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ABSTRACT

This paper introduces a new paradigm for disper-
sion of information into three-dimensional space to
generate a strenuous crypto system. The dispersion
of the information is carried out by quaternion rota-
tion matrix which is called quadripartite public-key
(QPK). We considered a private key as a unit quater-
nion which has an arbitrary quadruple of real num-
bers. The public key has three different components
which are constructed using quaternion rotation ma-
trix QRM to generate a secure key, which significantly
eliminates the risk of eavesdropping. Furthermore,
quaternion has capability to provide a meditative en-
cryption system for wireless images or voice trans-
missions. A computer-based simulation conducted to
scrutinize the capability of QPK carefully in insuring
the highest level of security is reported.

Keywords: Rotation matrix, cryptography, public
key

1. INTRODUCTION

Information security over vulnerable and exposed
wireless networks has become a primary concern for
protecting this information from piracy and malicious
code attacks or even from rogue wireless access point.
Therefore, many researchers have scrutinized wire-
less networks looking for a stronger protection system
which is based on proper encryption techniques.

A quaternion is so called hyper complex number of
rank 4, and has two parts; a scalar part and a vector
part which is an ordinary vector in three-dimensional
space R3. Quaternion was invented by Hamilton in
1843 [1]. It has been used in computer visions and
robotics for rotating objects in 3-dimension [2][3].

This paper implements a quaternion as an en-
cryption technique by providing four encryption keys.
These keys’ parameters are independent coefficients
that have a free rotation in a 3-D space. The rota-
tion is used in this paper as a function to encrypt
information such as data or voice. The voice applica-
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tion has been sampled and each group of samples is
arranged in a frame that has a 3 × 3 miniature ma-
trix array. All elements in the group are rotated and
spread in 3-D space using mathematical model called
a quaternion rotation matrix (QRM) which is often
appropriate for numerous applications such as being
a tool for encryption technique.

2. A BRIEF BACKGROUND OF QUATER-
NION

We define a quaternion as the sum of two parts;
a scalar (real) part and a vector (imaginary) part,
q = (scalar w, vector V ), or q = (w, V ). The basic
algebraic form of quaternion q is:

q = w + xi + yj + zk (1)

where w and V are a scalar and a vector, respec-
tively. The vector part V of quaternion comprises
three ordinary vectors, such as (i, j, k), which form
an orthonormal basis in R3. These vectors have the
following characterstics.

i× i = j × j = k × k = −1
i× j = −j × i = k (2)
j × k = −k × j = i

k × i = −i× k = j

Two quaternions q1 and q2 are equal if they have ex-
actly the same components:

q1 = w1 + x1i + y1j + z1k (3)
q2 = w2 + x2i + y2j + z2k

then q1 = q2 if and only if a1 = a2, b1 = b2, c1 = c2

and d1 = d2.
The sum of two quaternions is defined by adding

the corresponding components, that is

q1 + q2 = (w1 + w2) + (V1 + V2)
q2 + q1 = (w1 + w2) + (x1 + x2)i

+(y1 + y2)j + (z1 + z2)k

 (4)

The product of two quaternions is called quater-
nion product. It is different from dot and cross prod-
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ucts, and can be written as

q1q2 = (w1w2 + V1V̇2, w1V2 + w2V1 + V1 × V2)
(5a)

q1q2 =

(w1w2 + x1x2 + y1y2 + z1z2)
+(w1x2 + w2x1 + y1z2 − y2z1)i
+(w1y2 + w2y1 + x2z1 − x1z2)j
+(w1z2 + w2z1 + x1y2 − x2y1)k

 (5b)

Furthermore, we need to define other forms of
quaternion q = (w, x, y, z), which are the complex
conjugate q∗, the norm ‖q‖ and inverse of a quater-
nion q−1, and are written as follows

q∗ = (w,−x,−y,−z)
‖q‖ =

√
(w2 + x2 + y2 + z2)

q−1 = q∗

‖q‖2 =
√

(w2 + x2 + y2 + z2)

 (6)

If a quaternion q has length 1, we say that q is a unit
quaternion. The inverse of a unit quaternion is its
conjugate (q−1 = q∗).

3. A ROTATION OPERATOR TOOL FOR
ENCRYPTING DATA

We consider in this section on how quaternion
can be used to describe rotation of an object in 3-
dimensional space R3. A quaternion rotation matrix
is used as a tool to rotate a group of elements which
has been organized as 3×3 matrix array in 3-D space,
where the elements of the group appear in a stochas-
tic manner.

Consider two quaternions q = (w, x, y, z) and P =
(0, a, b, c), where a vector (a, b, c) in R3 corresponds
to a pure quaternion whose real part is zero. We
define the quaternion operator Prot to be a rotation
operator or a frame rotation in R3 then

Prot = q−1Pq (7)

where q−1 is inverse quaternion q. From equation (7)
and using equation (6), Prot can be written as

Prot =
(
0, (‖q‖2−2y2−2z2)a+2(xy−wz)b+2(xz+wy)c

‖q‖2 ,

2(xy+wz)a+(‖q‖2−2x2−2z2)b+2(yz−wx)c
‖q‖2 ,

2(xz−wy)a+2(yz+wx)b+(‖q‖2−2x2−2y2)c
‖q‖2

)
(8)

Suppose vector X = (a, b, c) is ordinary vector in
R3, and the rotation operator of the vector X can be
represented in term of the matrix and given by the
following formula

Xrot=
1

‖q‖2

‖q‖2 − 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz ‖q‖2 − 2z2 − 2x2 2yz − 2wz
2xz − 2wy 2yz + 2wz ‖q‖2 − 2x2 − 2y2

X

(9)

The matrix part of equation (9) is called a rotation
matrix of quaternion. The rotation matrix Γ(q) for

quaternion q is given by

Γ(q) =
1

‖q‖2

|q‖2 − 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz ‖q‖2 − 2z2 − 2x2 2yz − 2wz
2xz − 2wy 2yz + 2wz ‖q‖2 − 2x2 − 2y2


(10)

Consider the quaternion q = (w, xi, yj, zk), where
w is a scalar and i, j, k are the standard orthonormal
basis in R3, the scalars x, y, z are called the compo-
nents of the quaternion. Let q to be a unit quaternion
or norm, the rotation matrix of the quaternion q is

Γ(q) =

 1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz 1− 2z2 − 2x2 2yz − 2wz
2xz − 2wy 2yz + 2wz 1− 2x2 − 2y2


(11)

Equation (11) will be used as a key element for
our encryption technique, and will be considered as a
public key as well.

4. CONSTRUCTION OF QUATERNION-
BASED PUBLIC KEY

This section explains how the above proposed rota-
tion matrix can be used in designing an algorithm for
crypto system. Let the quaternion q = (w, x, y, z) be
a secret key or private key. The scalar part and com-
ponents of the quaternion are considered to be any
value with variable length as well. The quaternion
rotation matrix in Equ.(11) will be used as pubic key
for encryption system called Quaternion-based Pub-
lic Key (QPK). Because the secret key components
are of variable length, the QPK will be obscure and
will have peculiar features to provide secure ambience
for data transmissions.

Suppose that a voice signal A is to be transmitted
over a communication channel. It sampled, such as
a, b and c samples, and organized to frames of mes-
sages, as shown in Fig. 2(b). Each frame of the mes-
sage is formed as a matrix array M which is

M =

 a11 a12 a13

b11 b12 b13

c11 c12 c13

 (12)

The message M can be rotated using the rotation
matrix Γ(q)

M
′
= Γ(q)M (13)

In order to revert the data B again after rotation
process, the inverse rotation matrix Γ(q)−1 is imple-
mented and expressed as

M = Γ(q)−1M
′

(14)

The quaternion representation, henceforth, pro-
vides an intrinsic means for resilient encryption sys-
tem because the quaternion, as we mentioned above,
implies four integrated parameters (keys) indepen-
dently. These keys might be any function or any
random number with a variable size. If any key is
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implemented incorrectly than the system will fail to
disentangle its encrypted signal.

Suppose Ks is a private key which has an arbitrary
quadripartite element based on a quaternion q.

q = {w, x, y, z} (15)

As we mentioned above that w, x, y, and z are in-
dependent and variable parameters. In order to per-
form encryption of the data, we introduce a Quater-
nion Key Order (QKO) which is used as a factor that
is implemented in the rotation matrix Γ(q) in (11) to
produce multiple rotations. This method is used to
make the data components like a random pattern.
We can generate m = 3n quaternion keys, where n
is the order number. The initial order (for n=0) of
quaternion key is identical to the private key and rep-
resented as

Ks = q01 = (w01, x01, y01, z01) (16)

The rotation matrix of this key is identical to that
as given in (11). The scalar value w01 in (16) is any
integer number or sequence. For complexity concern
here in this paper we set wnm to zero for order n 6= 0.
However, it’s possible to choose any value to wnm for
order n 6= 0. Specifically, we set

wnm =
{

Any Value n = 0, m = 1, 2, 3
0 n = 0, m = 1, 2, 3 (17)

Fig. 1 shows the algorithm of constructing a rota-
tion matrix of order (i, j). As we mention above that
the secret key is an initial quaternion key and is ar-
bitrarily defined by a user, it is used to construct an
initial rotation matrix, as shown in Fig. 2. Each col-
umn in the initial rotation matrix is substituted with
x, y and z in the initial quaternion key, respectively,
to generate first order new sub-keys q11, q12 and q13,
respectively, as shown in Fig. 2(a). From the first
order keys, new rotation matrices can be generated.
The elements of the sub-keys (q11, q12 and q13) are
vectors and the scalars elements are set to zero. The
rotation process is equivalent to formula (11). If we
consider a unit quaternion then the sub-keys can be
expressed as

q11 = (w11, x11, y11, z11) (18)
= (0, w2 + x2 − y2 − z2, 2(xy + wz), 2(xz − wz))

q12 = (w12, x12, y12, z12) (19)
= (0, 2(xy − wz), w2 − x2 + y2 − z2, 2(yz + wx))

q13 = (w13, x13, y13, z13) (20)
= (0, 2(xy + wz), 2(yz − wx), w2 − x2 − y2 + z2)

Using the first order sub-keys, it’s possible
to generate a second order sub-keys such as
(q21, q22, q23, . . . , q29). Obviously, we can generate
myriad sub-keys and in any order such that QKO
is 3(q3i) or 4(q4i), where (i = 1, 2, 3, . . . , 33) and

 Function REn ;  (Encryption process using rotation      
               quaternion) 

var i, j, k, h, l, m, n: integer; 
Framek   (constructing input data); 
Rotation_Framek  (constructing output data); 
k   (frame number); 
n:= 3O [O=QKO is Quaternion Key Order (O > 0)]; 
q01:= {w, x, y, z} (Constructing initial quaternion) 
 (q01):= make RM(w, x, y, z: double); 

(Constructing initial rotation matrix) 
begin 

for i := 1 to O do 
begin 
    l := i - 1; 

for j:= 1 to 3l do 
begin 

for m:=1 to 3 do 
begin 
     h := 3( j - 1) + m; 

qih := (0,  (qlj)1m,  (qlj)2m, 
  (qlj)3m); 

 (qih) := make RM(qih); 
end; 

end; 
end; 
for k:= 1 to n do 
begin  

Framek := matrix[ak1, ak2, ak3 ; bk1, bk2, bk3 ; 
ck1, ck2, ck3] of data; 

Rotation_Framek :=  (qOk)*Framek; 
end; 

end; 

Fig.1: Quaternion encryption algorithm

(i = 1, 2, 3, . . . , 34), respectively. If n is the num-
ber of order then we can construct 3n(n = 0, 1, 2, . . . )
sub-keys. From above concept, creating innumerable
sub-keys for encryption data stream strengthens the
security of the system. A 3-group of sub-key is used
to construct quaternion rotation matrix for the pub-
lic key (QPK) of our encryption system. Fig. 2(b)
illustrates an example of how encryption can be pre-
formed using any signal such as voice or image. The
signal is sampled and grouped into frames as shown
in Fig.2 (b). Each group or data frame M forms a
matrix. By implementing equation (12) and equation
(13), the sequences of data frames are encrypted by
corresponding quaternion rotation matrices or (QPK)
which are constructed using sequences of sub-keys.
The decryption of the data is given in equation (14).

5. SIMULATION AND EFFICIENCY ANAL-
YSIS

In this section, simulation of the encryption tech-
nique is implemented and analyzed. A voice signal S,
as shown in Fig. 3, has been sampled at sampling rate
of 22 KHz and quantized with 16 bits. The message
is organized as frames with 3×3 sample array/frame.

Suppose that the signal S is divided into frames,
where S = {f1, f2, . . . , fn}. Each frame f has a
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Fig.2: (a) Construction of the rotation matrix. (b) An example of data framing sequences
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Fig.3: An example signal

set of 3 × 3 array. Suppose also that these ele-
ments are formed as 3-D vector space, as shown
in Fig. 4. We assume that the number of sam-
ples per frame is limited to 3 × 3, and let f1 =
{(r1, s1, t1), (r2, s2, t2), (r3, s3, t3)}, that is, the signal
S can be written as

S = {(r1, s1, t1), (r2, s2, t2), (r3, s3, t3), . . . , (rn, sn, tn)}
(21)

Then the frame f is represented by a triad of 3-
vector matrix alignment which is equivalent to the
signal data M in (12). In order to perform encryption
of the signal, we implement a different Quaternion
Key Order (QKO) for every frame in the rotation
matrix Γ(q) in (11). This method is used to make
the signal components look like a random pattern.

Let the initial quaternion key q be an arbitrary
value, for example q = (0, 20, 40, 30), and be an initial
quaternion key factor used to construct the rotation
matrix in order 1, 2, and 3 consecutively.

Fig. 5(a) shows the encrypted signal at initial
quaternion key (order = 3). The signal is extremely
deformed, however, this signal will be distorted expe-
ditiously when the quaternion order becomes large.

The decryption process is done using (14) and the
obtained signal has a perfect shape. Furthermore, the
signals obtained and illustrated in Fig. 3 have been
examined by taking variance of the signals’ power
spectrum P which is given by

V AR(P ) =
n∑

i=1

(Pi − E(P ))2

n
(22)

Fig. 6 shows the variance distribution of the sig-
nals. When the quaternion order increases, a good
performance is achieved in view of security matter
and the signal will be strenuous to attack.

Fig.4: Encryption processes with n = 3.

Fig.5: Encryption process of the Data S, n = 1.

Fig.6: The variance of the power spectrum



14 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION THEORY VOL.1, NO.1 MAY 2005

6. CONCLUSION

We have presented a new concept of quadripartite
public-key (QPK) cryptography based on a quater-
nion presentation. Analytical results which have
been obtained demonstrate the potential of the pro-
posed QPK scheme. According to the system model,
quaternion has four optional keys. Therefore, QPK
provides multiple and variable key lengths which are
essential factors in determining the highest degree of
security and to allowing users to maintain secure data
passage over an insecure channel from eavesdroppers’
attacks. Henceforth, we can construct ciphers that
are effectively impossible to break.
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