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Abstract. This article focuses on the effect of dispersion in

the field of tsunami modeling. Frequency dispersion in the

linear long-wave limit is first briefly discussed from a the-

oretical point of view. A single parameter, denoted as “dis-

persion time”, for the integrated effect of frequency dis-

persion is identified. This parameter depends on the wave-

length, the water depth during propagation, and the propa-

gation distance or time. Also the role of long-time asymp-

totes is discussed in this context. The wave generation by

the two main tsunami sources, namely earthquakes and land-

slides, are briefly discussed with formulas for the surface

response to the bottom sources. Dispersive effects are then

exemplified through a semi-idealized study of a moderate-

strength inverse thrust fault. Emphasis is put on the directiv-

ity, the role of the “dispersion time”, the significance of the

Boussinesq model employed (dispersive effect), and the ef-

fects of the transfer from bottom sources to initial surface el-

evation. Finally, the experience from a series of case studies,

including earthquake- and landslide-generated tsunamis, is

presented. The examples are taken from both historical (e.g.

the 2011 Japan tsunami and the 2004 Indian Ocean tsunami)

and potential tsunamis (e.g. the tsunami after the potential La

Palma volcanic flank collapse). Attention is mainly given to

the role of dispersion during propagation in the deep ocean

and the way the accumulation of this effect relates to the “dis-

persion time”. It turns out that this parameter is useful as a

first indication as to when frequency dispersion is important,

even though ambiguity with respect to the definition of the

wavelength may be a problem for complex cases. Tsunamis

from most landslides and moderate earthquakes tend to dis-

play dispersive behavior, at least in some directions. On the

other hand, for the mega events of the last decade disper-

sion during deep water propagation is mostly noticeable for

transoceanic propagation.

1 Introduction

Most tsunami modelers rely on the shallow-water equations

for predictions of propagation and run-up. Some groups, on

the other hand, insist on applying dispersive wave models,

sometimes even with enhanced nonlinear properties. These

models are in-house models or available as standard codes,

free or commercial. Some of these are fairly well suited for

implementation of tsunami applications. In the examples pre-

sented herein we employ an in-house model (Pedersen and

Løvholt, 2008; Løvholt et al., 2008, 2010) which is designed

for long-distance propagation of dispersive tsunamis. Us-

ing this model, we may take the Japan 2011 tsunami across

the Pacific Ocean on a standard desktop during some hours

of CPU time. The standard models, such as COULWAVE

(Lynett et al., 2002; Kim and Lynett, 2011) and FUNWAVE

(Kennedy et al., 2000; Shi et al., 2012) are based on more-

demanding numerical schemes and incorporate a number of

effects that are not relevant for oceanic propagation. Hence,

simulations of oceanic propagation on single CPUs using

these models may therefore be too time consuming. How-

ever, parallel features (e.g. Sitanggang and Lynett, 2005;

Pophet et al., 2011; Shi et al., 2012) of the models should

enable large-scale applications.

While the employment of dispersive codes for tsunami

computation certainly boosts the CPU times and memory

requirements, the significance of the extra physical fea-

tures such codes inherit are met with skepticism by many

tsunami modelers, at least for seismic tsunamis. On the other

hand, a proper description of the wave generation by land-

slide tsunamis, and subaerial landslides in particular, requires

primitive wave models, as demonstrated for the potential La

Palma tsunami (Gisler et al., 2006; Abadie et al., 2012) and

the 1998 Papua New Guinea tsunami (Grilli and Watts, 2005;
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Tappin et al., 2008). For such cases the waves are also dis-

persive in the far-field. Long-term propagation of dispersive

waves may be approximated by ray (optical) methods (Ward,

2001; Ward and Day, 2001). If the waves are moderately dis-

persive, Boussinesq models without the optical approxima-

tion are now capable of simulating the far-field tsunami prop-

agation over transoceanic distances (see e.g. Løvholt et al.,

2008; Zhou et al., 2011; Kirby et al., 2013).

The variation of landslide thickness, relative to the water

depth, may contribute to dispersion (Ward, 2001). However,

the hydrodynamic response from the uplift filters short-scale

variations due to landslide volume displacements (Geist,

1998b; Glimsdal et al., 2011; Kajiura, 1963; Løvholt et al.,

2012b; Pedersen, 2001). Generally, the leading-order wave is

reduced due to dispersion. In the far-field, however, the trail-

ing wave system is expected to eventually dominate (Løvholt

et al., 2008). Finally, frequency dispersion is of less impor-

tance for waves generated by large and sub-critical subma-

rine landslides with moderate acceleration and deceleration

where large wavelength components dominate (Harbitz et al.,

2006). In these cases the Froude number ≪ 1. (Froude num-

ber is the ratio between the landslide velocity and the local

wave speed.) This is true for e.g. the Storegga tsunami (Har-

bitz, 1992b; Bondevik et al., 2005).

Although frequency dispersion is often considered negligi-

ble for earthquake-induced tsunamis, it may become notice-

able and sometimes important. Løvholt et al. (2012b) showed

that the seabed displacement due to heterogeneous coseismic

slip gave rise to frequency dispersion, affecting the tsunami

run-up. The propagation of the 2004 Indian Ocean tsunami

gave noticeable dispersion in the Bengal Bay and Andaman

Sea (Ioualalen et al., 2007; Horrillo et al., 2006), becom-

ing more distinct at transoceanic distances (Glimsdal et al.,

2006). Similarly, frequency dispersion for the long-distance

propagation of the 2011 Tohoku tsunami is clear (Løvholt

et al., 2012b; Grilli et al., 2012). For smaller earthquakes in-

volving shorter-length scales, dispersion is expected to be

pronounced at shorter-wave propagation distances. This is

for instance demonstrated for the 2009 Samoa tsunami by

Zhou et al. (2012).

Frequency dispersion in combination with nonlinearity

may cause the formation of undular bores during shoaling.

Undular bores related to the 2004 Indian Ocean tsunami and

the 1998 Papua New Guinea tsunami are discussed by Glims-

dal et al. (2006) and Grue et al. (2008), and by Tappin et al.

(2008), respectively. Recent investigations of the shoaling

from potential ocean-wide tsunamis from La Palma also ad-

dress this problem (Løvholt et al., 2008; Zhou et al., 2011).

In this paper we draw on the experience from a series of

earthquake and landslide tsunamis to address the significance

of dispersion. To this end we need control on crucial param-

eters in the computations and availability of sufficient data.

Hence, the investigation is based primarily on cases where

the authors have first-hand knowledge and full access to com-

putational data. However, other studies from the literature are

also included when feasible. The main focus is on dispersive

effects during oceanic propagation in a linear context, even

though nonlinearity may be present also in the generation

and propagation for landslide tsunamis. Dispersion may also

be important for constructive interference due to geometry

and bore formation during shoaling. Generally, we do not ad-

dress these phenomena. The exception is a brief example on

the evolution of an undular bore, which occurs in one of the

case studies that is presented. We start with a basic treatise

on the effects of weak dispersion and identify a parameter

that describes its significance. After discussing earthquake

and landslide sources we demonstrate dispersion effects for

a semi-idealized tsunami. Then, we move on to a series of

case studies, including the mega tsunamis of the last decade,

with an eye on the significance of the dispersion.

2 Dispersion effects

We distinguish between the dispersive effect acting during

deep water propagation and the first part of the shoaling,

when the earthquake tsunamis are linear, and the dispersion

effects that may appear in shallow water, which are linked to

nonlinearity and produce undular bores. The first type, which

is the main concern in the present treatise, is described in

Sect. 2.1, while the latter is presented in Sect. 2.2, somewhat

more briefly.

2.1 Linear dispersion during propagation

Frequency dispersion is the spreading of energy in the direc-

tion of wave advance due to different wave celerity for wave

modes of different length. For plane linear gravity waves

propagating in an inviscid fluid of uniform depth, we have

solutions in the form of harmonic modes

η = Acos(kx−ωt), u= B(z)cos(kx−ωt),
v = C(z)sin(kx−ωt), (1)

where η, u and v are the surface elevation, the horizontal

velocity component and the vertical velocity component, re-

spectively. The wave number, k, is 2π divided by the wave-

length, λ, and ω is the frequency. For Eq. (1) to be a solution

of the governing equations we must require that the wave

number, k, and the frequency, ω, fulfill the dispersion rela-

tion

c2 = ω2

k2
= g

k
tanh(kh), (2)

where c is the phase speed, g is the constant of gravity and h

is the equilibrium depth. Details on the derivation of Eq. (2)

are found in many textbooks, such as Mei (1989). If com-

pressibility is taken into account there exist other modes in

addition to the pure gravity mode Eq. (2), which are gener-

ated by submarine earthquakes (see, for instance, Stiassnie,

2010, and references therein).
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For long waves the dispersion relation may be expanded in

terms of kh,

c2 = c2
0

(

1 − 1

3
(kh)2 + 2

15
(kh)4 +O(kh)6

)

, (3)

where c0 =
√
gh. Long-wave theories may be classified ac-

cording to how much of the contents within the outer paren-

theses they reproduce. Shallow-water theory only yields the

unitary constant, Korteweg–de Vries and standard Boussi-

nesq equations inherit the first two terms, while optimized

Boussinesq equations (such as Nwogu, 1993) also approxi-

mate the O(kh)4 term. Also the model used herein may take

the O(kh)4 into account.

If we ignore the finite time duration of a submarine earth-

quake, together with compression waves in the water, the

tsunami will evolve from an initial elevation, η0, of the ocean

surface, due to the seabed displacement. In a plane model this

will give rise to two wave systems, which propagate in the

positive and negative x direction, respectively. For the sys-

tem moving toward increasing x values, Eq. (2) implies the

solution

η(x, t)= 1

2π

∞
∫

−∞

η̂0(k)e
ı(kx−ω(k)t)dk, (4)

where η̂0 is the Fourier transform of η0. Again we refer to

standard textbooks, such as Mei (1989) or Whitham (1974).

Near the wave front the long parts of the spectrum dominates

and ω in Eq. (4) may be replaced by the first two terms ω ∼
c0k(1 − 1

6
(kh)2).

The effect of dispersion will depend on the wavelengths,

the depth and the time available for its evolution. Long-

term evolution may also depend qualitatively on certain other

properties of the initial condition, such as the net volume of

displacement (see below). To find a simple relation we regard

a group of initial conditions, which are of the same shape but

have different lengths,

η0(x)= F
(x

λ

)

,

according to the value of the parameter λ. This gives η̂0(k)=
λF̂ (s), where F̂ is the Fourier transform of the function F ,

and s = kλ. Using this, focusing on the wave propagating in

the positive x direction, and invoking the two-term expansion

for ω in Eq. (4), we obtain

η =G(ξ,τ )= 1

2π

∞
∫

0

F̂ (s)e
ı
(

ξs+ 1
36 τs

3
)

ds; (5)

ds = λdk, where the normalized variables,

ξ = x− c0t

λ
, τ = 6c0h

2t

λ3
, (6)

h
λ

L =

√

ght

Fig. 1. Definition sketch of the evolution of an initial elevation from

an earthquake.

are a translated spatial variable and a temporal variable

for evolution of dispersion effects, respectively. Hence, we

may regard τ as a “dispersion time”. Below, we therefore

use the term dispersion time when referring to τ . Shallow-

water theory corresponds to neglecting the second term in

the expansion for ω in which case the solution immediately

becomes η = 1
2
F(ξ).

For large earthquakes, for instance, the behavior for finite

and small τ is the most interesting (see Sect. 4). Dispersion

then modifies the initial wave shape, while λ still defines

the length of the wave front. In such cases we may explain

the significance of τ as follows. First, most of the energy in

the spectrum is distributed on k values ranging from zero to

2π/λ, say. In time t the corresponding components will be

displaced by an amount1ct , where1c = c(0)−c(2π/λ)≈
6c0h

2/λ2. Then, this displacement must be measured against

the length of the wave, λ. We then end with the dispersion

time, τ , in different forms

τ =1c · t · 1

λ
≈ 6c0h

2

λ2
· t · 1

λ
= 6h2L

λ3
= 6ht

gT 3
, (7)

where L= c0t and T = λ/c0 are the propagation distance

and the overall period, respectively (see Fig. 1). Naturally, the

effect of dispersion accumulates in time and thus increases

with t and L. The variation is stronger with respect to h.

However, the sensitivity is strongest with respect to the ex-

tension of the source, λ.

For large times (τ → ∞) an asymptotic approximation

for the wave front is found in textbooks (for instance, Mei,

1989). In the normalized coordinates this becomes

η ∼ F̂ (0)

2(12τ)
1
3

Ai

(

ξ

(12τ)
1
3

)

, (8)

where Ai is the Airy function. It is noteworthy that the ini-

tial condition only enters Eq. (8) through F̂ (0), i.e. the ini-

tial volume per width of the disturbance divided by λ. At

some distance behind the front Eq. (8) may be matched to the

stationary phase approximation to yield a complete asymp-

totic expression for the evolution of plane waves at constant

depth. The trailing waves attenuate proportional to t−
1
2 and

the leading crest will eventually be dominant. From Eq. (8)
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we observe that the length of the leading crests increases with

time. As a consequence the dispersive effects on this part of

the wave system diminish, which is consistent with the fact

that the relative attenuation rate of the wave height goes to

zero. Therefore, dispersion may affect the wave front most

strongly in the early parts of the propagation, while it later

becomes relatively more significant in the trailing system of

waves. It is thus stressed that while τ represents its accumu-

lated effect, the significance of dispersion does by no means

relate linearly to τ for larger dispersion times.

Another consequence of the stretching of the wave front

is that nonlinearity becomes comparable with dispersion

(Ursell’s paradox, see Ursell, 1953). However, given the lim-

ited sizes of the oceans, the evolution of both dispersion and

nonlinearity is too slow to reach this stage. Extra attenuation

will reduce the significance of nonlinearity even further in

the three-dimensional case (and remove Ursell’s paradox).

If the net displaced volume is zero, then Eq. (8) no longer

applies, but the leading crest height decays in proportion to

t−
2
3 and its shape is defined by the derivative of the Airy

function. In this case the trailing waves will eventually be-

come dominant. Subduction earthquakes with dip angles be-

tween 0◦ and 90◦ will yield net elevation of the seafloor,

implying that Eq. (8) is correct (see discussion in Kervella

et al., 2007). Submarine landslides and slumps, on the other

hand, are volume neutral, while subaerial landslides obvi-

ously yield a net positive volume. For partially subearial

slides the net volume may be small in comparison to the total

displaced volumes, and the waves may display an interme-

diate asymptotic attenuation, even for transoceanic propaga-

tion (see Løvholt et al., 2008). With two horizontal dimen-

sions there is an additional attenuation due to geometrical

spreading of the wave energy, introducing an extra attenua-

tion factor of t−
1
2 for propagation distances much larger than

the source extensions, and asymptotic analysis displays more

diversity (see Mei, 1989).

In his profound study of tsunami generation and propa-

gation, Kajiura (1963) reported many important derivations

and observations. Among these the Fourier transforms given

above are implicit, but another parameter was used for the

significance of dispersion, namely

P =
(

36

τ

)
1
3

.

Furthermore, it was suggested that dispersion has to be taken

into account when P < 4, which corresponds to τ ∼ 0.5 (see

also Shuto, 1991, for a discussion). In view of the interpre-

tation of τ , as given above, this limit seems somewhat small

in terms of P , and large in terms of τ . Herein, we prefer to

employ the dispersion time τ in our subsequent discussion

on the influence of frequency dispersion, being a normalized

time scale for evolution of dispersive effects.

Our identification of τ is made for constant depth. For vari-

able depth we may exploit the invariance of the period, T , to

suggest the integrated measure

τ = 6

gT 3

t
∫

0

hdt̂ = 6

gT 3

L
∫

0

√

h

g
dx̂. (9)

In principle this expression requires slow variation of h

and integration along a ray path. Assuming an idealized ge-

ometry corresponding to a uniform slope stretching from the

source region to the shoreline, we may estimate the coastal

value of τ from Eq. (9):

τ =
4h2

0L

λ3
,

where h0 is the depth in the source region, λ is still the source

width and L is the distance from the source region to the

shore. We observe that the reduction of dispersion due to

shoaling alters the constant depth estimate in Eq. (7) only

moderately.

Real disturbances may involve several length scales. For

nonuniform sources we may have scales down to a few times

the depth, as discussed by Løvholt et al. (2012) and Pedersen

(2001). However, the leading wave will generally be dom-

inated by the longest initial length scale, which then corre-

sponds to λ. Still, the actual choice of λ may be ambiguous.

2.2 Combined nonlinearity and dispersion in shallow

water: the undular bores

In shoaling water the length-to-depth ratio of a tsunami in-

creases and the dispersive effects are diminished; meanwhile

the amplitude increases and nonlinear effects may become

important. However, due to the nonlinearity the front of the

tsunami steepens, which may lead to breaking or bring dis-

persive effects back into play. If the front width becomes

comparable to depth while the amplitude-to-depth ratio is

still less than 0.3, say, an undular bore evolves. In that case,

long waves undergo fission into a series of individual peaks,

of solitary shape, with height up to twice that of the wave

before fission. Such bores are known to develop from tides

in some rivers and estuaries, such as the Severn and the

Garonne/Gironde, and have been observed for tsunamis as

well. The phenomenon in relation to tsunamis was pointed

out already by Shuto (1985), while more recent analysis and

observations are given by, for instance, Madsen et al. (2008);

Glimsdal et al. (2006); Grue et al. (2008); Arcas and Segur

(2012) and references therein. The further dynamics of the

undular bore may be complex, including breaking of the in-

dividual crest, with crucial loss of energy and even identity as

separate waves as possible outcomes (Dorn et al., 1968; Ko-

rycansky and Lynett, 2005). It should be kept in mind that the

evolution of undular bores requires an interaction between

nonlinearity and dispersion and can thus not be reproduced

in either nonlinear shallow water (NLSW) models or linear

models.
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3 Employed physical and mathematical models

3.1 Wave generation by earthquakes

For seafloor deformation due to a coseismic single uniform

slip we may immediately recognize a total width, W , and a

length (along the fault), B, as length scales. According to

earthquake scaling laws (e.g. Blaser et al., 2010; Leonard,

2010) B is clearly larger than W. In addition, the deformation

may contain shorter features, depending on the depth of the

earthquake (e.g. Geist, 1998b; Mai and Beroza, 2002). Math-

ematical models for the deformation, such as Okada’s for-

mula (Okada, 1985), may even predict discontinuities. The

presence of the accretionary wedge at the plate boundaries,

etc., will replace the discontinuity by a transition of a finite

length, which is still small compared to W , and even to the

water depth. Splay faults or inhomogeneous fault distribu-

tions may introduce yet other short features in the source

(e.g. Geist, 1998b). However, the short scales are not directly

conveyed to the ocean surface. This may be due to finite du-

ration effects of the earthquake that are difficult to assess,

or to the hydrodynamic response to source distributions that

does not produce surface responses with extensions less than

a few depths, say (see, for instance, Kajiura, 1963; Peder-

sen, 2001; Løvholt et al., 2012b). Still, a common procedure

for initiation of tsunami simulations is to copy the coseis-

mic bottom deformation to the sea surface. This may lead

to an unphysically high content of short-wave components

in the tsunami spectrum. Even though these are sometimes

dissipated numerically, the best option is to remove them in

a sound and controlled manner. Representing the coseismic

deformation as a source distribution at the bottom, we may

compute the surface response. Herein, we employ two tech-

niques for this. (1) By treating the source as a composition

of narrow strips, normal to the fault line, we may employ

two-dimensional models for the hydrodynamic response. For

shallow earthquakes, with uniform slip, we may then employ

an analytic expression, while a numerical integral is used oth-

erwise (Pedersen, 2001; Løvholt et al., 2012). (2) We also

compute the full three-dimensional response from an uplift

distribution on the bottom. Assuming a rapid event, relative

to the time gravity waves will spend crossing the source re-

gion, the sea surface elevation after the event will depend

only on the final uplift distribution, D(x,y), where x and

y are the horizontal coordinates. For simplicity we employ

Cartesian coordinates; the extension to geographical coor-

dinates is straightforward. According to Kajiura (1963) the

initial surface elevation at constant depth, h, then becomes

η(x,y,0)= h−2

∞
∫

−∞

∞
∫

−∞

D(x′,y′)G

( |r − r
′|

h

)

dx′ dy′, (10)

where r is the position vector, and the normalized Green

function is given by

G(r)= 1

2π

∞
∫

0

mJ0(mr)

coshm
dm= 1

π

∞
∑

n=0

(−1)n(2n+ 1)
{

(2n+ 1)2 + r2
}

3
2

. (11)

The function G decays exponentially in its argument, and

the integration intervals in Eq. (10) may be replaced by inter-

vals of length 5 h centered at x′ = x and y′ = y. At |r −r
′| =

5 h we have r
h
G less than 10−3. For the case in Sect. 4.1

the application of such an integration interval leads to an

error of less than 3 × 10−4 m, while the maximum uplift is

roughly 1 m. A table forG, covering the finite integration in-

terval used in Eq. (10), is computed by means of the series in

Eq. (11), and G as a general function is then made available

through interpolation.

We solve the equations for tsunami propagation on a reg-

ular grid in either geographic or Cartesian coordinates. The

grid is staggered (Arakawa C type, see Pedersen and Løvholt,

2008; Mesinger and Arakawa, 1976) with surface nodes at

r i,j = (i1x,j1y), and the volume balance is observed for

cells centered at these locations and with extensions equal to

the grid increments. Denoting the average seabed elevation

inside a cell by Dij , the discrete counterpart to Eq. (10), at

location rnm, becomes

ηnm =
∑

i

∑

j

1x1y

h2
ij

σijDijG(|rnm− r ij |/hij ), (12)

where σij is a correction factor, explained below,1x and1y

are the grid increments and only the contributions from a lim-

ited range in i and j need to be taken into account due to the

exponential decay of G in the far-field. In principle Eq. (12)

is valid only for constant depth. However, if the depth varia-

tion over a distance of a few ocean depths is small in Eq. (12),

this is a good approximation in nonuniform depth as well.

The factor σi,j is chosen as to preserve volume, in the sense

that the contribution to the initial discrete surface elevation

from cell (i,j) equals Dij 1x1y. As long as the grid incre-

ments are well below the water depth in size, σij is very close

to unity. If the grid increments are large compared to the wa-

ter depth, on the other hand, then the volume correction pro-

cedure corresponds to copying the bottom deformation onto

the sea surface.

A similar procedure as described above may also be em-

ployed at each time step for an event of finite duration, such

as a landslide (see also Glimsdal et al., 2011).

The techniques for the hydrodynamic response and its

smoothing effects on the initial condition is demonstrated in

the first example, Sect. 4.1. A consequence of the smooth-

ing effect is that sources at the bottom generate waves within

the realm of Boussinesq equations. Naturally, waves gener-

ated in shallow water may still end outside the long-wave

regime if they propagate into the deep ocean. Sources at the

ocean surface, on the other hand, like impacting asteroids,

rock slides plunging into water, and calving icebergs, may

produce waves which are short compared to the depth.

www.nat-hazards-earth-syst-sci.net/13/1507/2013/ Nat. Hazards Earth Syst. Sci., 13, 1507–1526, 2013
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Shorter components in the spectrum (wavelengths down to

a few depths, but still within the realm of Boussinesq equa-

tions) will propagate comparatively slower and influence the

rear parts of the generated wave train. Hence, the evolution of

the leading parts will mainly be governed by the long scales,

namelyW or B, depending on the direction of wave advance.

However, in a shallow-water solution shorter features will,

artificially, also stay in the former part of the wave system, at

least with a fine grid that yields weak numerical dispersion.

Hence, as an indicator for the need of a dispersive model,

τ should be based on the shortest significant length of the

source. For the events presented below we have not included

any particular information of shorter features, but generally

compute the bottom deformation from Okada’s formula ap-

plied to a single or a few faults. Then, for propagation normal

to the fault line, which generally means toward land or off to

sea, we identify the parameter λ in Eq. (7) as the total width,

W , of the slip region. On the other hand, for propagation in

the direction parallel to the fault line the length, B, is the ap-

propriate one. Since B generally is much larger than W we

must expect the waves in the direction normal to the fault to

display dispersion most strongly.

3.2 Wave generation by landslides

Considering a landslide simply as a uniform nondeformable

block moving at a sub-critical speed (ignoring dispersion) re-

veals that the length of the landslide and duration of motion

influence both the dominant wavelength and the surface ele-

vation, while the thickness and the acceleration or decelera-

tion of the landslide as well as the wave speed (which again

is determined by the water depth) determine the surface ele-

vation.

For numerical landslide tsunami models the simplest

source model is a sink/source distribution with prescribed

shape and kinematics ignoring the two-way landslide/water

interaction. Presently, the tsunamigenic landslide models

themselves apply simple rheological functions and ignore the

multilayer structure of a submarine landslide with a dense

debris flow at the bottom and a dilute turbidity current (sus-

pension flow) above. Further, rock or mud type mass gravity

flows will entrain water, and produce turbulence and large

vortices that cannot be conveyed properly to a depth inte-

grated model, while viscous drag may have a crucial influ-

ence on the shape and dynamics of the mudflow.

Rock slides plunging into fjords, lakes, or reservoirs

evolve as super-critical and critical during impact, transi-

tioning to sub-critical during the later phase of motion. The

build-up of the wave persists as long as the Froude num-

ber is around unity. For rock slides, nonlinear effects may

be important in the wave generation area, but often only in

a restricted region and during a short period of time. Their

tsunamigenic power is governed by the frontal area of the

rock slide, the velocity of the rock slide when plunging into

the water body, the permeability of the rock slide, and the

bathymetry (see e.g. Harbitz et al., 2012b, and the references

therein).

Quantification of the landslide parameters is complicated

by the transformation of the landslide from solid to fluid and

(in many cases) to a turbidity current. Another complicating

factor is that many submarine landslides develop retrogres-

sively, i.e. they are released progressively upwards from the

slide toe (e.g. Kvalstad et al., 2005).

For the reasons above, we do not attempt to link λ directly

to the landslide parameters. Instead we extract it from the

freshly generated wave as twice the distance, along a tran-

sect, between the first crest and the point at the front where

the elevation is 10 % of the height of this crest.

After the fashion described previously (Sect. 3.1) source

features shorter than a few water depths may be filtered out

also for landslides (Glimsdal et al., 2011).

3.3 The tsunami propagation model

The main model employed herein is an optimized version of

the standard Boussinesq equations. The main features are

– Enhanced linear dispersion.

– Simpler and more efficient than FUN-

WAVE/COULWAVE for tsunami propagation purposes.

– Geographic coordinates or Cartesian coordinates.

– Rotational effects (Coriolis) included.

Denoting longitude and latitude by ψ and φ, respectively,

we introduce dimensionless variables according to

(ψ,φ)=2(x,y), t = R2√
gh0

(û, v̂)= ǫ
√
gh0(u,v), ĥ= h0h η̂ = ǫh0η,

(13)

where the hats indicate variables with dimension, g is the

constant of gravity, h0 is a characteristic depth,R is the Equa-

torial radius of the Earth, and ǫ is an amplitude factor. The

characteristic horizontal length (wavelength) now becomes

Lc = R2, which may determine 2, and the “long-wave pa-

rameter” is accordingly recognized as

µ2 =
h2

0

R222
. (14)

For the physical constants we substitute

g = 9.81 m s−2, R = 6 378 135 m. (15)

It is emphasized that these quantities are not constant, but

their variation is neglected along with other small effects of

rotation and the curvature of the Earth. We emphasize that the

scaling given above allows us to state the Boussinesq equa-

tions in a transparent, custom manner. However, outside the

present subsection we specify quantities in terms of physical

units.
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In dimensionless variables the continuity equation reads

cφ
∂η

∂t
= − ∂

∂x
{(h+ ǫη)u} − ∂

∂y
{cφ(h+ ǫη)v} − cφ

∂h

∂t
,

where cφ = cosφ is a map factor and the rightmost term, rep-

resenting temporal bottom changes, is the source distribution

from, for instance, a submarine landslide. By means of a sur-

face response similar to the one described in Sect. 3.1 the

field ∂h
∂t

may be replaced by a slightly modified distribution.

The momentum equations are written as

∂u
∂t

+ ǫ
(

u
cφ

∂u
∂x

+ v ∂u
∂y

)

= − 1
cφ

∂η
∂x

+ f v−γµ2h2 1
cφ

∂Dη
∂x

+µ2

2
h

c2
φ

∂
∂x

[

∂
∂x

(

h ∂u
∂t

)

+ ∂
∂y

(

cφh
∂v
∂t

)

]

−µ2( 1
6

+ γ )h2

c2
φ

∂
∂x

[

∂
∂x

(

∂u
∂t

)

+ ∂
∂y

(

cφ
∂v
∂t

)

]

,

∂v
∂t

+ ǫ
(

u
cφ

∂v
∂x

+ v ∂v
∂y

)

= − ∂η
∂y

− f u−γµ2h2 ∂Dη
∂y

+µ2

2
h ∂
∂y

[

1
c φ

∂
∂x

(

h ∂u
∂t

)

+ 1
c φ

∂
∂y

(

cφh
∂v
∂t

)

]

−µ2( 1
6

+ γ )h2 ∂
∂y

[

1
c φ

∂
∂x

(

∂u
∂t

)

+ 1
c φ

∂
∂y

(

cφ
∂v
∂t

)

]

,

where f is the Coriolis parameter and some smaller con-

tributions to the convective acceleration terms are omitted.

Equations valid for Cartesian grid are obtained simply by

putting the map factor, cφ , to unity. The dispersion correc-

tion term,Dη, is the Laplacian of η and was first proposed by

Madsen and Sørensen (1992) with the coefficient γ = − 1
15

.

We instead choose γ = 0.057, which yields dispersion prop-

erties identical to those of Nwogu (1993). In Sect. 4.1, we

will refer to this version of the model as “h.o.”, because it is

of higher-order with respect to dispersion properties, while

the version with γ = 0 is named “disp”. The latter choice re-

produces the so-called standard Boussinesq equations (Pere-

grine, 1967). Dispersion or nonlinear terms may be switched

off independently. Further details on the model are given by

Pedersen and Løvholt (2008); Løvholt et al. (2008, 2010).

We emphasize that the model is fairly efficient. As an exam-

ple we may state that the trans-Atlantic propagation of the

La Palma tsunami on a 2′ grid (see Sect. 5.4) requires around

5 h of CPU time (on a single CPU) in a cheap off-the-shelf

desktop.

4 Seismic case studies

4.1 Portugal (1969)

For some particular source configurations non-

planar extensions of Eq. (8) are available

(see Mei, 1989; Clarisse et al., 1995). However, it is

more instructive to study sources which are more realistic

representations of submarine earthquakes. To this end we

design a semi-idealized case inspired by a true event in

the Atlantic Ocean south of the Iberian Peninsula in 1969.

This is an active seismic region, with the Lisbon earthquake

of 1755 as the most prominent historical case. In 1969 an

inverse thrust fault of magnitude Mw = 7.9 in the Horseshoe

Abyssal Plain south of Portugal generated a moderate

tsunami that was recorded at tide gauges in Portugal, Spain,

and Morocco (Gjevik et al., 1997). The magnitude of the

elevations from the model simulations (based on the seismic

data) were consistent with the observed ones, even though

there were unresolved issues concerning a single time series

at Casablanca.

We assume a dip angle of 50◦, an ocean depth h= 5 km,

a source width W = 50 km, a length B = 100 km and a uni-

form slip of 2 m. Combined with a shear modulus of 30 GPa,

this yields a moment magnitude Mw = 7.6, which is some-

what lower than the one given above. Still, the case should

be characteristic of moderately strong earthquakes with large

dip angles. In Fig. 2 we have depicted the seabed displace-

ment, as obtained from Okada’s formula, and the surface re-

sponse modified through Eq. (12), and compared the latter to

the analytic expression by Pedersen (2001). The removal of

the discontinuity and the shortest features is apparent, while

the analytic expression and Eq. (12) are very similar in a

transect through the center of the source (y = 0). The de-

viations are somewhat larger at outskirts of the fault line

(results not shown). An obvious consequence of the modi-

fied sea surface elevation is a reduction of the shorter-wave

components in the spectrum. In a dispersive model this will

mainly affect trailing parts of the evolving wave patterns. On

the other hand, in a shallow-water model the steep front, in-

troduced by copying the seabed deformation directly to the

surface, should in principle be retained. However, in numer-

ical shallow-water models on coarse grids the numerical dis-

persion will remove the steep fronts and instead yield trailing

noise.

In the present context we focus on properties for deep

ocean propagation and employ an infinite ocean of depth

5 km. Simulations have been performed for spatial resolu-

tions 1x =1y = 3.6 km, 2 km, 1 km and 0.5 km. It is noted

that the coarsest of these correspond to a 2′ resolution in ge-

ographical coordinates. In the present subsection, however,

the resolution 1x = 0.5 km is used unless otherwise speci-

fied. The time step is determined by keeping the CFL num-

ber,
√

gh1t/1x, equal to, or slightly smaller than, unity for

dispersive simulations, while the CFL number is kept below

0.63 for shallow-water computations, since omission of the

dispersive effects yields a stricter stability criterion (e.g. Ped-

ersen and Løvholt, 2008). The slight variations in the CFL

numbers with spatial resolution is due to the need to syn-

chronize the simulations at intervals for comparison. After

1 hour of propagation the dispersive solutions for the three

finest grids display relative deviations of order 0.5 × 10−3 in

the amplitudes of the leading crest, for propagation in the

direction normal to the fault line. For the coarsest grid the

error in this amplitude is increased to 5 × 10−3, which is

still rather small. In the rear part of the wave trains, where
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Fig. 2. Upper panel: seabed displacement. Mid-panel: the sur-

face response as obtained by Eq. (12). Lower panel: comparison in

the transect y = 0 of seabed displacement (h), surface profile from

Eq. (12) (3-D) and surface profile from asymptotic formula of Ped-

ersen (2001) (2-D).

the wavelengths are shorter, the grid dependence is much

stronger. Examples of grid dependence in surface profiles

are shown in Fig. 3. It is also remarked that the numeri-

cal dispersion is anisotropic and that the errors for propa-

gation in directions oblique to the grid axis may be larger.

Fig. 3. The surface elevation along the y = 0 transect after 30 min.

Results for different resolutions (given in km) for the optimized

Boussinesq model (h.o.) and initial conditions obtained with the

Green function of Kajiura. Waves are propagating to the right.

For the leading part of the wave train the shallow-water solu-

tions converge more slowly than the dispersive ones and are

strongly affected by artificial dispersion for the coarser grids

(results not shown).

In Fig. 4 we compare the surface elevation in the tran-

sect y = 0, at t = 30 min, for a dispersive simulation, start-

ing with a copy of the seabed displacement on the surface to

one where Eq. (12) has been applied. While the first crest is

very similar for the two dispersive simulations, we clearly

observe effects of the over-representation of shorter-wave

components in the former solution in the trailing crests. In a

corresponding study Dutykh et al. (2006) found larger differ-

ences for the leading crest, since they made the comparison

at a much earlier time. The dispersion time, τ , in the fig-

ure is close to 0.5, the limit where dispersion effects should

be taken into account according to Kajiura (1963). However,

comparison with the hydrostatic linear shallow water (LSW)

solution reveals that both the lengths and the heights of the

leading crest and trough have been strongly altered by disper-

sion. Moreover, a significant trailing wave system has already

developed in the dispersive solution, even for the smoother

initial condition. This indicates that a criterion τ < 0.5 for

applicability of shallow-water theory is too weak. For in-

stance, the error of the LSW model may strongly affect an in-

version of tsunami time series for the construction of a com-

posite source. In their study of the 2009 Samoa event Zhou

et al. (2012) employ a source which is composite, but still in-

herits scales consistent with W = 50 km. According to their

Fig. 3, which shows results for τ up to 0.3, they experience

a dispersive effect on the wave front comparable to the one

in our Fig. 4. In Fig. 3 we display the grid dependence for

the same time as is used in Fig. 4. We observe that the evolu-

tion of the first crests of the wave train is very similar for all

displayed resolutions, even the coarsest with 1x = 3.6 km.
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Fig. 4. The surface elevation along the y = 0 transect after 30 min.

Dispersive results with initial conditions obtained with and without

application of the Green function of Kajiura are marked h.o. and

h.o.∗, respectively. Also the LSW solution is included for compari-

son. Waves are propagating to the right.

In Fig. 5 the waves propagating in the positive x direc-

tion are shown for t ≈ 7.5 min and t ≈ 1 h. These times cor-

respond to τ = 0.12 and τ = 0.96, respectively, where λ is

identified with W = 50 km. Already at the earliest time the

effect of dispersion is noticeable, while it has transformed

the wave train crucially at t ≈ 1 h, when the only quantity

properly reproduced by the LSW equations is the arrival

time. The standard and higher order dispersion representa-

tion only makes an apparent difference late in the emerging

wave trains. We also observe that the second crest is slightly

higher than the leading one in the dispersive solutions. This

is a three-dimensional effect that is neither observed for

the train propagating in the negative x direction nor in the

plane simulations (below). However, nonuniformity of the

source, constructive interference of reflections, and/or forma-

tion of undular bores are presumably more likely reasons for

the larger inundation of secondary waves observed in true

tsunami cases.

The behavior for waves propagating in the y direction is

quite different. Transect results after one hour are shown in

Fig. 6 and we observe only moderate effects of dispersion.

In this case the “dispersion time”, τ , is based on λ= B =
100 km, which gives a value τ = 0.12 corresponding to that

for the upper panel in Fig. 5. The dispersion effects in the

two graphs also appear to be of the same magnitude.

We conclude this introductory example by reporting some

plane simulations, with the transect profile in Fig. 2 as ini-

tial condition. For the wave system propagating in the pos-

itive x direction we observe that the leading crest is fairly

well described by the asymptotic formula (8) after one hour

of propagation, while the match is nearly perfect after two

hours (Fig. 7). This implies that the original source length

has become irrelevant at this stage.

Fig. 5. The surface elevation along the y = 0 transect, for the wave

system propagating in the positive x direction. Results obtained

from models with standard and enhanced dispersion properties are

marked by “disp” and “h.o”, respectively. Waves are propagating to

the right.

Fig. 6. The surface elevation along the x = 0 transect. Waves are

propagating to the right.
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Fig. 7. The surface elevation for plane simulations. Comparison of

dispersive simulation (h.o.) and the asymptotic formula (8) for the

wave front. The phase of the latter is adjusted to yield coinciding

leading peaks at t = 37.5 min. Waves are propagating to the right.

4.2 Indian Ocean tsunami (2004)

Here we investigate the effect of dispersion for the 26 De-

cember 2004 Indian Ocean tsunami. The rupture started

around latitude 3◦ N and continued about 1200 km northward

along the Sunda Trench. The width of the source was about

200 km and the maximum slip was about 20 m. The earth-

quake had a magnitude ofMw = 9.0 and a dip angle of about

15◦ (e.g. Bilham, 2005; Stein and Okal, 2005).

Glimsdal et al. (2006) found an insignificant effect of dis-

persion close to the earthquake. However, for longer prop-

agation distances, the effect of dispersion was found to be

more apparent. In Fig. 8 the linear hydrostatic and linear dis-

persive solutions are shown along a transect towards Africa

at a distance of 4300 km from the source area. With an aver-

age sea depth of 4000 m,W = 200 km and B = 1200 km, the

dispersive parameter is τ ∼ 0.05. The solutions differ mostly

in shape/steepness of the leading wave. The grid resolution

in the computations was 2′.
In many videos and photos taken of the tsunami, short fea-

tures are evident (e.g. Arcas and Segur, 2012). A possible
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Fig. 8. The linear hydrostatic and linear dispersive solutions of the

Indian Ocean tsunami towards Africa extracted along a transect

with length 1000 km (surface elevations). Waves are propagating

to the left.

explanation is that the front of the tsunami in certain places

evolved into an undular bore. Glimsdal et al. (2006) and Grue

et al. (2008) showed through simulations towards Malaysia

(Malacca Strait) that undular bores may be formed.

4.3 Japan (2011)

The 11 March 2011 Tohoku tsunami devastated the east coast

of Japan and caused almost 20 000 fatalities. The earthquake

with a magnitude Mw = 9.0 occurred 130 km east of the

Sendai coast, Japan. The source extensions wereB = 400 km

and W = 150 km. The average slip was reported to be 15–

20 m with a maximum value exceeding 60 m (e.g. Lay et al.,

2011; Ozawa et al., 2011). To model the tsunami we apply

an earthquake source with a nonuniform slip distribution, a

maximum slip of 20 m, and a dip angle of 25◦ (see Løvholt

et al., 2012b).

The modeled surface elevations are compared to the reg-

istered data from DART buoys (http://www.ndbc.noaa.gov-/

dart.shtml). In Fig. 9 the maximum surface elevation for the

Pacific Ocean is shown together with the locations of selected

DART buoys. In the same figure the mariograms for both

the numerical model and the measurements at DART buoys

21401 (about 1000 km northeast of the source area), 51407

(Hawaii), and 43413 (west of Guatemala) are found. The

comparison to the DART buoy data shows that the tsunami

was clearly affected by dispersion at buoy 43413, but also

at 51407. At DART buoy 43413 the height of the leading

wave for the dispersive solution is close to the measured one,

while the linear hydrostatic solution overestimates the mea-

sured height by as much as ∼ 30 %. At this buoy we found

that τ ∼ 0.45, with an average sea depth from the source to

the buoy of 4.7 km. At buoy 51407 the effect of dispersion

is still clear (but slightly reduced), while there are no visible

effects of dispersion at 21401. Note that the results from the

DART buoys are given a shift of up to 200 s, to match the

arrival of the leading peak in the simulations and make the
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Fig. 9. The Tohoku tsunami 2011. In the upper panel the maximum

surface elevation for the Pacific Ocean is shown. In the lower panels

the mariograms (for three of the DART buoys) for the computed

surface elevations for the linear shallow water (“LSW”) and linear

dispersive (“disp”) solutions are compared to the measured surface

elevations (“DART”).

comparison easier. The measurements at DART buoy 21418

is coarse and influenced by noise; the maximum value of the

leading peak is therefore somewhat uncertain. This is the rea-

son why the results from buoy 21401 are plotted instead of

buoy 21418 located in front of the source area. The compar-

ison between the numerical solutions and the measured data

from eight DART buoys are elaborated in upon Table 1. The

overall picture is not entirely clear and may be influenced

by directivity and the nonuniform source distribution. Still,

there is a tendency for increasing importance of dispersion

for long-distance propagation. The resolution of the com-

putational grid was 4′. Grid refinement tests at buoy 21413

comparing the results from a 4′ grid with those from 2′ and

1′ grids, covering a smaller part of the Pacific Ocean, show a

difference in the height of the leading wave of less than 1 %

for LSW and 0.5 % for the linear dispersive solution.

4.4 Potential earthquake at Lesser Antilles

NE of Guadeloupe in the Caribbean, we have modeled a po-

tential earthquake with magnitudeMw = 8.0 (for details, see

e.g. Løvholt et al., 2010; Harbitz et al., 2012a). The dip angle

is 80◦. The grid resolution was 0.5′. The earthquake source

lies along a SSE–NNW axis with a depression facing to the

ENE, as shown in Fig. 10. The effect of dispersion is inves-

tigated through mariograms at two locations. The first loca-

tion is 350 km south of the earthquake (outside Bridgetown,

Barbados) and the second location is about 350 km to the

east. In the first case the direction of propagation is close

to the azimuth direction of the source, and we therefore set

λ= B = 150 km, and the average depth to 3 km. In the sec-

ond case we look at propagation mainly along the dip di-

rection, and set λ=W = 50 km, and the average depth to

5 km. The mariograms show that the effect of dispersion is

almost absent for the laterally propagating leading waves for

location 1 (τ = 0.006), while the effects of dispersion at lo-

cation 2 is crucial (τ = 0.42). Hence, source orientation and

location govern influence of frequency dispersion.

4.5 Potential earthquake at the Hellenic Arc

As an example from the Mediterranean, we show the tsunami

for a potential earthquake SW of Crete (for details, see

e.g. Løvholt et al., 2012a). The earthquake has a magni-

tude Mw = 7.8 and a dip angle of 15◦. The extensions of the

source correspond to B = 100 km and W = 44 km. As in the

example from the Lesser Antilles above, we evaluate the ef-

fect of dispersion along transects after 10 min. The dispersive

parameter is calculated when the leading waves have propa-

gated a distance of 180 (h= 1.7 km) and 250 km (h= 2 km)

along the transects ahead (to the south) and laterally, re-

spectively. In Fig. 11 solutions along these two transects are

shown. Laterally the effect is very limited with τ = 0.006,

while ahead of the fault the effect of dispersion is clearer, but

still small, with τ = 0.036. The grid resolution was 0.5′.
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Table 1. The values of τ for eight different DART buoys, together with the simulated (linear hydrostatic – “LSW”; and linear dispersive –

“disp”) and measured (“DART”) height of the leading wave. L is the propagation distance, t is the propagation time, while h is the average

sea depth (calculated by using t and the LSW propagation speed,

√

gh). (DART 21418 – uncertain value due to coarse resolution of the data.)

DART # LSW [m] disp [m] DART [m] L [km] t [h] h [km] τ

21401 0.72 0.72 0.73 1000 1.1 6.3 0.07

21413 0.64 0.68 0.78 1200 1.3 5.8 0.07

21415 0.27 0.26 0.28 2700 3.1 5.9 0.17

21418 1.78 1.80 1.86∗ 500 0.5 6.3 0.04

21419 0.51 0.51 0.56 1300 1.3 6.8 0.11

51407 0.25 0.21 0.17 6000 7.5 5.0 0.27

51425 0.07 0.07 0.06 7000 8.1 5.7 0.40

43413 0.23 0.17 0.18 11500 14.7 4.7 0.45
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Fig. 10. The maximum surface elevations for the linear hydrostatic solution is shown to the left. The locations of the mariograms are indicated

with the numbers 1 and 2, with the corresponding results shown in the upper and lower right panels.

4.6 Dispersive effects on seismic tsunamis, worldwide

A global study of tsunami impact is presented in Løvholt

et al. (2012a). In Table 2 we present the dispersive param-

eter for a selection of the earthquake sources from this study

in order to demonstrate practical examples of the dispersion

number for forecasting. The parameter τ is estimated by sub-

stituting a propagation distance of L= 1000 km, an aver-

age depth and a source width into Eq. (7). Both the source

width and the depth are given in the table. Again we see that

the smaller earthquakes with narrow width are expected to

be much more affected by dispersion – see e.g. the earth-

quake along the Makran fault (Pakistan) with τ ∼ 0.9. The

mega-earthquakes, in particular, have much smaller τ and

are hence expected to be less affected by dispersion – see

e.g. theMw = 9.4 outside southern Chile with τ ∼ 0.01. The

intermediate cases need to be evaluated individually with re-

spect to dispersive effects.

5 Landslide-generated tsunamis

5.1 The Storegga submarine landslide

The Storegga Slide on the continental slope off Western Nor-

way around 8150 yr BP is one of the largest and best-studied

submarine landslides on Earth (Bugge et al., 1987, 1988;

Haflidason et al., 2004; Bryn et al., 2005; Kvalstad et al.,

2005). The landslide comprised a volume of about 2400 km3.

Today, the most common view is that the Storegga Slide was

a continuous retrogressive process, and deposits of the corre-

sponding giant tsunami are found in Norway, Faroe Islands,

Shetland and Scotland (Harbitz, 1992b; Bondevik et al.,
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Table 2. Values for the dispersive parameter τ for a selection of sources applied in Løvholt et al. (2012a). τ is measured at a distance of

1000 km away from the source. The earthquake source parameters: Mw – magnitude; B – length; W – width; and D – dip angle. h is the

average sea depth used for estimation of τ . Abbreviations: SA – Sunda Arc; BF – Burma Fault; MF – Makran Fault; BA – Banda Arc; NGT

– New Guinea Trench; PT – Philippine Trench; TT – Tonga Trench; SST – South Solomon Trench; NHT – New Hebrides Trench; PCT –

Peru–Chile Trench; PRT – Puerto Rico Trench; HA – Hellenic Arc.

Location Mw B [km] W [km] D [deg] h [km] τ

SA, Andaman Islands 8.50 362 100 15 5 0.150

SA, South Sumatra 9.10 527 200 15 5 0.019

BF, Myanmar - Bangladesh 8.90 655 125 10 3 0.028

MF, Pakistan coast 8.40 398 48 10 4 0.868

BA, Eastern Banda Sea 8.50 261 150 20 3 0.016

NGT, Eastern Irian Jaya 8.50 258 100 20 4 0.096

PT, South Mindanao 8.40 176 100 20 5 0.150

MT, Western Luzon 8.20 348 70 45 5 0.437

TT, Northern part 9.00 519 200 20 5 0.019

SST, Eastern Solomon Isl. 8.30 281 100 20 5 0.150

NHT, Southern Vanuatu 8.60 314 100 20 3 0.054

NHT, Northern Vanuatu 8.60 340 100 20 3 0.054

PCT, Southern Chile 9.40 853 200 20 4 0.012

PRT, North Hispaniola 8.00 200 55 80 5 0.902

HA, South of Crete 7.70 149 75 20 3 0.128
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Fig. 11. Effect of dispersion for an earthquake along the Hellenic

Arc. In the upper panel the surface elevations extracted along a side-

wise transect are shown. In the lower the transect is taken ahead of

the earthquake.

1997a,b, 2005; Dawson et al., 1988). Best agreement with

the observations is obtained with a maximum frontal velocity

of 25–30 m s−1, a run-out distance of the dense tsunamigenic

flow of 150 km, and a retrogressive release of the total vol-

ume lasting less than one hour, i.e. 15–20 s between the re-

leases of each individual landslide element (Bondevik et al.,

2005). The Storegga Slide tsunami is composed exclusively

by very long components relative to the water depth. More-

over, the propagation distances in the Nordic Seas are fairly

limited. As a result, the Storegga Slide tsunami illustrates

that dispersion is insignificant for waves generated by large

and sub-critical submarine landslides with moderate acceler-

ation and deceleration dominated by wave components much

longer than the water depth (Haugen et al., 2005). In terms

of the dispersive parameter we find τ ∼ 10−4 at a distance

of 200 km towards Norway. Even for a propagation distance

of 4000 km towards North America the value of τ is rela-

tively small, τ = 0.04. The numerical simulations (linear hy-

drostatic only) is performed on a grid with a resolution of

about 2 km.

5.2 The Hinlopen submarine landslide

For the pre-Last Glacial Maximum Hinlopen Slide at the

mouth of the Hinlopen cross-shelf trough on the northern

Svalbard margin, bathymetric effects as well as high speed

and huge thickness of the dislodged mass and the rafted

blocks probably implied that shorter-wave components in-

troducing dispersive and nonlinear effects were more pro-

nounced than for most other tsunamis generated by sub-

marine landslides (Vanneste et al., 2011). The headwall is

several hundred meters high (exceeding 1400 m). Despite
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Fig. 12. The tsunami after the Hinlopen submarine landslide. Panel A shows the maximum surface elevation of the generated tsunami. Values

above 40 m are colored red. The bathymetry is shown in (B), where the initial posistion of the landslide (yellow point) and the transect for

Fig. 13 (red line) are shown. The figure is modified from Vanneste et al. (2011).
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Fig. 13. Computations of the waves generated by the Hinlopen sub-

marine landslide along a transect towards Greenland. The front of

the waves has traveled 420 km from the landslide area over an aver-

age depth of about 2 km. Waves are propagating to the right (south-

west).

the relatively small slide scar area (about 5 % of the size

of the Storegga Slide area), an upper estimated volume of

about 1350 km3 (about 55 % of the Storegga Slide volume)

was excavated from the northern Svalbard continental margin

(Vanneste et al., 2011). Close to the slide area the simulations

of the tsunami show surface elevations over 130 m, whereas

the tsunami may have been several tens of meters along the

coasts of Svalbard and Greenland. The dispersive effects and

the radial spread reduce the maximum surface elevations as

the tsunami propagates out from the slide area. A simulation

along a transect towards Greenland is shown in Fig. 13. The

effect of dispersion is here clear with τ = 0.13.

5.3 Papua New Guinea (1998)

The 1998 Papua New Guinea (PNG) tsunami

gave run-up heights up to 15 m and affected a

20 km segment of the coast, killing 2200 people

(Dengler and Preuss, 2003; McSaveney et al., 2000). Farther

away the tsunami was not a significant event (Okal and

Synolakis, 2004).

Initially, the tsunami was believed to originate from an

earthquake. However, attempts to model the tsunami using

solely an earthquake source gave too-small amplitudes and

too-late arrival times (e.g. Geist, 1998a). It is broadly ac-

cepted that the damaging part of the tsunami was due to a

slump (Bardet et al., 2003; Tappin et al., 2003; Sweet and

Silver, 2003), while the earthquake was responsible for the

far-field tsunami and played an indirect role as the slump

triggering mechanism.

The dipole shape and the short-wave components of the

generated waves contribute to radial spreading (Okal and

Synolakis, 2004) and frequency dispersion (Lynett et al.,

2003), respectively, which reduce the surface elevation in the

far-field. From Synolakis et al. (2001) we found λ= 10 km,

according to Sect. 3.2, and the propagation towards land,

about 20 km away, gave τ ∼ 0.1 (moderate effect of disper-

sion). At a distance of 50 km offshore τ ∼ 5, which means

that the effect of dispersion was crucial. On the other hand,
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Fig. 14. The La Palma tsunami. Left panel: maximum wave elevation and position of buoys. Right panels: time series at two buoy locations.

it is noteworthy that Lynett et al. (2003) reported that even

though dispersion had a crucial effect on the incident wave,

the flooding was rather similar to the one obtained by a

NLSW model. It is not clear whether this is circumstantial

or a more general feature.

5.4 Potential landslide from La Palma

A potential massive volcanic flank collapse at La Palma Is-

land was first suggested by Ward (2001). Assuming a slide

volume of 500 km3, they predicted wave heights along the

east coast of North America in the range 10–25 m. How-

ever, this extreme scenario has remained controversial ever

since. Masson et al. (2002); Wynn and Masson (2003); Mas-

son et al. (2006); Hunt et al. (2011) questioned the geologi-

cal aspects, while Mader (2001); Gisler et al. (2006) obtained

much smaller waves in the far-field.

In Gisler et al. (2006) the slide volume was reduced to

375 km3. The wave generation and early propagation were

treated with the multimaterial SAGE model, while the far-

field estimates were obtained by extrapolation of local atten-

uation rates. Løvholt et al. (2008) started with the near-field

solution of Gisler et al. (2006), but treated the oceanic prop-

agation with a set of Boussinesq type equations. By this pro-

cedure they obtained wave heights at the American coast that

were slightly smaller than those of Ward (2001), but still dan-

gerous. Recently, Abadie et al. (2012) applied a similar strat-

egy, with a slide volume of 500 km3, and obtained somewhat

higher waves close to the Canary Islands than Løvholt et al.

(2008). However, they did not compute the trans-Atlantic

propagation. The La Palma tsunami case is also studied by

Zhou et al. (2011).

We omit most of the details on the wave field in Løvholt

et al. (2008) and focus on aspects that are most relevant in

the present context. In this case both dispersive and nonlin-

ear effects are active during the formation of the waves, and

the value of τ is somewhat dependent on the time at which

the wavelength is measured. After 500 s the generation is vir-

tually finished and we find λ= 36 km at a depth of 4 km.

For a propagation distance of 500 km this leads to a value of

τ close to unity. After crossing the Atlantic Ocean we find

τ ∼ 10. The resolution in the transoceanic simulations is 2′,
while much finer grids were employed in more local simula-

tions around the Canary Islands.

Some results are shown in Fig. 14. We observe a strong di-

rectivity and that the leading crest is not dominant in the time

series shown. More surprisingly, in view of the large value of

τ , in the simulated time series for buoy 2 the deviation be-

tween the LSW solution and the dispersive solution is only

moderate. It must then be remarked that the generation and

early propagation are computed by a dispersive and nonlinear

model up to t = 900 s; then the solution is conveyed into ei-

ther a linear dispersive model or a LSW model. At t = 900 s

the leading crest is already stretched a lot by dispersive ef-

fects, and the subsequent evolution may thus be slower (see

discussion below Eq. 8).

In Fig. 15 we show the evolution of the second incident

crest as it enters the continental shelf of North America. An

undular bore rapidly evolves and the front of the crest is split

into a sequence of solitary waves. The heights of the individ-

ual peaks are close to the stability limit for solitary waves,

and they will soon break during the following shoaling. At

this location the first incident crest displays the highest sur-

face elevation (not shown), but the second crest has higher
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1010

1015

Fig. 15. Evolution of an undular bore from the second crest on the

continental shelf of North Carolina. Waves propagate to the left. y

is the surface elevation (η), x is the distance and the numbers in the

legends correspond to the propagation time in minutes.

effective wave height due to the intermediate trough. Hence,

the leading crest undergoes the transformation to an undular

bore later, when it is closer to the coast. To resolve the undu-

lar bore properly, grid increments comparable to the depth,

or preferably smaller, must be employed. Covering the con-

tinental shelf with a resolution of, say, 20 m will be a compu-

tational challenge. Moreover, when the crests start to break

we still need a Boussinesq type model with breaking features

implemented (see Korycansky and Lynett, 2005).

5.5 Potential rockslides in Norwegian fjords, example

from Åkerneset

A large unstable rock volume has been identified in the

Åkerneset rock slope in the narrow fjord, Storfjorden, Møre

& Romsdal County, Western Norway, Fig. 16. The site has

been subject to extensive geological investigations (Blikra,

2008, 2012) and the tsunami has been studied experimen-

tally and numerically (NGI, 2010; Harbitz et al., 2012b). We

here focus on a comparison between the LSW and the dis-

persive solutions for a volume of 54 × 106 m3 and an impact

velocity of 45 m s−1. In Fig. 16 we present surfaces along

two transects: one through the generation area and one close

to the fjord head at Geiranger. The dispersion is crucial dur-

ing the tsunami generation and the early phases of propa-

gation – see mid-panel of Fig. 16. This is also confirmed

through laboratory experiments in both 2-D (Sælevik et al.,

2009) and 3-D (NGI, 2010). The leading peak for the south-

going waves differ significantly in height (more than a fac-

tor two), wavelength, and shape between the two solutions.

Later, after 9 min the leading parts of the two solutions are

only slightly different along the transects outside Geiranger

(lower panel of Fig. 16). This is surprising in view of both

the dispersion time τ ∼ 0.4 and the large differences in the

early stages. Presumably geometrical effects, in particular

the fjord bifurcation, may have selectively transmitted longer

components into the branch leading to Geiranger (see Harb-

itz, 1992a; Nachbin and da Silva Simoes, 2012). This feature
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Fig. 16. Upper panel: Bathymetry of the inner part of the fjord sys-

tem. Åkerneset is marked with a large yellow bullet. The numerical

solutions are evaluated along the two transects, 1 and 2. The depth

is given in meters. Mid-panel: LSW and linear dispersive solutions

at the generation area (transect 1, surface elevation). The leftmost

waves are propagating to the left (south) and the rightmost waves

are propagating to the right (north). The center line of the slide mo-

tion is found at about 3.5 km. Lower panel: solutions along transect

2 outside Geiranger (surface elevation).

awaits further analysis, but may anyhow indicate that the dis-

persion time must be used with care in complex situations.

The grid resolution in the computations was 50 m.

6 Conclusions

In the cases investigated the value of the normalized dis-

persion time, τ , is seen to correspond reasonably well with

the apparent dispersive effects. As a rule of thumb we may

say the effect of dispersion is small for τ < 0.01, while it
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generally becomes significant for τ > 0.1, say. The form of

τ indicates that the source width/initial wavelength (for land-

slides) is more important for the significance of dispersion

than the depth or propagation distance. Accordingly, we find

that moderate-magnitude earthquakes yield more dispersive

tsunamis than the huge ones, such as the 2004 Indian Ocean

and the 2011 Japan tsunami.

For the largest earthquakes, frequency dispersion only

modify the the transoceanic propagation mildly. Hence, dis-

persion is not needed for propagation in the near-field, but

may be important if far-field tsunami data are used for verifi-

cation of source properties.

For the smaller earthquakes (Mw ∼ 8 or less) we observe a

strong directivity of the dispersion, following the amplitude

directivity, due to the elongated shapes of the source regions.

In the offshore direction normal to the fault line, the tsunami

signal must be expected to become completely transformed

before reaching buoys or other continents.

On the other hand, most landslide-induced tsunamis are

strongly affected by dispersive effects. For the leading part of

the signal, such effects are generally most important during

wave generation and the early stages of propagation, while

the far-field properties may presumably be different for sub-

aerial (net volume in tsunami) and submarine (no net vol-

ume) landslides. Extremely large landslides, moving at small

Froude numbers, such as the Storegga Slide, are the likely

exception. The oceanic propagation of such events are virtu-

ally nondispersive.

From the above discussion it is tempting to conclude that

a reasonable hazard assessment in the near-field for tsunamis

of seismic origin may be based on shallow-water theory,

which is favorable with respect to real-time tsunami compu-

tations for warning purposes. However, undular bores, which

are not included in shallow-water theory, may evolve dur-

ing shoaling. Even though such bores may double the wave

height locally, their effect on inundation is more uncertain

because the individual crests are short and may be strongly

affected by dissipation due to wave breaking.
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