exhibits a peak between the core and the boundary 

layer due to fluid inertia. b Characteristic dimensionless concentra-

tion profiles versus dimensionless distance from the center of the 

channel for the regimes of dispersion. The profiles mirror those of 

velocity, except for the no-flux boundary condition at the wall. In the 

legend, the flow regime is given before the slash and the dispersion 

regime after the slash. The unsteady curves are shown for Womersley 

number α2 = 100, and the porous curves are shown for Darcy number 

Da2 = 200
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and dispersion-dependent rates of increase and decrease 

of R are exhibited, and increasing Da2 decreases trans-

port and softens the transitions. Similar agreement of the 

behavior of R with the scaling predicted by order of mag-

nitude analysis is evident.

For Sc = 14,000 and P = 152.6, characteristic of 

amyloid-β in the larger (10  μm) paraarterial space, 

enhancement of axial dispersion R of nearly 4000 is pos-

sible over a range of α2 from 0.0001 to 1E+5, which cor-

responds to β2 from 1.4 to 1.4E+9 (Fig.  5c). Over this 

range, the flow and dispersion are both mostly unsteady, 

with the transition to diffusive to unsteady dispersion 

beginning immediately at the low β2 end of the curves 

for low Da2. �e flow again transitions from viscous to 

unsteady at β2 ~ 14,000 (α2 ~ 1).

Having solved the general problem, we turn to the esti-

mated conditions specific to dispersion in the spine and 

in cerebrovascular basement membranes. For the SSS, 

the Womersley, Peclet and Darcy numbers are α2 ~ 20.2, 

β2 ~ 26,900 and Da2 ~ 95.3, respectively. �e resulting 

a
b

c

Fig. 5 a Dispersion enhancement R for Schmidt number Sc = 1330 and dimensionless pressure gradient P = 155.7. Enhancement is significant 

(> 1) in the SSS, the conditions for which are estimated by the large dot (Peclet number β2 = 26,900 and Darcy number Da2 = 95.3). b Dispersion 

enhancement for Sc = 14,000 and P = 1.526. Enhancement is very small for cerebrovascular basement membranes, as shown by the large dot 

(β2 = 0.00314 and Da2 = 1390). c Dispersion enhancement for Sc = 14,000 and P = 152.6. Enhancement is small in the larger paraarterial space, as 

shown by the large dot (β2 = 3.14 and Da2 = 1750)
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dispersion enhancement is R = 5.80 (Fig.  5a). It can be 

seen in Fig. 5a that if the permeability were large enough 

that the effect of the porous media were insignificant 

(Da2 = 0), the enhancement would be R = 91.8.

For cerebrovascular basement membranes, the 

Womersley and Peclet numbers are α2 ~ 2.24E−8 and 

β2 ~ 0.000314, respectively. For an estimated Darcy 

number of Da2 = 1750, dispersion enhancement is 

R = 6.38E−18 (Fig. 5b). For a nonporous media, enhance-

ment increases to R = 2.42E−10.

For the 100 times larger version of the paraarterial 

space, the Womersley and Peclet numbers increase to 

α2 ~ 0.000224 and β2 ~ 3.14, respectively. For an estimated 

Darcy number of Da2 = 1390, dispersion enhancement is 

R = 1.178E−5 (Fig.  5c). For nonporous media, enhance-

ment increases to R = 220.

Discussion
Using the continuum model of oscillatory flow in 

porous media, shear-augmented dispersion has a sig-

nificant effect on transport of methotrexate in the SSS, 

but amyloid-β is about eighteen orders of magnitude 

away from significance for cerebrovascular basement 

membranes and five orders of magnitude for the larger 

pararterial space. �e order of magnitude estimate of 

maximum transport enhancement (“Regimes of disper-

sion” section), however, implicitly incorporates phenom-

ena that alter transverse mixing without changing the 

oscillatory longitudinal velocity amplitude and zero mean 

flow. Two such effects, local effects on axial velocity and 

secondary transverse flow, are discussed in the following 

subsections.

Local velocity �uctuations

�e no-slip boundary condition brings axial velocity to 

zero where the fluid contacts the media, and axial veloc-

ity is locally accelerated in passages through the solid 

material. Both of these effects increase shear and con-

centration gradients locally, which can be expected to 

increase axial dispersion. An example superficial veloc-

ity profile is shown in Fig. 6, in which spatial fluctuations 

in velocity remain downstream of a square array of cyl-

inders between flat plates. �e fluid in the high velocity 

regions between cylinders carries molecules forward, 

creating local transverse concentration gradients that 

do not exist in the Darcy model of porous media flow. If 

the regime of transport is not already diffusive, then the 

added transverse transport increases axial dispersion.

Secondary �ow

Transverse flow in porous media is characterized by tor-

tuosity, which is a ratio of the distance along a stream-

line to the distance between its end points. �e effect of 

tortuosity on dispersion may be minimal if the tortuous 

channels do not communicate with adjacent channels. 

However, if mixing occurs between channels with differ-

ent concentration, then the impact on axial dispersion 

can be large in regimes of dispersion in which transverse 

diffusion is weak. Simulations of flow and dispersion in 

unit cells representing regular, periodic geometries of 

simplified porous media have demonstrated enhance-

ments of longitudinal dispersion by as much as four 

orders of magnitude (in a two-dimensional, hexagonal 

array of circular cylinders [59]).

Oscillatory annular (nonporous) flow with axial veloc-

ity that has phase differences (axial velocity is forward 

for half the annulus while the other half is reverse) and 

transverse secondary flow also provides a model of this 

effect [4]. Axial dispersion in this model parallels that in 

flows without secondary flow in that a peak in enhance-

ment occurs in the transition between regimes of low and 

high transverse transport. In this case, transverse trans-

port occurs not only by diffusion, but also by advection. 

�e peak occurs were ts/T ~ 1, where ts is the secondary 

flow time. Axial dispersion increases as ts/T approaches 

unity from either side, but in addition, convective reso-

nance occurs at ts/T ~ 1, where secondary flow carries 

molecules a half circuit around the annulus in half a cycle 

(from a region of forward velocity to a region that a half 

cycle later also has forward velocity). �is keeps the mol-

ecule advecting in a consistent direction, in spite of the 

Fig. 6 Example superficial velocity ũ profile within a square array of 

cylinders. Position is from a flat wall on the left to the center of the 

channel on the right. 2l is the spacing between cylinders. The velocity 

gradients created by the high velocity in the gap between cylinders 

and the low velocity downstream of cylinders provides the potential 

for enhanced dispersion. (From [77])
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reversal of axial flow, increasing axial dispersion by up 

to an additional two orders of magnitude. Similar, but 

weaker, resonance occurs when the secondary displace-

ment during a cycle is an integer multiple of the annulus 

circumference.

Maximum enhancement

As outlined in “Regimes of dispersion” section, maximum 

enhancement Rmax = w
2

0
T/κ occurs when the relative 

velocity of particles scales with the characteristic velocity 

of the fluid, the particles move with that relative velocity 

for a whole cycle and the entire cross section is involved. 

For the unsteady dispersion in the SSS, increased lateral 

mixing, for instance by local velocity fluctuations or sec-

ondary flow (“Local velocity fluctuations and second-

ary flow” sections), is required to achieve this condition, 

and enhancement could be increased from R = 5.80 to 

Rmax = 1.60E+6. �e model predicts that the characteris-

tic time t ∼ L
2/[κ(1 + R)] for methotrexate to be trans-

ported along a L = 0.7 m long spinal canal decreases from 

4.3 year to 9.7 min, which is clinically useful. �e corre-

sponding characteristic transport speed v ∼ [κ(1 + R)]/L 

increases from 5.1E−6 mm/s to 1.2 mm/s.

For basement membranes, reduced lateral disper-

sion increases enhancement from R = 6.38E−18 to 

Rmax = 0.000730. Characteristic transport time for 

amyloid-β on a 0.1 m long path along the cerebral arterial 

tree is about 6.3 year in either case. �is time is much too 

long to explain observed transport of solutes [12], there-

fore, some other mechanism must be responsible.

For a 10  μm paraarterial space, reduced lateral dis-

persion increases enhancement from R = 1.178E−5 to 

Rmax = 73,200, which produces a characteristic trans-

port time for amyloid-β along the cerebral arterial tree 

of 45 min. While promising, this time may be deceiving, 

because the gap is thought to be much smaller around 

precapillaries, which would lead to enhancement there 

that is more similar to that of basement membranes.

Comparison with previous work

�e only previous model of perivascular or paravascular 

transport of which we are aware is that of Asgari et  al. 

[51]. �eir model is very different, representing a 10 μm 

thick paravascular space filled with porous media sur-

rounding short (150–250 μm) sections of cortical arteri-

oles (23 μm diameter). Pulsatile motion of the inner wall 

of the space was imposed, while zero pressure, uniform 

velocity and constant concentration boundary conditions 

were set at the ends of the segment. �e resulting pul-

satile, squeeze flow and unsteady dispersion produced 

R ~ 1. �is enhancement is greater than that found here 

for the Darcy–Brinkman result (R = 1.178E−5), which 

may be attributable to the greater transverse flow, but 

still produces a long characteristic time of t ~ 3  year for 

transport of a solute with κ = 5E−11 m2/s along a 0.1 m 

path.

Stockman [60] modeled the SSS as an elliptical annulus 

and compared axial transport for a non-porous channel 

and a channel with nerve bundles converging at the dural 

surface and trabeculae with random orientation. Lat-

tice-Boltzmann simulations with α = 11 (larger than the 

α = 4.49 assumed in this paper) and 10 < Sc < 100 (smaller 

than the Sc = 1330 for methotrexate used in this paper) 

predicted enhancements of approximately 0.5 for the 

non-porous channel and 2.5 for the channel with nerve 

bundles and trabeculae. �e differences in parameter val-

ues from the present work notwithstanding, the roughly 

5-fold increase in effective diffusivity by porous media 

found by Stockman demonstrates its potential to increase 

transverse mixing and, therefore, longitudinal transport.

A fivefold transport enhancement by pulsatile flow was 

reported in a simplified model of the SSS without porous 

media [61]. �is value is lower than the 11-fold value cal-

culated using the parameters of these experiments for the 

Watson limit of the Darcy–Brinkman model. One differ-

ence between their experiments and the Watson model 

is that the annular channel height to outer radius ratio 

was perhaps too large at 0.12 to fit the flat plate channel 

assumption of the Watson solution. In addition, the pul-

satile flow waveform was more complex than the simple 

oscillatory flow of the Watson solution.

A greater reduction in peak drug concentration was 

found due to doubling the tidal volume than by doubling 

the frequency in a patient-specific geometry without 

porous media [62]. �is result is in qualitative agreement 

with the Watson solution, which predicts that R is pro-

portional to the square of tidal volume and, in the limit of 

large Womersley number, is approximately proportional 

to frequency.

While Tangen et al. [63] did not quantify effective dif-

fusivity, they reported more rapid spread of drugs caused 

by local mixing around nerve roots and trabeculae. Inter-

estingly, dispersion was not significantly influenced by 

molecular diffusivity for variations around a baseline of 

2.1E−10 m2/s for bupivacaine. �is finding suggests R in 

their simulations was roughly proportional to β−2 (since 

molecular diffusivity is in the denominator of β2). While 

the molecular diffusivity for bupivacaine is lower than 

for the methotrexate used in this paper, the flow and dis-

persion both remain unsteady. In Fig. 5a, it is evident for 

the Darcy–Brinkman model that the enhancement in the 

unsteady flow/unsteady dispersion regime transitions 

from R α β−3 to R ~ constant in the range 1 < Da2 < 100, 

suggesting that the effective Darcy number of their flow 

was in this range.
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Tangen et  al. [64] studied a number of parameters 

associated with drug injection, pulsatility and drug reac-

tion rate in two subject-specific geometries with nerve 

roots. While again not quantifying effective diffusivity, 

they noted transport speed for an injection into the lum-

bar spine in in  vitro and computer models in the range 

of 0.013 mm/s. Pizzichelli et al. [65] and Haga et al. [66] 

investigated the effect of catheter position and orienta-

tion on intrathecal isobaric drug dispersion within the 

cervical spine with anatomically realistic nerve roots. In 

both of these studies they found local solute dispersion 

to be sensitive to catheter position, orientation and anat-

omy (nerve roots). However, the highly computationally 

expensive simulations were carried out for a relatively 

short time scale and therefore it was not possible to draw 

conclusions about global solute distribution times.

Limitations

�e 2D channel approximation is appropriate for base-

ment membranes, but dura-radius-to-gap ratio for the 

SSS is only about 3 (“Values of parameters” section), mak-

ing the 2D analytical solution questionable. �e order-of-

magnitude scaling for maximum enhancement, however, 

depends on channel shape only through the character-

istic velocity  w0. For Poiseuille flow, the ratio of peak 

velocity in an annulus to that in a 2D channel scales with 
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[

1 − �
2
(

1 − ln �
2
)]

 , where �2 =

(

1 − K
2
)

/[2 ln (1/K )] 

and K = 2/3 for the SSS, which results in a velocity in 

the annulus that is 1.004 times larger and enhancement 

Rmax ∝ w
2

0
 that is 1.009 larger. �erefore, this limitation 

is not very significant.

In addition to lacking local effects (“Local velocity fluc-

tuations” section) and secondary flow (“Secondary flow” 

section), the analytical solution does not apply for short 

times after injection of a bolus. Consideration of short 

times may result in other opportunities for improving 

rostral transport, for instance, by injecting at a particu-

lar time during the cycle (i.e., during maximum caudal 

displacement of the CSF fluid), by the orientation of the 

injection catheter, by the velocity of the injection and by 

following the injection with a bolus of clear fluid to push 

the solute upward.

Periodic motion of the channel walls, as well as geom-

etries more complex than the planar walls of the current 

model, also promote transverse flows that may enhance 

transverse mixing and axial transport. In particular, 

streaming effects (reviewed by Riley [67]) can occur 

in flows with relevance to the SSS, for instance, in the 

entrance region of oscillatory flow in a rigid tube [68], 

in a long, but finite, parallel-plate channel with oscillat-

ing walls [69], in an elastic tube [70], in a tapered channel 

[71], in an elliptical tube with oscillating walls [72], and in 

a closed-end, compliant, eccentric circular annulus [73] 

and an elliptical annulus [74] modeling the SSS. In both 

models of the SSS, streaming velocities of 0.1–0.3 mm/s 

were obtained, which provide characteristic transport 

times for a 0.7 m spinal canal of 0.7–2 h.

Conclusions
�e Darcy–Brinkman model, which represents the 

porous media flow as a continuum, predicts a decrease 

in axial dispersion as the Darcy term increases, across all 

regimes of viscous and porous-media flow and diffusive 

and unsteady dispersion, but not for unsteady flow and 

unsteady dispersion. For CSF flow in the SSS, which is 

estimated to be in the transition zone between porous-

media and unsteady flow, the Darcy–Brinkman model 

predicts substantial increases in axial transport due to 

shear-augmented dispersion, so long as the effect of the 

continuum porous media is not too great. However, for 

cerebrovascular basement membranes, which is esti-

mated to exhibit quasi-steady flow and dispersion, aug-

mentation is minimal regardless of whether the porous 

media is included or not.

Order of magnitude estimates with altered trans-

verse dispersion due to local effects of the porous media 

predict greater enhancement of transport. In the SSS, 

increased lateral transport leads to an enhancement by 

as much as six orders of magnitude and a characteristic 

transport time along the spinal canal of about 10 min and 

characteristic transport speed of 1.2 mm/s. �is time is 

2–6 times faster than observed in in  vitro experiments, 

suggesting that dispersion might be improved through 

optimal selection of operating parameters. �is speed is 

4–12 times faster than simulations excluding diffusion 

[73, 74], suggesting that shear-augmented dispersion 

might have therapeutic value for increasing transport 

rates.

According to the relationship R ∼ P
2
Da

−3 for porous 

flow and unsteady dispersion (see “Regimes of disper-

sion” section), greater transport approaching Rmax in 

the SSS could be promoted by increasing P, for instance, 

by increasing the pressure gradient amplitude. R is also 

increased by decreasing frequency, since P2
∝ ω

−2 . Res-

piration has been shown to affect SSS flow [75], so deep 

inspiration and expiration may be effective in providing 

an elevated pressure gradient at low frequency. While 

the fluid properties may be unalterable, the spine is flex-

ible. �us, increased curvature of the SSS might increase 

secondary flow and transverse mixing, thereby shifting 

enhancement of longitudinal transport toward  Rmax.

In a 10  μm paraarterial space, enhancement has the 

potential to be significant, thus glymphatic transport 

to the parenchyma is not disproven. However, the low 
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pulse pressure in veins makes glymphatic transport out 

of the parenchyma via paravenous spaces unlikely. In 

cerebrovascular basement membranes, the small esti-

mated amplitude of motion limits the enhancement 

of transport. Even with lateral dispersion reduced to 

match it to the cycle period, maximum enhancement is 

insignificant.

�e lack of significant shear-augmented dispersion 

in basement membranes means that within the bounds 

of the channel flow model, tracer transport must be 

explained by bulk flow, since this is the only other avail-

able mechanism in this simplified model. Peristalsis is a 

plausible cause of forward flow in periarterial and paraar-

terial channels, but perhaps not in perivenous channels 

since blood pressure pulsations are low in veins. �ree 

potential mechanisms for retrograde flow in periarterial 

basement membranes have been described (see “Perivas-

cular and paravascular flow and transport” section), but 

not verified. �erefore, further work remains to test these 

hypotheses and to explain the mechanisms of solute 

movement in these channels.

Finally, an overarching need is to reduce uncertainty 

regarding the anatomy and fluid dynamic parameters 

characterizing the perivascular and paravascular spaces, 

which may vary among species and between genders [76].

List of symbols
c: concentration; c0: characteristic concentration; 

Da2 =
h2ν

kνe
 : square of the Darcy number; h: channel half 

height; k: permeability; p̃ : pressure; p =
p̃

ρωνe
 dimen-

sionless pressure; P =
∂ p̃/∂ x̃
ρωνe/h

 : dimensionless pressure 

gradient; R: dispersion enhancement relative to molecu-

lar diffusion; Rmax: maximum dispersion enhancement; 

Sc = ν/κ : Schmidt number; t̃ : time; t = ωt̃ : dimension-

less time; ũs : superficial axial velocity; u = ũs/hω : dimen-

sionless superficial velocity.

Variables

x̃ : axial coordinate; x = x̃/h : dimensionless axial coor-

dinate; ỹ : transverse coordinate; y = ỹ/h dimensionless 

transverse coordinate.

Greek symbols

α
2

=
h
2
ω

νe
 : square of the Stokes (Womersley) number; 

β2
=

h
2ω
κ

= α2Sc : oscillatory Peclet number; θ =
c

c0
 : 

dimensionless concentration; κ: molecular diffusivity; ν: 

kinematic viscosity of the fluid; νe: effective kinematic vis-

cosity for flow in the porous medium; ρ: fluid density; ω: 

frequency.
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