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Confinement of electrons in ultrathin metallic films leads to subbands. By increasing the thickness of

the electron layer, the subbands will dissolve into a quasicontinuum, with the number of electrons per

unit volume kept constant. Within the random-phase approximation, the two-dimensional plasmon,

which originally follows Stern s dispersion relation, becomes a longitudinal surface plasmon. The

plasmon excitations of a model metallic film are investigated by including all subbands. Single-particle

excitations, which exhibit the depolarization shift, converge into the plasma excitation spectrum. With

further increases in the film thickness, the bulk plasmon arises and the surface plasmon remains. Our

analysis shows how quantum size effects evolve into hydrodynamical classical size effects with increasing

thickness of the film.

I. INTRODUCTION

Molecular-beam epitaxy has recently been successful at

growing ultrathin uniform metallic layers between two

insulators and semiconducting substrates. ' These lay-

ered metal films possess no granular structures, unlike the

evaporated or sputtered metal films which were used in

the past. The thickness (1.5 —100 nm) of the epitaxial

metallic layers can be arranged to be on the order of the

de Broglie wavelength (0.5 nm) of electrons in metals.

The wide range of layer thicknesses makes it possible to

study how quantum size effects (QSE) are transferred into

well-studied classical size effects (CSE).
Plasma oscillations are an essential part of the dielec-

tric properties of an electron gas. Plasmons in a three-

dimensional electron gas (3DEG) have been studied ex-

tensively. Of more recent interest is the research on

plasmons in a quasi-two-dimensional electron gas

(2DEG) of, e.g., semiconductor-insulator heterostruc-

tures. ' With epitaxial-growth technology, it becomes

possible to study an intermediate electron gas which is

between two and three dimensions. With increasing film

thickness, the electron confinement disappears gradually

and a bulk electron gas appears.
The confinement of electrons in the metallic layer leads

to a discretization of energy levels and a subband struc-

ture in k space. Compared with the 2DEG in semicon-

ductor heterostructures, the electron density in the epit-

axial metal is very high. As a consequence, several sub-

bands can be occupied. When wider metal layers are in-

vestigated, for a constant number of electrons per unit

volume, the subbands shift together and more of them be-

come occupied. In k space, a quasicontinuum will be
built up and the 3DEG comes into existence. The aim of
this paper is to investigate the transition of collective ex-

citations for a 2DEG transferring into those of 3DEG.
The band structure across the semiconductor-

insulator-metal heterostructure produces geometrical

quantization in the electronic layer. The relatively large

band gap of the surrounding insulators and the absence

of a band gap in the metal motivates the idea of confining

the conducting electrons in a rectangular infinitely deep

potential well. In Sec. II a simple model will be presented

to study this geometrical confinement. We show the

consequences of dissolving the discrete quantum states on

the occupation of subbands in k space. Section III con-

tains the dispersion relations for plasmons derived within

the random-phase approximation (RPA). The lack of
translation invariance forces us to use a nondiagonal

dielectric matrix. We found that only when a few sub-

bands are occupied are the depolarizing single-particle ex-

citations ' " ' and the two-dimensional plasmon

recovered. ' Our approach is di8'erent from earlier inves-

tigations, in the sense that an almost unlimited number of
subbands are included. This is the reason why we are

able to recover the limit of the 3DEG by a very thick lay-

er. In Sec. IV we show how important intersubband

plasmons are in comparison with intraband plasmons

when wider metal layers are investigated. The theoretical

approach is concerned with the energy loss of fast elec-

trons. In the bulk limit, we found numerically a surface

plasmon and a bulk plasmon, which is in agreement with

hydrodynamical classical size effects. ' Our conclusions

and discussions are given in Sec. V.

II. MODEL OF A CONFINED ELECTRON GAS

Both Schottky barriers are modeled by an infinitely

deep potential well, with finite width w. The positively

charged ions are treated in the jellium approach. The
free-particle Hamiltonian possesses the eigenfunctions

where A is the area of one metallic surface. In the

p=(x,y) plane these solutions are plane waves, where
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(b) turn states with negative subband indices. This was done
in order to obtain a Fermi sphere instead of the proper
hemisphere. Dissolving the discrete quantum wave num-

ber m.l /w into a quasicontinuous wave-vector component

k, leads to the transition of a quasi-2DEG into a 3DEG.

III. DISPERSION OF PLASMONS

Following Ehrenreich and Cohen, the density

response to a perturbing external potential

0 . I ~ I

-10 -5 0 5 10 Vtext)(p z t )
—Viext)( w q z)ei(q P te. t)—

(4)

(w/m) k„ (w/m) k„

Born —von Karman boundary conditions' ' are used, to
simulate an infinite system. In the z direction the stand-

ing waves

FIG. 1. The energy spectrum for two values of the subband

occupation: (a) lF =2 and (b) lF =8. The Fermi levels are indi-

cated by the horizontal dashed lines.

will be treated within the RPA approach, where we will

include the discrete subband structure. ' This restriction
to the longitudinal density-density response neglects the

effects of retardation.

The density perturbation gives the total potential

y y'(ext) + y(s)

as a self-consistent scalar field. The screening potential
V" is the solution

g, (z)=V2/w sin
l~z

for l =1,2, . . . , (2)
V'I(to, q;z ) = f dz' V' '(q;z, z')5n (to, q, z')

0

are the wave functions, obeying Dirichlet boundary con-

ditions. The two-dimensional wave vector k and the sub-

band index I constitute a suitable set of quantum wave

numbers (k, n.//w ), with the spin omitted. The eigenval-

ue spectrum is parabolic

fi kE„i= +I I,
2m

(3)

(b)

Q I I ~

I
~ I ~ ~, ~. . . ,

~ ~1

with a subband offset of 8& =Irt m. / /2mw . The essence

of QSE is the direct incorporation of the layer thickness

into the single-particle wave functions.

The occupation of the (k, n/Iw ) space. is characterized

by a stack of Fermi disks with different Fermi wave vec-

tors kF(/)=(n. /w)QE~/CI —1, where EF is the Fermi

level. When gradually wider layers are investigated, as-

suming a constant number of electrons per volume unit

(n' '), more and more subbands become occupied (Fig.
1). The spacing between the Fermi disks becomes smaller

(Fig. 2) and disks pile on top of each other to construct a

Fermi sphere, with radius k~t '=(3m n' ')'~ . In state

space, as shown in Fig. 2, we have also indicated quan- 2
Aii (co,q) =-

k
]kJ & kF(I)

k) 1 k+ q, I'

of the Poisson equation connected to the induced electron

density 5n, with

V' '(q;z, z')=v e

and the two-dimensional Fourier-Coulomb factor

Uq =2me /q. The time-dependent single-particle Liou-

ville equation relates, to first order, the density Auctua-

tion to the total potential

/Jn(co, q;z )
= f dz'II(to, q;z, z') V(to, q;z') . (8)

0

The irreducible polarization H is given by

IF

II(to, q;z, z')= g g Aii( toq)g&(z)g&. (z)
1=1 I'=1

Xk(z')k {

where the integer part for /+ =Int(1/ EF /6 I) denotes the

highest occupied subband and A the polarizability func-

tion

Aco+Ek I. —Ek I

(10)

(w/vr) k„

Q

—5

—10
—10

I & ~ I

—5 0

(w/7r) k„

10

where the extra factor 2 takes care of spin degeneracy.

As usual a small positive imaginary part i y is included in

the frequency co to represent adiabatic switching of the

Coulomb interaction. The polarizability matrix can be

simplified to

FIG. 2. The occupied states (solid lines) and the Fermi sur-

face (dotted circle) for the situation in Fig. 1: (a) lF =2 and (b)

lF =8.

qkF(/)
Aii, (co, q ) = IK(u (co,q, /', /) )

2+E

—K(u+ (to, q, /', /)) I,
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where we introduced the definitions

u —(u —1)' if ~u~ & 1 and Re(u) &0

K(u)= .u+(u —I)'~ if ~u~ & 1 and Re(u) &0

u i—(1—u )' if ~u~ &1

(12)

Figure 3 contains an inventory of the zeros (thick solid

curves) of the dispersion law for plasmons. The shaded

area corresponds to the electron-hole continuum, where ~

and A have imaginary parts. The existence of plasmons

is disturbed in this region by single-particle excitations.

Similar to Dahl and Sham, two types of zero-point

branches are found. First there is the two-dimensional

intraband plasmon (dashed-dotted curve) with frequency

and

fico+(E +Bi —CJ)

(fi /m )qkz(l)
(13)

and outside the sheet (z & O, z' & 0 or z & w, z' & w)

Jr(co, q;z, z') =5(z —z'),

while for other (z, z') combinations we have i'd=0.

Inside the metallic film the dispersion relation for the

collective modes is determined by

det[1 —V' '(q)II(co, q)]=0,

where 1, V' ', and II are matrix representations of, re-

spectively, the unit operator, the bare Coulomb potential,

and the irreducible polarization in a complete set of
eigenfunctions on the interval 0&z &w. The choice of
the eigenfunctions is complicated by the fact that the

effective Coulomb potential is a rather smooth function,

whereas the polarization is strongly oscillatory. For nu-

merical purposes it is of paramount importance to choose

a suitable set of eigenfunctions such that only a relatively

small number of matrix elements is important in the cal-

culation of the determinant.

The dielectric function ~ relates the external and total po-

tentials as V'""=~V. This yields the dielectric function

inside the metal layer (0 & z & +w, 0 & z' & w)

a(co, q;z, z') =5(z —z')

dz" V' '(q;z, z")II(co,q;z",z'),
0

(14)

'(q}=(q2n.e n' '/m )' (17)

for qlO approaching Stern's dispersion relation, ' with
n' =wn' '. When the plasmon branch enters the

shaded region, the collective oscillations will be damped

and here the plasmon frequencies possess nonzero imagi-

nary parts. For larger wave vectors the frequenc'y tends

to be lower than the corresponding Stern result. It
should be emphasized that the RPA is only valid in the

lowest order of q, see Ref. 23. Because of the present sub-

band structure a mode-coupling effect is retained between

intraband and interband collective modes, noted by Das

Sarma in Ref. 14. Secondly, single-particle excitations

are present, characterized by constant nonzero frequen-

cies for q =0. The resonance frequencies

~n =(~JJ /&) +~,, JJ
2 = 2 -2

(18)

20

do not correspond to the subband splittings 6II because

of the depolarization effect. "" This effect is caused by

Coulombic screening and leads to a positive shift of the

transition energy above the subband separation: the depo-

larization shift. Figure 4 shows the position of the three

lowest single-particle resonances as a function of the elec-

tron density. The depolarization shift is the distance of
this curve from the dotted horizontal lines, which

represent the subband splittings HAJJ
=(l l )@J. The-

dashed curve is obtained when we limit ourselves to one

virtual subband (l'=1,2). It shows that the inliuence of
higher virtual subbands on the depolarization shift is

more pronounced with increasing electron density. Note

20
15

15

Ce Qgggp~

~~10

]F
——1 8 =2

F

0
0 0.2 0.4 0.6 0.8 (3D) (]p20 3)

10

q/kF(1)

FIG. 3. The zero-point inventory of the dielectric deter-
minant for one occupied subband (solid curves). The electron-
hole continuum is marked and shaded, also Stern's dispersion
relation (dashed-dotted) is drawn; Ez/@&=3.5, n' '=5X10
cm ', @=0.

FICx. 4. The three lowest resonance frequencies for corre-

sponding intersubband plasmons as a function of the electron

density at constant layer thickness w=2 nm. For densities
n' '&5.9X10 cm two subbands are occupied. The dashed

curve is the result when only one unoccupied subband is includ-

ed.
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that when the electron density approaches zero, the depo-

larization shift reduces to zero and the resonance fre-

quencies correspond to the subband splittings. The fre-

quency of the screening collective mode to~ tt =Q~ ftI, is

related to the oscillator strength ftt. of an intersubband

transition, which Chen, Chen, and Burstein" pointed

out. These oscillator strengths can only be obtained nu-

merically, when several subbands are filled. Further-

more, we notice in Fig. 3 that two plasma branches are

very close to each other, which occurs near the bulk plas-

ma frequency Q~ =4m e n' '/m. This is associated with

the creation of a bulk plasmon, as will be seen in the next

section.

IV. ENERGY LOSS OF FAST ELECTRONS

The dielectric matrix is utilized to calculate the energy

loss spectrum of fast electrons which enter the metal lay-

er at normal incidence. The nonrelativistic velocity

u »A'k~(1)/m of the external electron permits Born's

approximation, treating this charge e classically with po-

tential

V(ext)(r t )
/r

—
vt/

V(r, t)= g fd q f d co V (to, q)e "~t' ""e„(z), (20)

with the set e„(z)= ( I /&w )e' "' for n =0,+1,. . . , ad-

mits the use of the inverted dielectric matrix in
V'" '=(~ ' —l)V'"". Only normal incidence of the

external electron to the layer surface is considered. The

energy loss is obtained as

A = f d q f dao coP(co, q),
0

(21)

where the absorption function P(to, q) indicates the prob-

ability for a transfer of energy Ace and two-dimensional

momentum q to the electron gas

This perturbation leads to single particle and plasmon ex-

citations inside the layer, and consequently to an energy

and momentum loss of the external electron.

The induced density fluctuations exert a stopping force
—VV'" ' to the electron, which yields an energy loss

dA =ev.V V'" 'dt per unit path length. The transforma-

tion

2

war q v +co

1 1 1 1

2mn'/w —co/v 2mn/w —co/u 2am'/w+co/v 2mn/w+co/v

The absorption function is plotted in Figs. 5 for (a) one

subband occupied and (b) two subbands occupied. The

lowest resonance (I'=2) has a transfer probability which

is about ten times larger than the next (I'=3) one. We

found that is not necessary to include many virtual sub-

bands when only the lowest subband is occupied. For ex-

ample, when only the first two (1'=1,2) subbands are in-

cluded, a qualitatively similar spectrum is obtained, ex-

cept of course for the higher transitions (I'=3,4, . . . , ).

We took for all spectra the charge velocity

v=+1000E+/m, the density n' '=5X10 cm and

the damping @=0.10, unless stated differently. As the

width of the metal film increases, the lowest subband will

be filled to a higher Fermi level, and the higher reso-

nances shift towards the lower ones. As the occupation

of higher subbands progresses, the two-dimensional plas-

ma oscillation gains intensity, with respect to the single-

particle excitations [Fig. 5(b)j. This is shown more clear-

ly in Fig. 6 where we plot the absorption spectrum as

function of the frequency for a constant small wave vec-

tor q=0. 1k+ ', for different values of the width of the

layer. Notice that the two-dimensional plasmon evolves

1
—e

co(q) =Q
2

1/2

(23)

which is in agreement with the present numerical analysis

in Fig. 8 (dashed curves), at least for small q values. It is

necessary to take a nonzero damping, otherwise Im ~=0
outside the electron-hole continuum and no peak struc-

ture can be observed numerically for the plasmon

branches.

into a surface plasmon, with asymptotic frequency

co=Q~/&2. The position of the important peaks are

plotted in Fig. 7 as function of the width of the layer.

Towards this bulk limit also the three-dimensional

plasmon arises (Fig. 7). The quantized electron motion

perpendicular to the interfaces disappears in the spec-

trum. The three-dimensional plasma oscillations become

more important, with respect to the surface oscillations.

The surface collective modes were investigated by

Ritchie. '
Using the hydrodynamical CSE for a charged

electron liquid, he found
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FIG. 7. The evolution of the plasmon dispersions at constant

q=o. 1k'' ' as a function of the layer thickness. We took

@=0.01r, .

0)

20

V. DISCUSSION AND CONCLUSIONS

Geometrical confinement of electrons into a potential

well creates a discrete subband structure. Because of the

I
I

I I I I
I

I I I I

V)

C

2

U

w=20nm
w=15nm
w=10nm
w= 5nm
w= 3nm

1
3

0.5
I

I. ~
~ P J

1.5

FIG. 6. The absorption function P(co, q) as function of the

frequency for a constant q =0.1kF ' and a damping of

y =0.1Q~ for difFerent values of the layer width.

FIG. 5. The absorption function P(co, q) for (a) IF=1,
EFIC&=2. 1 and (b) IF=4, EFIC&=17.6. We used a damping

of y =0.10~.

relatively high electron density in a metallic layer, an (in

principle) unlimited number of occupied subbands are

present. This is in contrast to the quasi-2DEG in

semiconductor-insulator heterostructures, where usually

only one subband is occupied. For a fixed number of
electrons per unit volume, the energy levels shift nearer

to each other when wider metal layers are studied, and

the correct three-dimensional limit for plasmon excita-

tions is obtained. From the dispersion of the collective

excitations as obtained from the nonlocal RPA dielectric

matrix and the energy loss by fast electrons, we found

(modified) two-dimensional plasma oscillations and depo-

larizing single-particle excitations. Coupling between in-

traband and intersubband plasmons causes a downward

bending of the two-dimensional plasmon dispersion as

compared with the strict two-dimensional result of Stern.

In wider layers more subbands become occupied, the in-

tersubband resonances approach each other, and the

dispersion of the intraband plasmon changes into a longi-

tudinal surface mode. The bulk plasmon appears as a

plasma oscillation in three dimensions, and exceeds other

collective modes in intensity. In the bulk limit the plas-

ma oscillations agree with results from CSE.
The RPA dielectric description fails mainly for retar-

dation, and exchange and correlation effects in

semiconductor-insulator heterostructures. Retardation

has been taken into account by solving the full set of
Maxwell equations and it was found to be of minor im-

portance. The major limitation of the RPA approach is

the neglect of correlation and exchange for low electron

densities. On the other hand, it is well known that the

dynamic Hartree method is a successful technique to de-

scribe plasmons and single-particle excitations in the

long-wavelength limit at metallic electron densities.
Ando' ' used a local correction term to take account of
the excitonlike effect in heterostructures where a single

subband is occupied, giving a further modification to the

single-particle resonances. A more proper approach
would be a dynamic Hartree-Fock calculation, as out-

lined in Ref. 24.
However, there is experimental evidence of QSE dis-



8442 BACKES, PEETERS, BROSENS, AND DEVREESE 45

(a) (c)

I
I I

1 — ~

Cl

3

0.5 0.5

CL

Cl

3

0.5

0 a I I I a I ~

0 0.2 0.4 0.6 0.8

yk
(3D)

F

0
0 0.2 0.4 0.6 0.8

gg
(3D)

F

0.2 0.4 0.6 0.8

gk
(3D)

F

FIG. 8. The dispersion relation of the two-dimensional plasmon at (a) w = 1 nm, (b) w = 3 nm, and (c) w =20 nm; y =0.010~. The
dispersion relations according to Stern and Ritchie are, respectively, given by the dotted and dashed curves.

solving into CSE in optical transmission and reAection

experiments in sputtered gold films. Demonstrations of
dissolving the discrete quantum states and the dispersion

modification of the longitudinal plasmons in gradually

wider metal layers are, except for energy-loss experi-

ments, possible in infrared-absorption experiments,
and eventually by means of a grating coupler. '
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