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The authors have investigated the description of the dispersion interaction within the Piris natural
orbital functional �PNOF� theory. The PNOF arises from an explicit antisymmetric approach for the
two-particle cumulant in terms of two symmetric matrices, � and �. The functional forms of these
matrices are obtained from the generalization of the two-particle system expressions, except for the
off-diagonal elements of �. The mean value theorem and the partial sum rule obtained for the
off-diagonal elements of � provide a prescription for deriving practical functionals. In particular, the
previous employed approximation �Jpp /2� for the mean values �Jp

*� affords several molecular
properties but it is incapable to account for dispersion effects. In this work, the authors analyze a
new approach for Jp

* obtained by factorization of the matrix � within the bounds on its off-diagonal
elements imposed by the positivity conditions of the two-particle reduced density matrix. Additional
terms for the matrix elements of � proportional to the square root of the holes are again introduced
to describe properly the occupation numbers of the lowest occupied levels. The authors have found
that the cross products between weakly occupied orbitals must be removed from the functional form
of � to obtain a correct long-range asymptotic behavior. The PNOF is used to predict the binding
energy as well as the equilibrium distance of the helium dimer. The results are compared with the
full configuration-interaction calculations and the corresponding experimental data. © 2007
American Institute of Physics. �DOI: 10.1063/1.2743019�

I. INTRODUCTION

The dispersion or van der Waals �vdW� interactions play
a fundamental role in the stability and conformation of bio-
molecular and condensed-phase systems. They constitute the
weakest of the intermolecular forces and are typically a com-
ponent in the force balance which dictates the resulting be-
havior. Even when short-range forces are dominant, an accu-
rate estimate of these long-range forces is necessary for a
correct evaluation of experimental results.

The description of vdW complexes is a difficult task
since they arise mainly from electron correlation. The con-
ventional density functional theory �DFT� fails when it is
used to describe the weak long-range vdW interaction.1 This
issue continues being a major challenge for DFT
approximations2 despite the recent progress in practical DFT
calculations to account for the dispersion interactions.3,4

Highly correlated ab initio methods capable of describing
dispersion properly can instead be employed, but these meth-
ods are computationally much more demanding than DFT.

An alternative formalism to DFT is the natural orbital
functional theory5–15 �NOFT�, which provides an exact de-
scription of Coulombic systems in terms of the natural orbit-
als �NOs� and their occupation numbers �ONs�. The theoret-
ical investigation in quantum chemistry of NOFT has
increased quickly in the last several years16–38 �for a recent
review on NOFT, see Ref. 39�. A general description of
weakly interacting systems within density matrix functional
theory was presented by Cioslowski and Pernal.40 From the
asymptotic behavior of the total energy of a system consist-

ing of two weakly interacting subsystems, and upon the as-
sumption of a complete localization of the spin orbitals
within the subsystems, they obtained certain conditions on
the exchange-correlation energy as a functional of the one-
particle reduced density matrix �1-RDM�. Gritsenko and
Baerends41 have recently obtained the potential-energy curve
around the vdW minimum of the 3�u

+ state of H2 from an
analysis of its configuration-interaction wave function and
the exact NOF of this two-electron triplet wave function em-
ploying only eight NOs.

Our aim in the present paper is to test the performance of
the recently proposed NOF termed Piris natural orbital
functional35,39 �PNOF� in the treatment of vdW interactions.
Validation tests of this NOF for predicting several molecular
properties have been performed36 as well as an open-shell
formulation.37 The PNOF uses an explicit form for the
cumulant42,43 of the two-particle reduced density matrix �2-
RDM� in terms of two symmetric matrices � and �. These
matrices are only functions of the ONs therefore, considering
real orbitals, the PNOF depends solely on the Coulomb and
exchange integrals. This functional reduces to the exact ex-
pression for the total energy in two-electron systems20 and
can be generalized to the N-electron systems with a suitable
extension of � and � matrices. The mean value theorem and
the partial sum rule for matrix � provide a prescription for
deriving practical NOFs. Accordingly, practical implementa-
tions of PNOF can be improved by providing better approxi-
mations for the mean value Jp

* of the Coulomb interactions.
The He2 is a paradigmatic molecule for the theory of
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vdW interaction so we will focus our discussion on the he-
lium dimer. A large number of papers have been devoted to
the computation of the dispersion interaction on the helium
dimer using DFT and ab initio methods.44,45 Results from
these calculations with high level of accuracy are listed in
Ref. 46. In our previous works,35,36 we have used the ap-
proximation Jp

* �Jpp /2. Unfortunately, the potential obtained
using this approximation is repulsive for all interatomic dis-
tances of He2. In the present work, we analyze alternatively a
new approach for Jp

* achieved by factorization of the matrix
�. The new ansatz is obtained from the partial sum rule for
matrix � which fulfils the constraints impossed by the well-
known positivity conditions of the 2-RDM. This leads to an
accurate interaction potential between He atoms.

We start with a presentation of the basic concepts rel-
evant to PNOF theory �Sec. II�. Our new ansatz for the ma-
trix � and the corresponding approximation for Jp

* are dis-
cussed in detail here. We end with a presentation of the
results obtained for the helium dimer �Sec. III�.

II. THEORY

We briefly describe here the theoretical framework of
our approach. A detailed description of the PNOF can be
found in Ref. 39.

In this paper, are concerned only with closed-shell sys-
tems. In this case of spin compensated systems, the PNOF
for N-electron systems is

E = 2�
p

nphpp + 2�
pq

�nqnp − �qp�Jpq − �
pq

�qpKpq. �1�

The orbitals ��p�r�� constitute a complete orthonormal
set of single-particle real wave functions, where p denotes
the orbital and �np� are their occupations. hpp is the matrix
element of the kinetic energy and nuclear attraction terms.
Jpq= 	pq 
 pq� and Kpq= 	pq 
qp� are the electron repulsion in-
tegrals. Note that if �qp=0 and �qp=nqnp, then our recon-
struction functional yields the Hartree-Fock case. From the
requirement that for any two-electron system �N=2� expres-
sion �Eq. �1�� should yield the exact energy functional of
Ref. 20, one easily deduces that �qp=nqnp and

�11 = − n1 if q = p = 1, �2�

�qp = �1 − 2��0.5 − nq���0.5 − np���nqnp if q � p , �3�

where ��x� is the unit step function also known as the Heavi-
side function. The functional form �Eqs. �2� and �3�� of ma-
trix � is readily generalized to

�pp = − np if q = p , �4�

�qp = �1 − 2��0.5 − nq���0.5 − np���nqnp if q � p . �5�

Equation �4� leads to diagonal elements of � equal to the
square of the occupation numbers,

�pp = np
2, �6�

and the sum rule that must fulfill the cumulant of the 2-RDM
implies likewise the following constraint for nondiagonal el-
ements of matrix �.35

�
q

��qp = nphp. �7�

The primes indicates here that the q= p tesrm is omitted,
and hp denotes the hole 1−np in the NO p. Unfortunately,
�qp=nqnp violates the sum rule �Eq. �7�� in the general case
of N�2, therefore the functional form of the off-diagonal
elements of � is unknown for N-electron systems. Neverthe-
less, the N-representability positivity necessary conditions of
the 2-RDM impose several bounds on these quantities,35

�qp � nqnp, �qp � hqhp, q � p . �8�

By taking into account Eq. �6�, the energy functional
�Eq.�1�� can be rewritten as

E = 2�
p

nphpp + 2�
pq

��nqnp − �qp�Jpq − �
pq

�qpKpq. �9�

It is not evident how to approach �qp, for q�p, in terms
of the ONs. Due to this fact, the energy term in Eq. �9� which
involves �qp is rewritten as

�
pq

��qpJpq = �
p

Jp
*�

q
��qp = �

p

nphpJp
*, �10�

where Jp
* denotes the mean value of the Coulomb interactions

Jpq for a given orbital p taking over all orbitals q�p. Here,
the sum rule for off-diagonal elements of matrix � �Eq. �7��
was used. Inserting this expression into Eq. �9�, one obtains

E = �
p

�2nphpp + np
2Jpp� + �

pq
��2nqnpJpq − �qpKpq�

+ �
p

nphp�Jpp − 2Jp
*� . �11�

We have previously used the approximation Jp
* �Jpp /2

that eliminates the last term in Eq. �11�. Hereafter, we refer
to this approach as PNOF-1. The comparison with other the-
oretical methods showed that PNOF-1 predicts several mo-
lecular properties close to accurate ab initio methods such as
CCSD�T�, and in good agreement with the available experi-
mental data.36 Unfortunately, it does not bind the helium
dimer so a new ansatz is needed in order to describe vdW
interactions.

It is easy to verify that the consequence of D condition
on matrix � ��qp�nqnp� is more restrictive than the conse-
quence of Q condition ��qp�hqhp� between orbitals with
ONs close to zero, whereas for � elements between orbitals
with ONs close to one, the Q condition is predominant. Ac-
cordingly, let us decompose the off-diagonal elements of �
as follows:

�qp = hqhp��nq − 0.5�

���np − 0.5� + nqnp��0.5 − nq���0.5 − np�

+ fqfp���nq − 0.5���0.5 − np�

+ ��0.5 − nq���np − 0.5�� , �12�

which guarantees from the outset the constraints imposed by
the positivity conditions of the 2-RDM for the off-diagonal
elements of � between weakly and strongly occupied orbit-
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als, respectively. The magnitudes �fp� are determined using
Eq. �7�, namely,

hp�
q=1

F

�hq + fp �
q=F+1

	

fq = nphp if p � F , �13�

fp�
q=1

F

fq + np �
q=F+1

	

�nq = nphp if p � F , �14�

where F denotes the Fermi level. The trace of the 1-RDM
equals the number of electrons,

Tr 1D = 2�
q=1

	

nq = N , �15�

and from Eq. �15�, it follows readily that

�
q=1

F

hq = �
q=F+1

	

nq = S . �16�

Combining this expression with Eqs. �13� and �14�, one
obtains

fp =
�1 − S�

�q=F+1
	 fq

hp if p � F , �17�

fp =
�1 − S�
�q=1

F fq

np if p � F . �18�

Considering the sum of over all fp up to F on the left-
hand side of the Eq. �17�, or the sum of over all fp from F
+1 up to 	 on the left-hand side of the Eq. �18�, one finds the
following result:

�
p=1

F

fp �
q=F+1

	

fq = S�1 − S� . �19�

It is straightforward to verify that the off-diagonal ele-
ments of �qp= fqfp satisfy the N-representability conditions
�Eq. �8�� too. Taking into account the new approach for the
off-diagonal elements of � �Eq. �12�� and Eqs. �17�–�19�, the
energy expression �Eq. �9�� becomes

E = 2�
p=1

	

nphpp − �
p,q=1

	

�qpKpq + 2 �
p,q=1

	

�nqnpJpq

− 2 �
p,q=1

F

�hqhpJpq − 2 �
p,q=F+1

	

�nqnpJpq

− 2
1 − S

S
�

q=1

F

�
p=F+1

	

hqnpJpq + �
q=F+1

	

�
p=1

F

nqhpJpq� .

�20�

According to Eq. �10�, the mean value Jp
* of the Cou-

lomb interactions for a given orbital p taking over all orbitals
q�p is defined as

Jp
* =

1

nphp
�

q
��qpJpq. �21�

It follows without difficulty that Jp
* is currently approxi-

mated by the following expressions:

Jp
* =

1

np
�

q=1

F

�hqJpq +
1 − S

S
�

q=F+1

	

nqJpq� if p � F , �22�

Jp
* =

1

hp
1 − S

S
�
q=1

F

hqJpq + �
q=F+1

	

�nqJpq� if p � F . �23�

In the case of N-electron systems, it was pointed out in
Ref. 35 that the simple functional form �Eq. �5�� for the
matrix elements of � between orbitals with ONs larger than
0.5 gives a wrong description for the lowest occupied levels.
The ONs for these levels are identically equal to one. In
order to ensure that these occupation numbers only are close
to unity, an additional term proportional to the square root of
the holes was introduced in the functional form of �qp,
namely,

�qp
1 = ��nq − 0.5���np − 0.5��hqhp if q � p . �24�

In this study, we introduce two new additional terms
proportional to the square root of the products of hqnp and
nqhp, respectively, in particular,

�qp
2 = − ���nq − 0.5���0.5 − np��hqnp

+ ��0.5 − nq���np − 0.5��nqhp� if q � p . �25�

To describe properly the energy values as a function of
distance R between He atoms, we have found that the cross
products between weakly occupied orbitals must be removed
from the functional form of �. On the contrary case, the
obtained functional overestimates the He2 well depth. Ac-
cordingly, we will use the following expression for �:

�qp = ��nq − 0.5���np − 0.5���nqnp + �hqhp�

+ ��nq − 0.5���0.5 − np���nqnp − �hqnp�

+ ��0.5 − nq���np − 0.5���nqnp − �nqhp� . �26�

Henceforth, in this article, the new ansatz, Eq. �20� using
the functional form of � �Eq. �26��, will be termed PNOF-2.

FIG. 1. Comparison of the He–He binding energy curves obtained by PNOF
method with the aug-cc-pVTZ basis set.
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III. RESULTS

It is very difficult to obtain a reliable He–He interaction
potential because He atoms bind very weakly with each
other, being the experimental binding energy of only
0.021 kcal/mol at an equilibrium distance of 2.977 Å.47 For
long-range interactions, a diffuse basis set is needed for de-
scribing delocalized electrons. We have adopted the aug-
mented correlation-consistent triple zeta �aug-cc-pVTZ� ba-
sis sets for He.48 In fact, the most accurate available
interaction potentials for the helium dimer have been calcu-
lated using large d-aug-cc-pV5Z and -6Z basis sets.49,50 Un-
fortunately, these sets are too large for our present implemen-
tation.

In Fig. 1, the PNOF potential-energy curves for the
ground state of the He2 molecule are displayed in the region
R=2.4–6.0 Å. The calculated total energies of the helium
dimer at various distances are referred to the dissociation
limit for each approach in order to obtain the vdW interac-
tion energies.

The PNOF-1 total energies are referred to the dissocia-
tion limit of −5.791 789 47 hartree for two He atoms. One
can see from Fig. 1 that the PNOF-1 curve is purely repul-
sive, approaching the dissociation limit from above, which
reflects that the mean value Jp

* is insufficient for the molecu-
lar binding in the He2 molecule.

Figure 1 shows the PNOF-2 potential-energy curve for
the ground state of the helium dimer around the vdW mini-
mum. The PNOF-2 recovers enough correlation through the
�−J term to produce a binding curve. The equilibrium bond
distance and binding energy obtained using PNOF-2 are
2.889 Å and 0.012 kcal/mol, respectively. The calculated

PNOF-2 dissociation limit energy for two He atoms is of
−5.796 551 14 hartree here. For the considered basis set, the
latter energy is larger than the exact PNOF value of two
helium atoms about 3 kcal/mol.

Table I compares the calculated and experimental equi-
librium distance �Re�, well depth �De�, and frequency �
e�
for the helium dimer. The PNOF-2 error with respect to the
experiment for Re, De, and 
e is 0.088 Å, 0.009 kcal/mol,
and 0.5 cm−1, respectively. In general, the results are in line
with their corresponding experimental values, and represent
an encouraging preliminary step, given the relative small ba-
sis sets �aug-cc-pVTZ� used for these calculations.

For comparison, we have included calculations based on
full configuration-interaction �FCI� wave function carried out
with the GAMESS package.51 With the aug-cc-pVTZ basis set,
we have obtained FCI well depth of 0.020 kcal/mol, at an
equilibrium distance of 3.009 Å. The PNOF-2 error with re-
spect to the FCI for Re, De, and 
e is 0.12 Å,
0.008 kcal/mol, and 2.0 cm−1, respectively. The calculated
FCI dissociation limit energy for two He atoms is of
−5.801 672 79 hartree here. We must note that at all dis-
tances R considered the calculated PNOF-2 total energies are
larger than the FCI values �Fig. 2�.

Clearly, for a proper description of the interaction energy
of vdW complexes, the basis set superposition error �BSSE�
should be considered. We have estimated the BSSE at the
equilibrium distance using the counterpoise method.52 The
counterpoise correction for the aug-cc-pVTZ basis set at the
full CI level is 0.003 kcal/mol, one order of magnitude
smaller than the dissociation energy. Table II compares the
calculated dissociation energies at the PNOF-2 level of
theory using different basis sets. Inspection of this table re-
veals that PNOF-2 yields De values closer to the experimen-
tal data as the basis set improves. Therefore, the results
showed in Table I are mainly dominated by the dispersion
interactions instead of being an spurious attractive contribu-
tions from the BSSE.

IV. CONCLUSIONS

We have carried out an analysis on the helium dimer of
two approximate formulations of the PNOF. The potential-
energy curve obtained using PNOF-1 is repulsive, approach-
ing the dissociation limit from above. On the other hand, a
reasonable account of the binding dispersion effects of the
helium dimer has been achieved with the PNOF-2 approxi-
mation. Preliminary calculations with the latter approximate
natural orbital functional yield the equilibrium distance, the
binding energy, and the harmonic frequency in line with their
corresponding experimental values, in spite of the relative
small basis sets �aug-cc-pVTZ� used for these calculations. It

TABLE I. Comparison of the calculated and experimental values for the
equilibrium �minimum energy� distance Re �Å�, dissociation energy De

�kcal/mol�, and vibrational wave number 
e �cm−1�. Experimental values for
Re, De, and 
e were taken from Ref. 47.

Re De 
e

PNOF-2 2.889 0.012 33.2
FCI 3.009 0.020 31.2

Expt. 2.977 0.021 32.7

TABLE II. Comparison of the He2 dissociation energies De �kcal/mol� ob-
tained at the PNOF-2 level of theory with different basis sets.

Basis set De

cc-pVDZ 0.005
cc-pVTZ 0.007

aug-cc-pVTZ 0.012

FIG. 2. Total energy values as a function of distance R between He atoms
obtained by PNOF-2 and FCI methods with the aug-cc-pVTZ basis set.
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is therefore expected that larger basis set will lead to tighter
match with respect to the experimental marks.

Finally, it is hoped that the PNOF-2 will constitute a first
step towards an accurate treatment of the vdW interactions
within the natural orbital functional theory.
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