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Abstract—The dispersion equation for free electromagnetic waves
guided by an anisotropically conducting open tape helix is derived
from the exact solution of a homogenous boundary value problem for
Maxwell’s equations without invoking any apriori assumption about
the tape-current distribution. A numerical solution of the dispersion
equation for a set of typical parameter values reveals that the tape-helix
dispersion curve is virtually indistinguishable from the corresponding
dominant-mode sheath helix dispersion curve except within the tape-
helix forbidden regions.

1. INTRODUCTION

It is now well established that the tape-helix model gives a better
approximation to the slow-wave structure of a TWT amplifier than
the sheath-helix model over the entire frequency range of operation.
Moreover, there is no possibility of simulating the input and the
output ports of the amplifier with the sheath-helix model. Thus, a
field-theoretical analysis of the dispersion characteristics of the tape-
helix slow-wave structure will be of immense interest to the TWT
community.

An indepth study of electromagnetic wave propagation on helical
conductors has been performed by Samuel Sensiper way back in
1952 [1]. He has outlined essentially two approaches for analyzing
the tape-helix problem. Using the first approach, he has demonstrated
the feasibility of an exact solution for the tape helix; unfortunately,
he chose to eschew this approach on the ground that “it is of no
practical use for obtaining useful numerical results or for determining
the detailed character of the solutions” preferring instead a second

Corresponding author: N. Kalyanasundaram (n.kalyanasundaram@jiit.ac.in).



312 Kalyanasundaram and Naveen Babu

approach that involved an apriori assumption about the current
distribution on the tape as a result of which it was possible to
satisfy the boundary conditions on the tangential electric field only
approximately. Nevertheless, it is this latter approach that has been
endorsed by the majority of later generations of research workers
in the TWT area mainly because of its tractability. All variants
of this second simplified approach are characterized invariably by a
common assumption, namely, that the tape current density component
perpendicular to the winding direction may be neglected without much
error. A notable exception to the practice of satisfying the tangential
electric field boundary condition only along the centerline of the tape
is the variational formulation developed by Chodorow and Chu [2] for
cross-wound twin helices wherein the error in satisfying the tangential
electric field boundary condition is minimized for an assumed tape-
current distribution by making the average error equal to zero. The
rationale behind the approach of Chodorow and Chu for single-wire
helix has been outlined by Watkins in his book [3] assuming that (i)
the tape current flows only along the winding direction, (ii) it does
not vary in phase or amplitude over the width of the tape, and (iii)
its phase variation is according to β0z for z corresponding to a point
moving along the centerline of the tape.

The method adopted for the solution of the cold-wave problem for
the tape helix in this paper derives from the following fact: If one is
willing to neglect in any case the contribution of the perpendicularly
directed current density component on the tape then there is neither a
need for any apriori assumption regarding the tape-current distribution
nor is there any difficulty in satisfying the tangential electric field
boundary condition over the entire width of the tape. The hypothesis
that the transverse component of the tape-current density is zero
may be incorporated explicitly into the model by assuming that
the tape helix is made out of an anisotropic material exhibiting
infinite conductivity in the winding direction but zero conductivity
in the orthogonal direction. This anisotropically conducting model
for the tape helix leads to considerable simplification of the solution
of the boundary value problem for the guided modes supported by
an open helical structure. First of all, the boundary conditions give
rise to only a single infinite set of linear homogeneous equations
for determining the modal amplitudes of the tape-current density.
Moreover, the approximate secular equation, for determining guided-
mode propagation constant, resulting from setting the determinant of
the coefficient matrix, corresponding to a symmetric truncation of the
infinite set of equations, to zero will be in the form of a series whose
terms decrease rapidly in magnitude with the order of truncation.
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This last feature of the truncated secular equation is quite attractive
from a computational point of view since it then becomes possible
to secure a fairly accurate estimate of the dispersion characteristic
with a reasonably low order of truncation. The entire analysis is of
course based on the premise that the transverse component of the
tape-current density does not have any significant effect on the value
of the propagation constant even for tapes which are not narrow.

2. DERIVATION OF THE DISPERSION EQUATION

A tape helix of infinite length, constant pitch, constant tape width and
infinitesimal thickness surrounded by free space is considered. The
helix is assumed to be made of an anisotropic material exhibiting
infinite conductivity in the direction of the tape winding but zero
conductivity in the orthogonal direction.

Since the formulation of the cold-wave problem for the tape
helix has become quite standard, we make use of the notation and
terminology employed in one of the conventional treatments following
Sensiper [1] of the problem as presented in [4] except that we use w,
instead of δ, to denote the width of the tape in the axial direction.
Accordingly, we take the axis of the helix along the z-coordinate of a
cylindrical coordinate system (ρ, ϕ, z). The radius of the helix is a, the
pitch is p, and cotψ = 2πa/p (Fig. 1).

Periodicity of the infinite helical structure in the z and ϕ
variables permits an expansion of the phasor representation F (ρ, ϕ, z)
(corresponding to a radian frequency ω) of any field component in a

Figure 1. Geometrical relations in a developed tape helix.
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double infinite series

F (ρ, φ, z) = e−jβ0z
∞∑

υ=−∞

∞∑
n=−∞

Fυn (ρ) ejυϕe−j2πnz/p (1)

in view of Floquet’s theorem [4, 5] where β0 = β0(ω) is the guided
wave propagation constant at the radian frequency ω. Moreover, the
invariance of the infinite helical structure under a translation ∆z in the
axial direction and a simultaneous rotation by 2π∆z/p around the axis
imply that Fυn(ρ) are non zero only if υ = n. Thus, the double-series
expansion (1) for any field component degenerates to the single-series
expansion

F (ρ, φ, z) =
∞∑

n=−∞
Fn (ρ) ej(nϕ−βnz) (2)

where
βn = β0 + 2πn/p (3)

Each term in the series-expansion has to satisfy the Helmholtz equation
in cylindrical coordinates. Hence, the Borgnis potentials [4] for guided-
wave solutions, at the radian frequency ω, may be assumed in the form

U =
∞∑

n=−∞
[An + (Cn −An)H(ρ− a)]Gn(τnρ)ej(nϕ−βnz), (4a)

V =
∞∑

n=−∞
[Bn + (Dn −Bn)H(ρ− a)]Gn(τnρ)ej(nϕ−βnz), (4b)

where

Gn(τnρ) 4 In(τnρ) for 0 ≤ ρ < a,

Kn(τnρ) for ρ > a,

In and Kn are nth order modified Bessel functions of the first and
second kind respectively, and H is the Heaviside function and where

β2
n − τ2

n = k2
0 4 ω2µε (5)

with µ the permeability and ε the permittivity of the ambient space.
The explicit expressions for the field components become [4]

Ez =
∂2U

∂z2
+ k2

0U =
∞∑

n=−∞
−τ2

nΛn(ρ)Gn(τnρ)ej(nϕ−βnz) (6a)
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Eρ =
∂2U

∂ρ∂z
− jωµ

ρ

∂V

∂ϕ

=
∞∑

n=−∞

[−jβnτnΛn(ρ)G′
n(τnρ)+ωµnΩn(ρ)Gn(τnρ)/ρ

]
ej(nϕ−βnz)(6b)

Eφ =
∂2U

∂ϕ∂z
− jωµ

ρ

∂V

∂ρ

=
∞∑

n=−∞

[
nβnΛn(ρ)Gn(τnρ)+jωµτnΩn(ρ)G′

n(τnρ)
]
ej(nϕ−βnz) (6c)

Hz =
∂2V

∂z2
+ k2

0V =
∞∑

n=−∞
−τ2

nΩn(ρ)Gn(τnρ)ej(nϕ−βnz) (7a)

Hρ =
∂2V

∂ρ∂z
+

jωε

ρ

∂U

∂ϕ

=
∞∑

n=−∞

[
ωεnΛn(ρ)Gn(τnρ)/ρ + jβnτnΩn(ρ)G′

n(τnρ)
]
ej(nϕ−βnz) (7b)

Hφ =
∂2V

∂ϕ∂z
− jωε

ρ

∂U

∂ρ

=
∞∑

n=−∞

[−jωετnΛn(ρ)G′
n(τnρ)+nβnΩn(ρ)Gn(τnρ)/ρ

]
ej(nϕ−βnz) (7c)

In the expressions (6) and (7) for the field components, G′
n denotes the

derivative of the function Gn with respect to its argument and

Λn(ρ)∆An + (Cn −An)H(ρ− a) (8a)

Ωn(ρ)∆Bn + (Dn −Bn)H(ρ− a) (8b)

and where An, Bn, Cn and Dn, n ∈ Z, are (complex) constants to be
determined by the tape helix boundary conditions.

In order for (6) and (7) to correspond to guided waves (as opposed
to radiation modes) supported by the open helix, we need τn > 0 for
all n ∈ Z, that is

| βn |> k0 for all n ∈ Z (9)

which, for n = 0, becomes | β0 |> k0 i.e., only slow guided waves are
supported by the helical structure. The condition (9) for other values
of n translates, in view of (5), to

| β0 + n cotψ/a |> k0



316 Kalyanasundaram and Naveen Babu

which is equivalent to either

β0 > k0 − n cotψ/a (10a)
or β0 < −k0 − n cotψ/a (10b)

If β0 > k0, the inequality (10a) is automatically satisfied for all n ≥ 0.
We then need the condition (10b) to be satisfied for the remaining
values of n, i.e., for n ≤ −1, that is,

− | n | cotψ/a < −(β0 + k0) for all n ≤ −1 (11)

In order for the inequality (11) to hold for all n ≤ −1, it is sufficient
to have

− cotψ/a < −(β0 + k0)

or
− cotψ/a > (β0 + k0) > 2k0

which implies the cut-off condition

k0a < (1/2) cotψ (12)

If, on the other hand, β0 < −k0, then the inequality (10b) is
automatically satisfied for all n ≤ 0. Then, the need to satisfy the
inequality (10a) for the remaining positive values of n leads to the
inequality

n cotψ/a > k0 − β0 for all n ≥ 1

for which it is sufficient to have

− cotψ/a > (k0 − β0) > 2k0

that is, k0 < (1/2) cotψ which is again the cut-off condition (12). Thus,
pure guided modes do not exist on an open tape helix for a (radian)
frequency ω ≥ (c/2a) cot ψ, where c = 1/

√
µε is the speed of light in

the ambient space.
The boundary conditions at ρ = a for the anisotropically

conducting model of the tape helix are

(i) The tangential electric field is continuous for all values of ϕ and
z.

(ii) The tangential component of the magnetic field parallel to the
winding direction is continuous for all ϕ and z.

(iii) The discontinuity in the tangential component of the magnetic
field perpendicular to the winding direction is equal to the surface
current density on the tape.
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(iv) The tangential component of the electric field parallel to the
winding direction is zero on the tape surface.

Thus

Ez(a−, ϕ, z)−Ez(a+, ϕ, z) = 0 (13a)
Eϕ(a−, ϕ, z)− Eϕ(a+, ϕ, z) = 0 (13b)
[Hz(a−, ϕ, z)−Hz(a+, ϕ, z)] sinψ

+ [Hϕ(a−, ϕ, z)−Hϕ(a+, ϕ, z)] cos ψ = 0 (13c)
[Hz(a−, ϕ, z)−Hz(a+, ϕ, z)] cosψ

− [Hϕ(a−, ϕ, z)−Hϕ(a+, ϕ, z)] sinψ = Js(ϕ, z) (13d)
[Ez(a, ϕ, z) sin ψ −Eϕ(a, ϕ, z) cos ψ]g(ϕ, z) = 0 (13e)

where Js(ϕ, z) is the surface current density component supported
by helix and the function g(ϕ, z), defined in terms of the indicator
functions of the disjoint (for the same value of ϕ) intervals
[(l + ϕ/2π)p− w/2, (l + ϕ/2π)p + w/2] , l ∈ Z, by

g(ϕ, z)4
∞∑

l=−∞
1[(l+ϕ/2π)p−w/2,(l+ϕ/2π)p+w/2](z)

will be equal to 1 on the tape surface and 0 elsewhere on the surface
of the (infinite) cylinder ρ = a. In (13a)–(13d),

F (a±, ϕ, z)4 lim
δ↓0

F (a± δ, ϕ, z)

for any field component F (ρ, ϕ, z). In the case of an helical conductor
of nonzero thickness, ρ = a− and ρ = a+ correspond respectively to
the inner and the outer surface of the tape. The functional form of
the surface current density component Js(ϕ, z), which is confined only
to the two-dimensional region occupied by the tape-helix material, is
restricted by the periodicity and the symmetry conditions imposed by
the helix geometry. Accordingly, Js(ϕ, z) admits the representation

Js(ρ, ϕ, z) =

( ∞∑
n=−∞

Jnej(nϕ−βnz)

)
g(ϕ, z) (14)

where the (complex) constants Jn, n ∈ Z/{0}, in the expansion (14)
are to be determined in terms of the arbitrary constant J0 by the
boundary conditions. An explicit representation for the surface current
density on the helix as in (14) does not appear to have been made use
of in any of the previous analysis of the cold wave problem for the tape
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helix. In the terms of the new (independent) variables ξ and ζ, defined
by

ξ4 ϕ
√

p2 + (2πa)2/2π, ζ 4 z − ϕp/2π

on the cylindrical surface ρ = a containing tape helix, we have

ej(nφ−βnz) = e−jβ0ξ sin ψe−jβnζ

since z = ζ + ξ sinψ and ϕ = 2πξ sinψ/p. Thus, the surface current
density component Js(ϕ, z), when expressed in terms of the variables
ξ and ζ, becomes

J̃s(ξ, ζ) = e−jβ0(ζ+ξ sin ψ)f(ζ) = e−jβ0zf(ζ) (15)

where

f(ζ) =
∞∑

l=−∞

( ∞∑
n=−∞

Jne−j2πnζ/p

)
1[lp−w/2,lp+w/2](ζ) (16)

The function f , being periodic in ζ with period p, may be expanded
in a Fourier series

f(ζ) =
∞∑

k=−∞
J̃ke

−j2πkζ/p

where the Fourier coefficients J̃k, k ∈ Z, are given by

J̃k = (1/p)
∫ p/2

−p/2
f(ζ)ej2πkζ/pdζ = ŵ

∞∑
n=−∞

Jn sinc(n− k)ŵ (17)

In (17), ŵ4w/p and sincX4 sinπX/πX. Thus

J̃s(ξ, ζ) = ŵe−jβ0(ζ+ξ sin ψ)
∞∑

k=−∞

( ∞∑
n=−∞

Jn sinc(n− k)ŵ

)
e−j2πkζ/p

Reverting back to the original variables ϕ and z, we have

Js(ϕ, z) =
∞∑

n=−∞
Γnej(nϕ−βnz) (18)

where

Γn4ŵ

∞∑

k=−∞
Jk sinc(k − n)ŵ (19)
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We are now ready to tackle the boundary conditions. First, we
introduce the following convenient abbreviations for the modified
Bessel functions and their derivatives evaluated at ρ = a:

Ina4In(τna), Kna4Kn(τna),

I ′na4I ′n(τna), K ′
na4K ′

n(τna),

The boundary conditions (9a)–(9c) immediately give the following
relations among the four sets of coefficients An, Bn, Cn and Dn, n ∈ Z:

Cn = (Ina/Kna)An (20a)
Dn = (I ′na/K ′

na)Bn (20b)

Bn = (jωεaτnK ′
na cosψ)An/Kna(aτ2

n sinψ − nβn cosψ) (20c)

The fourth boundary condition (13d) together with the relations (20)
and the expression (18) for Js(ϕ, z), in turn, relates An to Γn as

An = Kna[aτ2
n sinψ − nβn cosψ]Γn/jωετ2

n (20d)

Finally, the enforcement of the homogeneous boundary condition on
the tangential electric field component parallel to the winding direction
leads to the set of equations

e−jβ0z
∞∑

l=−∞

( ∞∑
n=−∞

σnΓne−j2πnζ/p

)
1[lp−w/2,lp+w/2](ζ) = 0 (21)

on cancellation of the non-zero constant factor (j/ωεa) where

σn4KnaIna(aτ2
n sinψ − nβn cosψ)2/τ2

n + (k0a)2I ′naK
′
na cos2 ψ (22)

Since e−jβ0z 6= 0, (21) implies that each Fourier coefficient of the
periodic function

h(ζ)4
∞∑

l=−∞

( ∞∑
n=−∞

σnΓne−j2πnζ/p

)
1[lp−w/2,lp+w/2](ζ)

of ζ (with period p) must vanish, that is,

∞∑
n=−∞

σnΓnsinc(n− k)ŵ = 0 for k ∈ Z (23)
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Substituting for Γn from (19), the condition (23) may be put in the
form ∞∑

q=−∞
αkqJq = 0 for k ∈ Z (24)

where

αkq =
∞∑

n=−∞
σnsinc(k − n)ŵ sinc(q − n)ŵ (25)

For a nontrivial solution of the infinite set of linear homogenous
equations (24) for Jq, q ∈ Z, it is necessary that the determinant
of the coefficient matrix A4 [αkq], k, q ∈ Z is zero, that is,

|A| = 0 (26)

The determinantal equation (26) gives the dispersion relation for the
cold wave modes supported by an open anisotropically conducting
tape helix. It is to be emphasized that, unlike similar treatments
of the cold-wave problem that neglect the transverse component of
the tape current density, the present derivation of the dispersion
equation is based neither on any apriori assumption regarding the tape-
current distribution nor on any approximation of the helix boundary
conditions. In this sense, the derivation is exact within the assumed
model for the tape helix.

It may be observed from (25) that the diagonal entries of the
coefficient matrix A are given by

αkk =
∞∑

n=−∞
σnsinc2(k − n)ŵ, k ∈ Z (27)

Since the function sinc2X decreases fairly rapidly with |X|, an estimate
of αkk to any required order of accuracy δ may be obtained by
truncating the infinite series (27) to the neighborhood Ak,δ of k where

Ak,δ4
{
n ∈ Z : σnsinc2(k − n)ŵ > δ

}

However, for a given order of accuracy δ, the cardinality of the set
Ak,δ decreases only slowly with k since σn is only of order 1/|n| for
|n| ≥ 1. Unfortunately, this also means that a fairly large number of
diagonal entries needs to be retained in any truncation of the coefficient
matrix if an accurate estimate of the dispersion characteristic is desired.
However, a redeeming feature is the presence of the factor sinc(k−n)ŵ
sinc(q − n)ŵ in the expression for the matrix entry αkq; this implies
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that the off-diagonal entries will be quite small in magnitude compared
to the nearest diagonal entry.

Before continuing with any further discussion of the dispersion
equation (26) for the tape-helix model, let us consider two limiting,
nevertheless interesting, special cases:
Case 1: The tape width w (in the axial direction) approaches
the helix pitch p.
In this case

αkq →
∞∑

n=−∞
σnδknδqn = σkδkq

and the dispersion equation (26) degenerates to

∞∏

k=−∞
σk = 0

that is,
σn = 0, n = 0,±1,±2, . . . (28)

The relation σn = 0 may be recognized as the dispersion equation
for the nth mode of a sheath helix made of the same anisotropically
conducting material as the tape helix provided βn, as a whole, is
interpreted as the propagation constant of the nth sheath-helix mode.
With this interpretation, we see that σn = σ−n, ∀n ∈ N, so that if
βn is a root of the equation σn = 0 so is −βn. We may therefore set
β−n = −βn. This is a restatement of the well-known fact that all the
sheath-helix modes, except the zeroth, are two-fold degenerate. Thus,
the sheath-helix dispersion equation simplifies to

∞∏

n=0

σn = 0 (29)

which may be satisfied by any one of the sheath-helix modes, which
is again a reiteration of the fact that each mode of the sheath helix
satisfies all the sheath-helix boundary conditions individually. This is
in marked contrast to the case of the tape helix, which requires all
of the so called ‘space harmonics’ to satisfy the boundary conditions.
This clear demarcation between the roles of the space harmonics in the
two different contexts of the sheath helix and the tape helix does not
appear to have been adequately emphasized in the literature.
Case 2: The infinite-order coefficient matrix A is truncated
to the 1×1 matrix [α00].
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Under this truncation, the dispersion equation reduces to

α00 =
∞∑

n=−∞
σn sinc2nŵ = 0 (30)

In spite of the drastic nature of this truncation, the resulting grossly
approximate dispersion equation (30) is similar in appearance to the
approximate eigenvalue equation

∞∑
n=−∞

σn Rn = 0 (31)

derived in the literature [3–5] on the basis of an assumed tape-
current distribution which forces the tangential electric field boundary
condition to be satisfied only along the centerline of the tape. The
value of the multiplying factor Rn in (31) is decided by the type
of assumption made regarding the tape-current distribution, and
irrespective of the particular assumption made, the decay of Rn with
respect to n turns out to be no better than |n|−1 except for the case
of the one-term approximation to the tape-current distribution made
by Chodorow and Chu [2] and Watkins [3]. In fact, the approximate
dispersion equations derived by Chodorow and Chu and Watkins have
a form identical to that of (30). Thus, the terms of the series in (30)
and those in [2] and [3] decrease rapidly enough with |n| (due to
the presence of (sinc)2 factors) to enable the infinite series to be
symmetrically truncated to a low order without appreciable error.
Even though such a truncated series does not appear to be anything
like a reasonable approximation to the actual dispersion equation, it
will be shown in the sequel that the zeroth term σ0 in the infinite-series
representation (30) of α00 does indeed serve as the leading order term
in a numerical scheme for getting better and better approximations by
successive addition of higher order correction terms.

In order to test how good (30) is as an approximation for the
dispersion equation for narrow tapes, the infinite-series representation
of α00 is symmetrically truncated to the order W∆bp/wc so as to retain
all the terms falling within the ‘main lobe’ of the (sinc)2 functions in
the truncated series. The truncated version of (30) is then put in the
fixed-point format

k0a =
{

β2
0a/Qsa + F

(W )
0 /QsaI0a sin2 ψ

}1/2
(32)

where

k0a = k0a, β0a = β0a, F
(W )
0 ∆

W∑

n=1

(σn + σ−n)sinc2nŵ
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and Qsa∆1 − I ′0aK
′
0acot2ψ/I0aK0a. An attempt to solve (32) for the

choice of ŵ = 0.1/π (prototypical value used in the literature for a
narrow tape) and ψ = 10◦ leads to the unexpected conclusion that the
truncated version of (30), which has been projected for so long in the
literature as a reasonable approximation to the dispersion equation for
narrow tapes, does not possess any real solution for k0a(β0a) beyond
β0a = 1.543. An increase of the truncation order does not improve
the situation; in fact the interval of existence shrinks slightly with
an increase in the order truncation beyond W for a fixed value of ŵ.
For larger values of ŵ, however, the truncated version of (30) is seen
to possess real solutions for k0a(β0a) for progressively larger values of
β0a in the complement of the forbidden regions. In the limit ŵ → 1,
equation (30) (and its truncated version) degenerates to the dominant-
mode sheath-helix dispersion equation which is of course known to
possess a unique real solution k0a(β0a) for every real value of β0a.

3. A NUMERICAL SCHEME

We now present an approach for improving upon the approximate
dispersion equation (30) resulting from the single-entry truncation of
the coefficient matrix A on the basis of the decay properties of the
matrix entries αkq. We start out with a symmetric truncation of
the infinite-order coefficient matrix A to the (2N + 1) × (2N + 1)
matrix [αkq]−N≤k, q≤N . Our objective is to study, for a specific value
of the ratio ŵ = w/p, the behavior of the dispersion characteristic with
respect to the truncation order N , and arrive at a compromise value of
N that gives a reasonably good approximation to the actual dispersion
curve within the confines of the assumed model for the tape helix. It is
readily seen from (25) that only the main ‘lobes’ of the sinc functions
contribute significantly to the value of αkq. We may therefore restrict
the range of values of n in the summation for αkq to

max(k, q)− p/w < n < min(k, q) + p/w (33)

For the specific choice of w/p = 1/2, (33) becomes

max(k, q)− 1 ≤ n ≤ min(k, q) + 1 (34)

Since (34) implies that 0 ≤ |k − q| ≤ 2, the (2N + 1) × (2N + 1)
coefficient matrix reduces to a banded symmetric matrix with nonzero
entries only along the main diagonal and the four subdiagonals (two
each on either side of the main diagonal) adjacent to the main diagonal.
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Thus, the infinite series for αkq gets truncated to

akq4α̂kq =
min(k,q)+1∑

n=max(k,q)−1

σnsinc
(k − n)

2
sinc

(q − n)
2

,

−N ≤ k, q ≤ N, 0 ≤ |k − q| ≤ 2 (35)

It will be demonstrated in the sequel how this banded structure of
the coefficient matrix can be exploited to give an effective algorithm
(which may be programmed easily on a computer) for the computation
of its determinant. Denoting the (2N + 1) × (2N + 1) truncated
coefficient matrix by Â and the corresponding (2N + 1)-dimensional
null-space vector by Ĵ = [Ĵ−N , Ĵ−N+1, . . . , Ĵ−1, Ĵ0, Ĵ1, . . . , ĴN−1, ĴN ]T
the truncated version of (24) becomes

ÂĴ = 0 (36)

The convention of denoting a negative index by an overbar will be
adopted in the sequel in the interests of brevity; thus, Ĵ−n, for
example, will be denoted by Ĵn. When the contributions from the
main lobes of the sinc functions only are retained in the expression
for akq, −N ≤ k, q ≤ N , there will only be three types of non-zero
entries in the (2N + 1)× (2N + 1) symmetric matrix Â for the choice
ŵ = w/p = 1/2, viz.,

akk = σk + (2/π)2(σk−1 + σk+1) −N ≤ k ≤ N,

ak,k+1 = ak+1,k = (2/π)(σk + σk+1) −N ≤ k ≤ N − 1,

ak,k+2 = ak+2,k = (2/π)2σk+1 −N ≤ k ≤ N − 2.

Assume N > 2. Since ĴN and ĴN appear respectively in the first
three and the last three equations in the set (36), we may solve for
ĴN (respectively ĴN ) from the first (respectively the last) equation in
terms of ĴN−1 and ĴN−2 (respectively ĴN−1 and ĴN−2) and substitute
for ĴN and ĴN in the next two equations to eliminate ĴN and ĴN from
the set (36) thereby reducing the order of the matrix Â by two from
(2N + 1) × (2N + 1) to (2N − 1) × (2N − 1) at the first stage of the
reduction process. Continuing this process of successive substitution
and elimination on the resulting matrix (of the same symmetry and
band structure), we see that the order of the coefficient matrix gets
reduced by two at each of the succeeding stages. At the ith stage (count
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the starting stage as the 0th stage), we will have a set of 2(N − i) + 1
equations of the form

Â(i)Ĵ(i) = 0
where

Ĵ(i) = [ĴN−i, . . . . . . ĴN−i]T

and the entries in the 2 × 2 submatrix in the right bottom corner
(respectively in the left top corner) of Â(i) are given in terms of the
corresponding entries of Â(i−1) by

a
(i)
N−i,N−i = a

(i−1)
N−i,N−i −

(
a

(i−1)
N−i,N−i+1

)2
/a

(i−1)
N−i+1,N−i+1 (37)

a
(i)
N−i,N−i−1 = a

(i)
N−i−1,N−i = aN−i,N−i−1

−a
(i−1)
N−i,N−i+1aN−i+1,N−i−1/a

(i−1)
N−i+1,N−i+1

a
(i)
N−i−1,N−i−1 = aN−i−1,N−i−1 − (aN−i−1,N−i+1)

2 /a
(i−1)
N−i+1,N−i+1

and by an identical set of three relations with an overbar over the
suffixes so long as 1 ≤ i ≤ N − 2. The remaining entries of Â(i−1) are
not affected by the reduction process. At the (N − 2)th stage we have
the following set of five equations:

a
(N−2)

22
Ĵ2 + a

(N−2)

21
Ĵ1 + a20Ĵ0 = 0

a
(N−2)

12
Ĵ2 + a

(N−2)

11
Ĵ1 + a10Ĵ0 + a11Ĵ1 = 0

a02Ĵ2 + a01Ĵ1 + a00Ĵ0 + a01Ĵ1 + a02Ĵ2 = 0 (38)

a11Ĵ1 + a10Ĵ0 + a
(N−2)
11 Ĵ1 + a

(N−2)
12 Ĵ2 = 0

a20Ĵ0 + a
(N−2)
21 Ĵ1 + a

(N−2)
22 Ĵ2 = 0

After eliminating Ĵ2 and Ĵ2 from (38), we have a set of three equations
for Ĵ1, Ĵ0 and Ĵ1 at the (N − 1)th stage:

a
(N−1)

11
Ĵ1 + a

(N−1)

10
Ĵ0 + a11Ĵ1 = 0

a
(N−1)

01
Ĵ1 + a

(N−1)
00 Ĵ0 + a

(N−1)
01 Ĵ1 = 0 (39)

a11Ĵ1 + a
(N−1)
10 Ĵ0 + a

(N−1)
11 Ĵ1 = 0

Solving for Ĵ1 and Ĵ1 from the first and the third equations in (39) in
terms of Ĵ0 and substituting for Ĵ0 in the second equation of (39), we
finally have at the Nth stage

[
a

(N−1)
00 − a

(N−1)

01
a

(N)

10
− a

(N−1)
01 a

(N)
10

]
Ĵ0 = 0 (40)
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where

a
(N−1)
00 = a00 − (a20)

2 /a
(N−2)

22
− (a20)

2 /a
(N−2)
22 , (41)

a
(N)

10
=

(
a

(N−1)

10
a

(N−1)
11 − γ0σ0a

(N−1)
10

)
/

(
a

(N−1)

11
a

(N−1)
11 − γ2

0σ2
0

)
,

a
(N)
10 =

(
a

(N−1)
10 a

(N−1)

11
− γ0σ0a

(N−1)

10

)
/

(
a

(N−1)
11 a

(N−1)

11
− γ2

0σ2
0

)

and where γ0 = (2/π)2. The first two relations in (37) and their two
counterparts without the overbar over the suffixes continue to be valid
for i = N − 1 also. Thus, the approximate dispersion equation for a
truncation order of N becomes

σ0 + γ0 (σ−1 + σ1)

−





[
a

(N−1)
11

(
a

(N−1)

10

)2
+ aN−1

11

(
a

(N−1)
01

)2
− 2γ0σ0a

(N−1)

10
a

(N−1)
01

]

(
a

(N−1)

11
a

(N−1)
11 − γ2

0σ2
0

)





−γ2
0

(
σ2
−1/a

(N−2)

22
+ σ2

1/a
(N−2)
22

)
= 0 (42)

Once a solution β̂0 of the approximate dispersion equation (42) for
β0 is obtained it is a simple matter to work backwards expressing
successively Ĵi and Ĵ−i for i = 1, 2, 3, . . . , N in terms of Ĵ0 to determine
the (2N + 1) × 1 mode vector Ĵ, corresponding to β̂0, for the tape
current density. A documentation of the mode-vector expression is not
attempted here since an open tape helix is only of academic interest as a
slow-wave structure for travelling wave tubes. However, a field analysis
of the cold-wave (including the contribution of the transverse tape-
current density if found significant) problem for a dielectric-loaded tape
helix enclosed in a perfectly conducting coaxial cylindrical shell, which
serves as a good model for the TWT slow-wave structure, is proposed
to be taken up in the near future.

The approximate dispersion equation of the tape helix for any
order of truncation N is of the form

σ0 + γ0FN (σ±1, σ±2, . . . , σ±(N+1)) = 0 (43)

where FN = GN/HN is a symmetric rational function of the 2(N + 1)
arguments σ±1, σ±2, . . . , σ±(N+1). The expressions for the GN and the
HN , which are homogeneous functions of their arguments, are given
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below:

G0 = σ1 + σ1

G1 = ∆(1)
1 ∆(1)

1

[
σ1 + σ1 − γ0

(
σ2

1/∆(1)
1 + σ2

1
/∆(1)

1

)]

G2 = ∆(2)
2 ∆(2)

2

[
σ1 + σ1 − γ0

(
σ2

1/∆(2)
1 + σ2

2
/∆(2)

1

)]

−∆(2)
2

(
∆(2)

3

)2
−∆(2)

2

(
∆(2)

3

)2
(44)

GN = ∆(N)
2N−2∆

(N)

2N−2

[
σ1 + σ1 − γ0

(
σ2

1/∆(N)
2N−4 + σ2

1
/∆(N)

2N−4

)]

−∆(N)
2N−2

(
∆(N)

2N−1

)2
−∆(N)

2N−2

(
∆(N)

2N−1

)2
for N ≥ 3

H0 = 1

H1 = ∆(1)
1 ∆(1)

1
− 2γ0

(
σ1∆

(1)

1
+ σ1∆

(1)
1

)

+γ2
0

[
(σ1 + σ1)

(
∆(1)

1 ∆(1)

1

)
− (σ1 − σ1)

2
]

H2 = ∆(2)
2 ∆(2)

2
− 2γ0

(
∆(2)

2 ∆(2)

3
+ ∆(2)

2
∆(2)

3

)

−γ2
0

(
∆(2)

3 −∆(2)

3

)2

+γ2
0

(
∆(2)

2 +∆(2)

2

)[
σ1+σ1−γ0

(
σ2

1/∆(2)
1 +σ2

1
/∆(2)

1

)]
(45)

HN = ∆(N)
2N−2∆

(N)

2N−2
− 2γ0

(
∆(N)

2N−2∆
(N)

2N−1
+ ∆(N)

2N−2
∆(N)

2N−1

)

−γ2
0

(
∆(N)

2N−1 −∆(N)

2N−1

)2
+ γ2

0

(
∆(N)

2N−2 + ∆(N)

2N−2

)

[
σ1 + σ1 − γ0

(
σ2

1/∆(N)
2N−4 + σ2

1
/∆(2)

2N−4

)]
for N ≥ 3

The recursive formulae for the ∆2K−1,∆2K−1, ∆2K−2, and ∆2K−2, 1 ≤
K ≤ N , appearing in (44) and (45) are

∆(N)
1 = σN + γ0(σN+1 + (1− δ0,N−1)σN−1) for N ≥ 1

∆(N)
2 = σN−1 + γ0(σN + (1− δ0,N−2)σN−2)

−γ0(σN + σN−1)2/∆(N)
1 for N ≥ 2

∆(N)
3 = σN−1 + (1− δ0,N−2)σN−2)

−γ0(σN + σN−1)σN−1/∆(N)
1 for N ≥ 2

∆(N)
4 = σN−2 + γ0(σN−1 + (1− δ0,N−3)σN−3)
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−γ2
0σ2

N−1/∆(N)
1 − γ0

(
∆(N)

3

)2
/∆(N)

2 for N ≥ 3

∆(N)
2K−1 = σN−K+1 + (1− δ0,N−K)σN−K

−γ0σN−K+1∆
(N)
2K−3/∆(N)

2K−4 for N ≥ K ≥ 3

∆(N)
2K−2 = σN−K+1 + γ0(σN−K+2 + (1− δ0,N−K)σN−K)

−γ2
0σ2

N−K+2/∆(2)
2K−6 − γ0

(
∆(N)

2K−3

)2
/∆(N)

2K−4

for N ≥ K ≥ 4

together with a corresponding set of formulae with an overbar over the
suffixes.

For the purpose of studying the behavior of the dispersion
characteristic as a function of the truncation order, it is convenient
to introduce the nondimensional parameter

τna4τna =
{

(β0a + n cotψ)2 − k2
0a

}1/2

in addition to β0a4β0a, and k0a4k0a. In terms of the nondimensional
quantities, the expression (22) for σn becomes

σn =
[(

β2
0a − k2

0a

)
sinψ + nβ0a cosψ

]2
InaKna/τ2

na

+k2
0aI

′
naK

′
na cos2 ψ, n ∈ Z (46)

The relation σ0 = 0 may be recognized as the sheath-helix dispersion
equation for the dominant mode (n = 0). Making use the
expression (46) for σ0, the dispersion equation (43) may be put in
the fixed-point format

k0a = G(k0a; β0a)

4
{

β2
0a/Qsa +

γ0FN

(
σ±1, . . . , σ±(N+1)

)

QsaI0aK0a sin2 ψ

}1/2

(47)

The right member of (47) may be viewed as an ‘operator’ G that maps
k0a into G(k0a; β0a) for a fixed β0a. The symmetric dependence of
the function FN on σ±i, 1 ≤ i ≤ N , implies that if β0a satisfies the
dispersion equation (47) for a given k0a so does −β0a for the same k0a.
Therefore, solution of the dispersion equation (47) for k0a(β0a) need
only be sought for nonnegative values of β0a. Thus, equation (47)
may be solved numerically for k0a(β0a), β0a ≥ 0, by the method of
successive substitutions to find any fixed point of the operator G for
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Figure 2. Dispersion character-
istic of tape helix for truncation
order N = 2.
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Figure 3. Dispersion character-
istic of tape helix for truncation
order N = 3.
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Figure 4. Dispersion characteristic of tape helix for truncation order
N = 4.

k0a in the range 0 < k0a < (1/2) cotψ. The resulting family of tape-
helix dispersion curves for the choice of the pitch angle ψ = 10 ◦ are
plotted in Figs. 2–4 for truncation orders of 2, 3 and 4 respectively. The
dominant mode dispersion curve of the sheath helix (for the same value
of ψ = 10◦) is also plotted in the figures for comparison. Tape-helix
dispersion curves for the truncation orders of 0 and 1 are not shown
because the iterations for these two cases could not be continued (to
convergence) beyond β0a = 4.64 to yield real values for k0a(β0a) in the
complement of the forbidden regions. A portion of Fig. 2 magnified
several fold to make the minute difference between the dispersion
curves discernible is shown in Fig. 5. It may be seen from Fig. 5
that the phase speed for the tape-helix model is lower than that for
the sheath-helix model for the same value of ω in the complement of
the forbidden regions. However, the dispersion curves of Fig. 5 are so
closely spaced that it may not be appropriate to draw any inference
based on an inspection of Fig. 5.
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Figure 5. Blown-up portion from Fig. 2.

4. CONCLUSION

It may be observed from the plots of Figs. 2–4 that the tape-helix
dispersion curves for N = 2, 3 and 4 follow the dominant-mode sheath
helix dispersion curve very closely everywhere within the complement
of the forbidden regions (shown shaded in the figures). The solution
for k0a(β0a) within the forbidden regions acquires a small imaginary
part (on the order of 10−5) on account of τ−1a, τ−2a and τ−3a becoming
purely imaginary within the 1st, the 2nd and the 3rd forbidden region
respectively where the nth forbidden region for n ∈ Z, is taken to be
the portion of the β0a-k0a plane inside the (inverted) triangle formed
by the straight lines k0a = −β0a + n cotψ, k0a = β0a − n cotψ
and k0a = (1/2) cotψ. It is thus seen that the mode constant τ−na

of the −nth space-harmonic contribution to the total field becomes
imaginary in the nth forbidden region, and that the resultant Poynting
vector acquires a small radial component in order to account for the
radiation of power from the −nth space harmonic. Since the dispersion
curves for N = 2, 3 and 4 are virtually indistinguishable from one
another, a truncation order as low as 2 is adequate to deliver an
accurate estimate of the tape-helix dispersion characteristic (at least
within the validity limits of the assumed model for the parameter
values used in the numerical computations). However, a fairly large
number of modal ‘amplitudes’ Jn, |n| ≥ 0, is needed in the infinite-
series representation (14) for the surface current density component
Js(ϕ, z) so as to ensure a reasonably good approximation for the tape-
current density, and hence for the electromagnetic field vectors. The
main conclusion that may be drawn from the present study is the
following: The dominant-mode dispersion characteristic of the sheath
helix is an excellent approximation to that of the tape helix in the
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complement of the forbidden regions provided that the neglect of the
transverse component of the tape-current density does not give rise to
any appreciable error even for tapes which are not narrow. Whether
such an hypothesis is true or false can be ascertained only through
an analysis of guided electromagnetic wave propagation that fully
accounts for the transverse component of the tape-current density.

Based on the outcome of such a study (which is currently
under progress), it is proposed to extend the method adopted for
the derivation of the tape-helix dispersion equation to a full field
analysis of the practically important case of a dielectric-loaded helical
slow-wave structure enclosed in a coaxial metal cylindrical shell and
supported by azimuthally symmetrically placed dielectric rods. The
effect of the dielectric support rods will have to be modeled by
a homogeneous dielectric the effective dielectric constant of which
can be determined in terms of the geometric arrangement of the
support rods and the actual dielectric constant of the rod material.This
process of homogenization is equivalent to replacing the azimuthally
nonhomogeneous dielectric constant of the annular region between the
helix and the outer conductor by its azimuthal average, which becomes
a constant independent of the radial coordinate, for azimuthally
symmetrically placed wedge-type support rods. In any case, it is
necessary to smooth out any kind of azimuthal nonhomogenity before
attempting a solution of the cold-wave problem by an extension of
the method introduced in this paper because any axial asymmetry
of the slow-wave structure would be inconsistent with the property
of geometrical invariance under simultaneous translation and rotation
exhibited by an infinite helical structure.
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Errata to DISPERSION OF ELECTROMAGNETIC WAVES
GUIDED BY AN OPEN TAPE HELIX I by N. Kalyanasun-
daram and G. Naveen Babu, in Progress In Electromagnetics Research
B, Vol. 16, pp. 311–331, 2009

(i) Page 315, 3rd line from top: Correct ‘ ∂2U
∂ϕ∂z − jωµ

ρ
∂V
∂ρ ’ to ‘1ρ

∂2U
∂ϕ∂z +

jωµ∂V
∂ρ ’.

(ii) Page 315, 4th line from top: Insert ‘/ρ’ after ‘Gn(τnρ)’.

(iii) Page 315, 7th line from top: Insert ‘−’ between ‘
∞∑

n=−∞
’ and ‘[’.

(iv) Page 315, 8th line from top: Correct ‘ ∂2V
∂ϕ∂z − jωε

ρ
∂U
∂ρ ’ to ‘1ρ

∂2V
∂ϕ∂z −

jωε∂U
∂ρ ’.

(v) Page 316, 12th line from top: Remove ‘−’ before ‘cotψ/a’.
(vi) Page 316, 14th line from bottom: Remove ‘−’ before ‘cotψ/a’.
(vii) Page 316, 13th line from bottom: After ‘that is,’ replace ‘k0’ by

‘k0a’.
(viii) Page 317, 10th line from top: Change ‘−’ sign to ‘+’ sign.
(ix) Page 317, 6th line from bottom: Correct ‘Js(ρ, ϕ, z)’ to ‘Js(ϕ, z)’.
(x) Page 319, 6th line from top: Replace ‘(9a)–(9c)’ by ‘(13a)–(13c)’.
(xi) Page 322, Equation (32): Insert ‘k0a’ between ‘I0a’ and ‘sin2 ψ’ in

the 2nd term within the curly brackets.
(xii) Page 325, 5th line from bottom: Replace the coefficient ‘a11’ by

‘a11’.
(xiii) Page 326, 6th line from top: After ‘counterparts’ replace ‘without’

by ‘with’.
(xiv) Page 327, 3rd line from top: Delete the ‘γ0’ in front of the

parenthesis.
(xv) Page 327, 4th line from top: Replace ‘σ2

2
’ by ‘σ2

1
’.

(xvi) Page 327, 10th line from top: Insert ‘+’ in between ‘∆(1)
1 ’ and

‘∆(1)

1
’.


