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Abstract. Guided waves play an important role in many applications of NDE to structures of flat and cylindrical

geometry. In order to develop and optimise the inspection, it is essential to have a good understanding of the wave

modes that can propagate in the target structure. These can be complicated, especially in structures composed of

multiple layers, anisotropic properties or materials that exhibit damping that absorbs the energy of the waves.

Dispersion curves in anisotropic viscoelastic media are presented here. They have been computed by using a

pseudospectral collo-cation method, details of its implementation are briefly outlined and references to the relevant

literature given.

Non-destructive evaluation applications often use guided waves in order to inspect structures and the

dispersion curves of these waves are crucial for understanding their physical properties and select the appropriate

mode best suited to the goal of the investigation. The usage of dispersion curves for NDE is well established as

the abundant literature and studies on the subject reflect: analytical solutions using potentials or the partial wave

decomposition for the isotropic plate and cylinder were found by Mindlin [1] and Gazis [2] for instance. Solutions

for anisotropic media in flat, and in cylindrical, geometry can be found in Solie and Auld [3], Nayfeh and

Chimenti [4] and, more recently, Li and Thompson [5]. Other solutions based on the Transfer or Global Matrix

method are in [6], [7] or [8] and references therein. More recently a Pseudospectral Collocation Method (PSCM)

has been successfully used to find dispersion curves of guided waves in isotropic as well anisotropic elastic

materials [9, 10].

The majority of the references above assume the materials to be perfectly elastic but a more realistic

approach to guided waves is to consider viscoelastic materials where attenuation due to material damping is present.

Attenua-tion is accounted for by the imaginary part of the wavenumber and hence complex wavenumbers must be

found when viscoelastic materials are considered.
In section II an outline of the Pseudo-Spectral Collocation Method (PSCM) used for the results

presented here will be given and the modifications needed in order to find complex roots outlined. Section III

presents examples of the results obtained with the PSCM which have been validated both with a Semi-

Analytical Finite Element simulation and with the software DISPERSE [11]. Section IV presents an example of

three-dimensional dispersion curves obtained by the same PSCM scheme thus showing its potential for further

and more complex applications. The paper is closed with section V where a discussion of the results and future work

is given.

Pseudospectral Collocation Method for Viscoelastic Materials and Companion Matrix

The main idea behind the PSCM is that one converts a set of Partial Differential Equations (PDEs) into a matrix

eigen-value problem. The solution to the PDE are the eigenvalues and eigenvectors. In order to do this, one first

discretizes
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the physical domain and sets up a grid of points suited for the problem at hand. For the case of bounded domains that

will be studied here the Chebyshev grid is the best choice. Associated with this grid is a set of polynomials, in this case

Chebyshev polynomials, out of which Chebyshev Differentiation Matrices (CDM) can be built [12]. By substituting

each derivative in the PDE by its corresponding CDM (as in Eq. (2)) one obtains the desired eigenvalue form (Eq. (3))

of the acoustic wave equation (Eq. (1)). The reader is referred to the papers by Adamou et al. [9] and Hernando et al.

[10] for a detailed account of this method and its implementation for elastic guided wave problems.

∇ jKcKL∇
sym

Lq
uq = −ρ ω

2 u j (1)

∂(m)

∂y(m)
=⇒ D(m) := [DMCheb]

(m)

N×N
(2)

L(k) U = ω2
M U (3)

One can rewrite Eq. (3) in a different form to make the wavenumber dependence more explicit:

(

Q2 k2 +Q1 k +Q0(ω2)
)

U = 0 (4)

where prefactors of the square of the wavenumber Q2, of the wavenumber Q1 and independent of the wavenumber

Q0 are built out of the matrices L(k) and M.

For viscoelastic materials, the modes for a given frequency are given by the complex wavenumber

whose imaginary part accounts for the attenuation of the mode. However, as can be seen in Eq. (4), the equation is

not linear in the wavenumber and hence one needs to linearize it in order to obtain a general eigenvalue form

equation like Eq.(3).

The linearization scheme chosen is known as the Companion Matrix Method, there are other options but

this scheme has proved to be good for our purposes, see Bridges and Morris for further details [13]. One first

defines the following companion matrices:

M1 ≡

(

−Q1 −Q0

I Z

)

M2 ≡

(

Q2 Z

Z I

)

(5)

and also the companion displacement vector field:

Û ≡ k U (6)

With these definitions, Eq. (4) can be recast as a general eigenvalue problem:

M1

(

Û

U

)

= k M2

(

Û

U

)

(7)

where now, the wavenumber k appears as the eigenvalue. This equation is readily solved for a given real frequency

ω by any of the standard libraries available for eigenvalue problems. Further details can be found in Hernando et al.

[14].

Dispersion Curves for Guided Waves in Viscoelastic Materials: Examples

The first example is a multilayer flat system. It is composed of three Triclinic and Orthorhombic viscoelastic

layers. For modelling the viscoelastic behaviour of the materials the Hysteretic model has been chosen where the

imaginary part of the entries in the stiffness matrix cIJ does not depend on the frequency. The Y axis is perpendicular

to the plane of the plates and the propagation takes place along the Z axis.

Figures 1 and 2 show the dispersion curves and attenuation respectively for the aforementioned system.

Re-sults given by the PSCM are shown in blue circles and the results obtained with a (Semi-Analytical Finite

Element) SAFE (for this method see paper by Marzani et al. [15] for instance) simulation are given in red asterisks.

As can be
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FIGURE 1. Phase velocity for the 3-layered system with hysteretic-type damping: viscoelastic 8 mm thick triclinic layer (top),

viscoelastic 5 mm thick orthorhombic layer (middle) and elastic 3 mm thick triclinic layer (bottom). Note that the total thickness

has been used for the x axis in the figure. Solutions are plotted as follows: PSCM (blue circles) vs. SAFE (red asterisks).

FIGURE 2. Attenuation curves for the 3-layered system of Figure 1.

The next example consists of a cylinder made of a viscoelastic material with hexagonal symmetry (transversely

isotropic). In this case the Kelvin-Voigt model has been chosen to account for material damping. Unlike the pre-

viously used hysteretic model, now the stiffness matrix entries have an imaginary part proportional to the frequency ω.

Figures 3 and 4 display the dispersion curves and attenuation respectively for the first flexural modes with

harmonic order n = 0, 1, 2, 3. The results given by the PSCM are shown in squares of different colours whereas the

reference so-lution obtained with a SAFE simulation are given in asterisks. The agreement is again very good as seen

in the figures.

he last example illustrates how this scheme can also be used to model viscous fluids. The results given

by the PSCM have been compared to those shown in the paper by Ma et al. [16] which were obtained with

DISPERSE.

The system is composed of an elastic steel pipe filled with glycerol. The attenuation curves and comparison with

the results in the paper[16] are shown in Figure 5. Different curves have been plotted for different values of the

viscosity. The agreement between the two sets of results is again excellent.
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FIGURE 3. Comparison between SCM and SAFE for dispersion curves in a free Kelvin-Voigt-type viscoelastic hexagonal 15 mm

thick cylinder of inner radius 50mm. PSCM: n=0 (black squares), n=1 (blue squares), n=2 (red squares) and n=3 (green squares).

SAFE: asterisks with the same colour scheme as for the SCM. Fibres and propagation along the {z} axis of the cylinder.

FIGURE 4. Attenuation curves for the viscoelastic hexagonal cylinder of Figure 3.

The reader is referred to the paper by Hernando et al. [14] for further details and examples.

Dispersion Loci in 3D

The scheme just described provides much more information than the graphs just shown and by appropriately

sort-ing the solution three-dimensional dispersion curves can be easily obtained for elastic as well as viscoelastic

materials.

In figure 6 the dispersion curves for the symmetric Lamb modes of an elastic steel plate are shown. This fig-ure can

be seen to agree with its analogue first obtained by Mindlin [1] and later reproduced in numerous textbooks on the

subject such as those by Auld [17] and Graff [18].

Discussion and Future Work

Solutions obtained with the PSCM and the Companion Matrix Method (section II) for various anisotropic

materials with damping have been presented (sections III and IV) and compared to reference solutions obtained

from a SAFE simulation and to solutions obtained with DISPERSE in a previous study by Ma et al. [16]. This

approach shows potential for providing further insight into three-dimensional dispersion curves of guided wave

problems as figure 6
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FIGURE 5. Attenuation curves for longitudinal modes in a 0.5 mm thick elastic steel pipe with 4.5 mm inner radius for three

different values of the viscosity of glycerol filling the pipe. For the PSCM solution: η = 0.8 Pas (black squares), η = 0.94 Pas (red

diamonds) and η = 1.1 Pas (blue circles). In the background Figure 11 of the paper by Ma et al.[16] is displayed. The predictions

given by DISPERSE are given in solid lines and the black solid squares are the results from the experiment carried out and

described in the aforementioned paper.

FIGURE 6. Dispersion curves for the first three symmetric Lamb modes in a free elastic steel plate computed with the SCM.

Propagating modes in blue. Non-propagating modes in red and black. The non-dimensional axes are, for frequency Ω = hω / πV66

and for the wavenumber Ψ = hk / π.

Future work will entail exploiting these possibilities for further study of more complicated three-dimensional

dispersion curves in anisotropic materials. This scheme can potentially be extended to handle leaky waves. Finally,

optimization of the existing PSCM codes is under development in order to provide with an efficient and robust way

of plotting the dispersion curves from the individual roots that have been found by the PSCM.

120014-5

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP:  155.198.12.147 On: Tue, 17 May 2016 14:42:59



REFERENCES

1 R. D. Mindlin, Structural Mechanics. (Eds. J.N. Goodier and N. Hoff) 199–323 (1960).

2 D. C. Gazis, J. Acoust. Soc. Am. 30, 786–794 (1958).

3 L. P. Solie and B. A. Auld, Journal of the Acoustical Society of America 54 (1), 50–65 (1973).

4 A. H. Nayfeh and D. E. Chimenti, “Free wave propagation in plates of general anisotropic media,” in Review

of Progress in Quantitative Non-destructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum

Press, New York, 1989) p. 181.

5 Y. Li and R. B. Thompson, Journal of the Acoustical Society of America 87 (5), 1911–1931 (1990).

6 M. Lowe, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 525–542 (1995).

7 A. H. Nayfeh, Journal of the Acoustical Society of America 86 (5), 2007–2012 (1989).

8 A. H. Nayfeh, Journal of the Acoustical Society of America 89 (4), 1521–1531 (1990).

9 A. Adamou and R. Craster, Journal of the Acoustical Society of America 116 (3), 1524–1535 (2004).

10 F. Hernando Quintanilla, M. Lowe, and R. Craster, Journal of the Acoustical Society of America 137 (3),

1180–1194 (2015).

11 B. Pavlakovic, M. Lowe, D. Alleyne, and P. Cawley, Review of Progress in Quantitative Non-destructive

Evaluation 16, p. 185 (1987).

12 L. Trefethen, “Spectral methods in matlab,” (SIAM, Philadelphia, 2000), pp. pp. 1–181.

13 T. Bridges and P. Morris, Journal of Computational Physics 55, 437–460 (1984).

14 F. Hernando Quintanilla, Z. Fan, M. Lowe, and R. Craster, Proceedings of the Royal Society A Reviewed

and accepted for publication. Awaiting decission on revised manuscript . (2015).

15 A. Marzani, E. Viola, I. Bartoli, F. Lanza di Scalea, and P. Rizzo, Journal of Sound and Vibration 318,

488–505 (2008).

16 J. Ma, M. Lowe, and F. Simonetti, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

54 (2), 647–658 (2007).

17 B. A. Auld, “Acoustic fields and waves in solids, 2nd ed.” (Krieger Publishing Company, Florida, 1990), pp.

pp. 1–878.

18 K. F. Graff, “Rayleigh and lamb waves,” (Dover, New York, 1991), pp. pp. 1–649.

120014-6

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP:  155.198.12.147 On: Tue, 17 May 2016 14:42:59

http://dx.doi.org/10.1121/1.1909761
http://dx.doi.org/10.1121/1.1913575
http://dx.doi.org/10.1121/1.399318
http://dx.doi.org/10.1109/58.393096
http://dx.doi.org/10.1121/1.398580
http://dx.doi.org/10.1121/1.400988
http://dx.doi.org/10.1121/1.1777871
http://dx.doi.org/10.1121/1.4913777
http://dx.doi.org/10.1016/0021-9991(84)90032-9
http://dx.doi.org/10.1016/j.jsv.2008.04.028
http://dx.doi.org/10.1109/TUFFC.2007.314504

