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DISPERSION POINTS FOR LINEAR SETS AND

APPROXIMATE MODULI FOR

SOME STOCHASTIC PROCESSES

BY

DONALD GEMAN1

Abstract. Let T e [0, 1] be Lebesgue measurable; then T has Lebesgue

density 0 at the origin if and only if

J/-'*(r' meas{r n (0, /)}) dt < oo

for some continuous, strictly increasing function ¥(*) (0 < / < 1) with

*(0) = 0. This result is applied to the local growth of certain Gaussian (and

other) proceses {X„ t > 0} as follows: we find continuous, increasing func-

tions (¡>(t) and 7)(/) (t > 0) such that with probability one, the set {/:

ii(t) < I*, - X0\ < <K0} has density 1 at the origin.

1. Introduction. This paper is about points of dispersion (i.e., zero Lebesgue

density) for sets of real numbers with applications to finding approximate

upper and lower moduli for Brownian motion and other processes. By such

moduli (say at the origin) for a process {X,(o}), t > 0}, I mean continuous,

nondecreasing functions <p and r/ (<K0) = tj(0) = 0) such that, with probability

one, each of the sets

{/: |AT» - Jf0(w)| > <p(t)},       {t: \Xt(u>) - X0(v)\ < 7,(0}        (1)

has i = 0 as a point of dispersion. This is a property of the trajectories and

could as well be defined for a fixed function.

Here, first, are the analytical results. Let T be a bounded, Lebesgue

measurable set of positive real numbers. I will write "0 G dp(T)" if t = 0 is a

point of dispersion for T:

lime-'wirn (0, e)) = 0 (2)

(m denotes Lebesgue measure).

Received by the editors August 29, 1978.

AMS (MOS) subject classifications (1970). Primary 28A10, 60G17; Secondary 26A15, 60G15.
Key words and phrases. Lebesgue density, approximate upper (lower) modulus, approximate

continuity, Brownian motion, Gaussian process, scale-invariance.

'This work was supported by National Science Foundation grant MCS 76-06599.

257

©1979 American Mathematical Society

0002-9947/79 /0000-0410/$05.00

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



258 DONALD GEMAN

Theorem 1. In order that 0 G dp(T), it is necessary and sufficient that

m(T n (0, Q) '
/>(-

')«
< oo (3)

for some continuous, strictly increasing function ^(t) (0 < / < 1) with ¥(0) =

0.

The sufficiency of (3) when ^ = constant is almost immediate. Let Ij^t) be

the indicator function of T. Then

m(T n (0, e)) _ 1
= \ClT(t)dt< ('-¡At)dt,

t Jq Jq    1

and consequently,

I
1 J
- dt < oo 0Gdp(r). (4)

An apparent improvement of (4) would be to replace the integrand r1 by

/~'A(i) where, say, A(0) = 0, A increases, and r'A(r) decreases. However,

given any such A there is a set T which invalidates (4): see the Appendix. In

effect, what Theorem 1 does is to allow A to depend on T.

The utility of Theorem 1 for probability theory is this: let T(w) be a random

set; it is often difficult to prove that the limit in (2) exists, and hence to prove

directly that 0 G dp£T(w)) a.s. On the other hand, it is often relatively easy to

prove that the (random) quantity in (3) has a finite expected value for suitable

^'s, and hence is finite a.s.

The proof of Theorem 1 is deferred to the Appendix; the necessity part is

very easy, whereas the sufficiency part is rather involved. Actually, the same

proof yields a more general result, namely:

Let 0 < fit) < I (0 < t < 1) be Lebesgue measurable; then

lim-i fef(t)dt = 0
eJ.0   E Jnej.0   £ Jq

if and only if

Jq       t t Jq
dt < oo

(2')

(30

for some ¥ as described in Theorem 1.

Here is a short proof of the sufficiency part in the special case when ^ is

convex. This case covers all the applications below in which the ^'s that are

used are powers: ^(r) = t", n > 1. I wish to thank the referee for suggesting

this approach.

Proof that (3') => (20 for ¥ convex. Since (30 holds, we have

E/C).lim ['££-•* - f'f(x)dx dt = 0.
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DISPERSION POINTS AND APPROXIMATE MODULI 259

After changing variables, the integral above is

>xxwh*
(since ^ is convex and 0 < / < 1)

(by Jensen's inequahty)

= ^Jo1^p-jj(xe)dx d/) > ^jr'jr/(xe)/(/£)dx dr)

Hence,

limW- f/(r) <fi) = 0

from which (20 follows, which completes the proof.

2. Approximate moduli. Let X = {X,(u>), t > 0} be a stochastic process; the

probability measure is denoted P and the integration with dP is denoted E.

Let T(<p; w) and T(t/; u>) stand for the first and second sets in (1). Convention

has it that <$> is an "upper function" or "modulus of continuity" at t = 0 if,

with probability one, the set r(<i>; w) does not accumulate at t = 0; <i> is a

"lower function" if r(<J>; u>) does accumulate there a.s. This distinction is

uninteresting for r(rj; <o) because, for most of the important (nondifferentia-

ble) processes, the set {/: Xt(u) = X0(a>)} c T(t/; w) will itself^have t = 0 as a

limit point.

I will call <j> an approximate upper modulus (for X at t = 0) if 0 G

dp(T(<p; ío)) a.s. and 17 an approximate lower modulus (for X at t = 0) if

0 G dp(T(Tj; w)) a.s. (See §3 for an interpretation via limit points.) To insure

that T and T are Lebesgue measurable, let us assume that X is jointly

measurable with respect to the Lebesgue a-field and the events in our

probability space. Any measurable version will do: sepaiability is irrelevant and

altering the sample paths on a Lebesgue null set makes no difference. In fact,

even measurability may be superfluous: the definition of dispersion point

(and hence of <j> and tj) can be formulated with Lebesgue outer measure and it

is then possible, although I have not been able to determine whether it is so,

that some of the probabilistic results depend only on the law of X, i.e. are

valid for every representation of the process.
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260 DONALD GEMAN

3. Digression. There is another way to think of an approximate upper

modulus, just for a real function F: t = 0 is not a limit point for {t:

\F(t) — F(0)\ > <K0) relative to the density topology. This topology was in-

troduced in [6]; see also [11] for some connections with probability theory.

The open sets are those which are Lebesgue measurable and have density 1 at

each of their points. F is then a "Borel function" if and only if F is Lebesgue

measurable, and hence if and only if F is approximately continuous A?i-a.e.

Recall that F is approximately continuous at t if

lim F(s) = F(t)
s-*t
s<BA

for some set A with density 1 at t. Thus, an approximate upper modulus

always serves as a "modulus of approximate continuity" (at r = 0) whether or

not F is actually continuous there.

4. An application of (4). With X and 17(</>; <o) as in §2,

E/      7 dt = /"-7p{l*< - *ol > *(')} *. (5)
JT(<l>;u) l Jq   t

which can be shown to be finite under a variety of conditions on P{X, — X0

Gdx). For example, let X be Gaussian with zero means and incremental

variance a2(t) = E(X, — X0)2, t > 0. Then the expression in (5) is

»ÍK-* ($))*
where N is the standard normal distribution function. Put h = <j>/o and

assume Af + oo as tlO. Then (6) is finite if and only if, for some e > 0,

X"4H-^H- (7>
In particular, the function

<t>(t) = o(t)((2 + e) log |log r|)1/2       (e > 0)

is an approximate upper modulus for any Gaussian process-continuous or

not-for which o is continuous and <}>10 as t\,0.

For Brownian motion, Kolmogorov's test [7, p. 33] states that <f> is an upper

function if

/•«*(/)        /     h2(t)\ ^
J  -^ expl-j^- J dt < oo       (some e > 0) (8)

and <p is a lower function if the integral diverges. Evidently, we can choose h

so that (7) holds whereas (8) fails.

The motivation for improving (4) was to show that <p(t) = (2/ log|log /|)1/2

is an approximate upper modulus for Brownian motion and other Gaussian

processes. For this <p, both (7) and (8) fail.
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DISPERSION POINTS AND APPROXIMATE MODULI 261

5. Example. Theorems 2, 3, and 4 below identify <i>'s and tj's (in varying

degrees of explicitness) for classes of processes which I call "scale-invariant"

(see §6). Here is perhaps the best illustration I have of these results.

Let Xa be the Gaussian process with zero mean and covariance

R(s, t) = EX,XS =¿{/2a + **• -|/ - s\2a],

0 < a < 1. Xl/2 is ordinary Brownian motion. Then <i> and tj may be selected

as follows (see §§7, 8):

</>(/) = r*(2 log |log/|),/2,

■q(t) = fa|log /|~6   for any 5 > 0.

Note. It is known (see, e.g., Marcus [9, 111:2.4]) that there is a constant

0 < C < oo such that C<p(t) is a local modulus of continuity for any separ-

able version of Xa.

6. Scale-invariant processes. Let A' be as in §2 and suppose that X0 = 0;

otherwise just subtract X0 from X. Suppose also that EX, = 0 and a2(t) =

EA",2 is finite, positive, and continuous for all t > 0. I will call X scale-in-

variant if, for each c > 0, the distribution of the process

does not depend on c. In particular, the correlation coefficient

ÁX* X,) = -oJstÛ)

depends only on the ratio s/t, say p(Xs, X,) = Ç(s/t), where £(1) = 1 and

£(/) = £0A)> r ~> 0- The condition that £ exist constitutes a "wide sense"

version of scale-invariance and the two notions agree in the Gaussian case.

A related class of processes has been variously called "scale-invariant" or

"self-similar": X0 = 0 and there exists an H > 0 such that, for each c > 0,

the two processes {A^,} and {cHX,}, t > 0, have the same distribution. It is

easy to check (assuming second moments) that X belongs to this class if and

only if AT is scale-invariant and o(t) = a(l) • tH for some H > 0.

7. Some Gaussian cases: upper moduli. Here and in the following section,

we suppose that X is Gaussian and scale-invariant. The proof of Theorem 2

below boils down to the behavior of £(/•) near r = I. In this section, we will

assume that:

(i) £(r) < 1 for r < 1 (equivalently, p(Xs, X,) < 1 for all s ¥= t);

(ii) £(r) is increasing on [/g, 1] for some r0 < 1 ;

(iii)limrîl|(/-)=l.
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262 DONALD GEMAN

Let Î denote the inverse of £:

t(v) = inf{r:í(r)>r},       î(r0) < y < I.

Let h(t) be continuous and decreasing on (0, 5] with h(0+) — oo and inverse

ft, and suppose that <p(t) s o(t)h(t)l0 as f|0.

Theorem 2. Suppose that

l-t(y)~(l-vA(l-v)    ^vTl (9)

wAere ß > 0 and L is slowly varying at the origin. Suppose also that

f °° llog h(x)\e-*2/2x-2ßL(x-2) dx < oo. (10)•V)
Then <¡>(t) is an approximate upper modulus. In particular,

<*>(/) = a(/)(2 log |logi|),/2

is an approximate upper modulus whenever 1 — £(/•) — const X (1 — r)y for

some Y < 2.

As an example, consider the class of processes Xa, 0 < a < 1, described in

§5. Here o2(t) = t2* and

Moreover, (i)—(iii) hold (details aside) and by expanding r" and r2" in

second-order Taylor series about r = 1 we find that

l-|(r) = r-«(i(l-r)2a + 0((l-r)2))

~|(l-r)2a   asrtl.

Consequently, (9) holds with ß = I/2a and L = 21/2a.

Proof. According to Theorem  1  with ¥(t) = t, and writing T(<u) for

T(<f>; a), it will suffice to prove that

ßlrUi*™^0-'»)«'«»   - (..)

By Fubini's theorem, the expected value of the random variable in (11) is

/* V2 f'p{X, > <p(s), X, > <Kt)}ds dt

= jT V'/^PtA-« > <¡»(rt), X, > <p(t)}dr dt       (r - j)

ft i      f      y y \

< f r1 f P   -7^- > h(t), -7^ > h(t) \drdt   (since A|)
^o     A    l ff(rt) o(0 j

- fV1/"'f" rP(x,y,$(r))dxdydrdt,
J0 J0   Jh(t)Jh(t)
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DISPERSION POINTS AND APPROXIMATE MODULI 263

where p(x, y; X) is the bivariate normal density with zero means, unit vari-

ances, and covariance X. Write the last expression above as

CK(t(r))dr (12)
•'o

where

K(X) = f V1 f°° rp(x,y; X)dx dy dt
J0 Jh(t)Jh(t)

= ^"j[W(j[*rIWA('))WA(0) d*)p(x>r> ̂)dxdy

(c = h(8))

-cr(C^';x)**
< const xj    \\ogh\x)\(  p(x,y; X) ay dx.

For each / fixed, the function

X^fCOfC°p(x,y;X)dxdy,       -1 < X < 1,
JK<YK>)

is nondecreasing. It then follows from (i)-(m) mat

ÇlC(£,(r)) dr < const X CK(£(r)) dr.

In other words, the only singularity in (12) occurs at the upper limit of

integration.

If î has a bounded derivative (so ß = 1 as in the Brownian case) there is a

shortcut in the rest of the proof that seems worth mentioning. Let d\/ dy < D

< oo for i-(r0) < y < 1 and take £(r0) > 0. Then

f lK(£(r)) dr= f '   K(X)^- dX < D ÇK(X) dX
Jr0 -Vo) dX Jq

/•oo . /-OO    /-l

= const X /    |log A(x)| I     I p(x, y; X) dX dy dx.
*e •'x   Jo

A fairly well-known identity (see [2, p. 21]) is

[lp(x,y; X) dX = N(x Ay) ~ N(x)N(y);

it results from the equation

¿J**,y;A)--¿^(*,**).
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264 DONALD GEMAN

Hence,

f'#(£(r)) dr < const X f °°|log A(x)| f"'N(x)(l - N(y)) dy dx

< const X f   |logAz(x)|e_x2/2x~2dx.
•'c

The  last  inequality  comes   about  because   1 — N(y) < y~ln(y)  (n(y) =

(2w)-1'/2exp(-v2/2)) so that

f °°(1 - N(y)) dy <  rV'«( y) dy < x"'(l - N(x)) < x^x).
•'jc 'X

Hence by (10) the proof is complete.

Going back to the general case, we must show that

f "log h(x)\ Ç rP(x,y; i(r)) dy dr dx < oo. (13)
Jc Jr0 Jx

To simplify matters, suppose r0 = £(r0) = 0. An easy computation yields

jTV*.* m * - »w(i - *(*{ frf«} '"))

Now,

xM*m>
= 1 - n[—— | + f   ["' n(w)dwdr.

The first term above is of smaller order than x~2ßL(x~2) (as x—» oo) and

hence can be ignored. The second term equals

[X/VIn(w)m{0 < r < 1: x(l - |(r))1/2 < w\Í2 } dw
Jo

-X'^'M'-^-Kf)*))^

"ÏVïTr}
where / is the Laplace transform of the measure

U(dy) = /[0,,)(v)(l - 1(1 -y))y-x,2dy.
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DISPERSION POINTS AND APPROXIMATE MODULI 265

From (9), 1 - |(1 - y)~yßL(y) as v|0, which implies that i/{[0,y]}~

const X yß+1/2L(y) as y4,0, which in turn implies (see e.g. [3, p. 422]) that

J(X) ~ const X A-^+,/2>L(a-')   as Â-* oo.

To conclude the proof, substitute X = x2/4; then (10) implies (13).

8. Some Gaussian cases: lower moduli. For each integer n > 1 and vector

s = (j„ . . . , sn) with distinct components, let D„(s) denote the determinant of

the covariance matrix of (Xs¡, . . . , XSJ.

Theorem 3. Suppose that

f     (A,(s))-,/2 ds < oo (D„)
J[0,tf

for some n > 1. Then

V(t)=o(t)\logt\-a       (a>\/n)

is an approximate lower modulus.

Condition (Dn) occurs repeatedly in the analysis of the sample paths of

Gaussian processes and, in particular, in the study of local times. Generally it

is difficult to check (Dn) "by hand". An exception is the Brownian case: Let

sf, . . . ,s* be the s,'s in ascending order; then

n

d„(s) = i? n o** - #.,)
k-2

and it follows easily that (D„) holds for every n > I.

Perhaps the best way of dealing in general with the condition (Dn) involves

the concept of local nondeterminism, which was introduced by S. Berman [1]

in connection with Gaussian local times. For the exact definition as well as

the proof of the following statement, consult the survey paper [4] where all

these matters are discussed in detail.

Suppose X is locally nondeterministic and

sup   /■'(£(*,-A-,)2)_1/2d*< oo. (14)
0<f<l •'o

Then (D„) holds for every n.

We note that (14) is satisfied whenever

E(XS - X,)2~const X\s- t\2a       (0 < a < 1).

Proof of Theorem 3. (£>„) implies that

/•••/* (D„(Sl, . . ., 5„_„ b)y1/2 ds,-- ds„_x < oo
•'0 •'0
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266 DONALD GEMAN

for m-a.e. b G (0, 1). Fix such a b and consider

with ¥(/) = r"_1, T(w) = r(7j; w). This expectation is

/*/-/' • • • / pfljg < 1,(5,),..., |a-^j < i,(5B_o,
•'O        Jo Jo

|X,|<i|(0}*,-    -dsn_xdt.

(15)

Make the change of variables t -» bt, s¡ -» s¡t, 1 < i < n. It then follows

(using the monotonicity of |log /|) that the expression in (15) is finite if the

following expression is finite:

dsn_xdt.

(16)

By scale-invariance, the probability in (16) is

which is dominated by

.( max ÄL<|Iog/|-,JM<|log,r]
[ Ki<n-l a(s,)     ' a(o) J

a(6)"U a(5,)(2|log t\-a)n(Dn(Sl, .-.,,„_„ 6))-'/2
■ i

because the joint density of (X,.X. _ , Xb) is bounded by its value at the

origin,   namely   (D„(sv . . . , s„_lb))~1'2.   Thus,   the   integral   in   (16)   is

dominated by a

const X f'       dt       (   • • •   (\dh(Si, ..., s„_i, b))~1/2 dsl ■ ■ ■ dsn_x,
Jo t |log /|    •'o •'o

which is finite.

9. Extensions to non-Gaussian processes. Let X be scale-invariant, though

not necessarily Gaussian. The following theorem is quite apparent if one

looks over the proofs of Theorems 2 and 3 to see which arguments rely on

scale-invariance alone, taking ^(i) = t" and computing the outer "dt" in-

tegral first (as in Theorem 2).

Let h decrease for 0 < / < 8, with A(0+) = + oo and inverse h; let g

increase for 0 < t < 8, with g(0) = 0 and inverse g. In addition, suppose that
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DISPERSION POINTS AND APPROXIMATE MODULI 267

<b(t) = o(t)h(t)   and   ij(/) = o(t)g(t)   are   continuous   for   0 < t < 8   and

<Kt),v(t)lOastiO.
Define

Hn(xv . . . , xj - ( max{ A(|x,|), • • • - ¿(W)}>       N > *(* ) V«,
1 1,   otherwise;

G„(x„ . . . , xj = f ̂  *<W>' • • • ' *<N)}.      N > *(S } V/'
I 1,   otherwise.

Theorem 4. <f> ú an approximate upper modulus if

-/*'••■   f EloglJ-^, .. ., -jM ¿, • • • dsn < co,     (17)
■'o •'o \ o(sx) a(sn) )

and 7) is an approximate lower modulus if

-/'••• / E log G„(-^r, -.., ~t) A, • • • dsn < ».     (18)

As in the previous section, the expression in (18) is readily bounded if we

assume that the distribution of the random vector A^ /a(s,), . . ., Xs/a(sn) is

well-behaved near the origin (in R"). Specifically, suppose that for each

(su . . . ,sn) in [0, 1] (with distinct s¡) the vector above has a density

p„(x; j„ . . ., s„), x G R", such that

/*•••/"    swpp„(x; sx, ...,s„)ds1- ■■ ds„< co
J0 J0     |x|<£

for some e > 0. Then (18) holds for g(t) = |log t\~", a > \/n.

10. Some related work. Several other papers have related ideas. First, there

is a tenuous but interesting connection with a result of Strassen's [10]: let S„

be the sum of the first n random variables of an Li.d. sequence with mean 0

and variance 1 ; then

lim sup vn = 1 - expj -4l — — 111    a.s., (19)

where v„ is the proportion of the first n positive integers for which S, >

c(2i log log 0,/2, 1 < i < n (0 < e < I). Choosing c = 1 yields v„ -» 0 a.s.,

which is reminiscent of our result that, for Brownian motion,

e-'mfO < t < e : \Xt\ > (2t log|log /|)1/2} -*0   as e|0   a.s.        (20)

Indeed, (19) suggests that

lim sup e_I/w{0 < t < e : \X,\ > c(2t log|log r|)'/2}
£|0

= l-exp{-4(-l-l))     a.s.    (21)
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for all 0 < c < 1. However, I have not been able to obtain even (20) via (19).

More directly connected is a result of J. Zinn and the author [5]: for a large

class of processes, the function

<p(t) = q{E(X, - A-0)2)'/2,       0 < q < oo,

is neither an approximate upper nor lower modulus. (This class includes all

Gaussian processes with stationary increments such that o(t) is continuous

and t~*o(t) -> oo as /j.0.) For Brownian motion, slightly more is true: with

probability one,

lime-lm{0 < t < « : \Xt\ > qVt }

does not exist for any 0 < q < oo.

Knight [8] describes the Brownian path as having a "dense set of spine-like

projections of sharpness exceeding V|A| (log l/|A|)_(1+£) for every e > 0,"

by which he means that, with probability one, there is a dense, random set

D(u>) G (0, oo) such that for each t G D and e > 0,

|A-/+,-A-,|>cVjÄ[(logl/H)-(,+i)

for all small h (depending on e) and some constant C. Since Brownian motion

has stationary increments, it follows from our discussion in §5 that, for any

y > 0, V/T |log h\~y is an approximate (two-sided) lower modulus at m-a.e.

point along the Brownian path. Finally, using local time methods, one can

also prove (see [4]) that, for any function p(h) -» 0, the function

Vh |log h\'lp(h) is an approximate lower modulus at every point a.s.

Appendix.

Proof of Theorem 1 for general SK (Necessity) Define

H(t) = m{T n (°' 0) ,   M(t)=   sup H(s),       t>0.
' 0<5<r

Then H is continuous and we are assuming that H(t) -» 0 as rj,0; M then has

the same properties, as well as being nondecreasing. Let ^ be the inverse of

the function / + M(t). Then ¥ is continuous, strictly increasing, and ^(H(t))

< V(t + M(t)) = t, which implies that (3) holds.

(Sufficiency) The proof has three main steps:

(1) Show that H(t) -+ 0 if H(y") -+ 0 for all 0 < y < 1 ;
(2) Evaluate 1N„=0Q(H(yn)) for powers Q(x) = xJ;

(3) Approximate ^ by polynomials and use (2) to prove that

I   f"iy")<ír(s)ds < -±-f±*(H(t))dt. (22)
n-O-'O A — If JT «
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(1). Suppose {an}lO and set

ßn=fa"\iAt)dt.

Forf G[aR+l,a„],

H(t) = ±(a^IT(s)ds + U'   Ir(s)ds
1 J0 ' •/o„+,

<-^-fa"*'lAs)ds+f   \lAs)ds

<H(an+l) + ß„.

Consequently,

lim sup H(t) < Urn sup H(an) + lim sup ß„.
j_*0 n—»oo n—>oo

Choosing a„ — y", 0 < y < 1, we see that ß„ < log y"1 for all n, and hence

//"(r) -» 0 as / -» 0 if (and only if) H(y") ->• 0 as w -► oo for even a sequence of

y's approaching 1.

(2). Fix a number y G (0, 1) and integers N > 1 andy" > 1:

2 (H(y")y =í  /'•••   fV* A WO'r(0<*i • • • dtj
n = 0 n = 0^0 •'O i = l

= /' ' • • /'( 2 Y"* II Wjfo)) Ú M',) *, • . • dtj
Jo J0  \n=0 i = l / i=l

•'O -'O   \      n = 0 / 1=1

where r* ■» max(/„ . . ., tj), ¿V A Z(t*) stands for min(;V, Z(t*)), and Z(i) =

[logY /], the greatest integer less than or equal to the logarithm of t to the base

y. Breaking up [0, l]7 into they" pieces {t* = t¡), 1 < / < j, leads to:

2 Wy-W =J     dt Í  ... f       S     T-* II IA0 dh-- dtj.,
n-0 -T      J0 J0 n=0 ,= 1

r v-ytl + (^AZ(»))l _ 1

= y/1-=-—--(m(T n (o, t))y~l dt.
JT y  J — 1

(3). Let \pk(t), 0 < / < 1, be a sequence of polynomials which converges

uniformly to ¥, and define

Q(t) = /"*0) A,       &(/) = f V*(í) ds.
•'0 •'o

Then Q is continuous, 0(04-0 as f|0, and the a^'s uniformly approximate Q.

Assuming (3) and (22), we would have Q(H(y"))->0 as n -» oo for every
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270 DONALD GEMAN

y G (0, 1), which implies that H(y") -» 0 as n -* oo for every y G (0, 1). Here,

then, is the proof of (22).

2 Q(H(Y")) = Jim   2 Q{H(y")) = hm   2   Um qk(H(y"))
n = 0 N->oo „ = o N     „ = o      *

= lim lim   2 &("(y"))
N        k      „ = o

N       mk I m* \

= lim hm   2    2 «j*>(tf(Y")y &(0 = 2 «}*V
N        k      „ = o  y-I \ y=l /

= hm hm  2    2 «i*>(Ä(Y")y.
N       k     j=\   „=0

From (2),

2 (^(Y")y =yrX--— («(T n (0, t))y-' dt
n=o •'r     1 — y7

-^/r—j^crn^oyy*1*.
■t 1 — y

Hence,

2   2 tfWy'tf = f(y"AZ(0)-' 2^*)VW2L_ ¿,
y=l  « = o •'r /«i 1 - y7

Mb

-/ 2 Ja^-±-.(ym(T n (0, 0)^' *    (23)■> j-i 1 - y>

where À^r) = m(T n (0, t))/yNAZW. To justify the interchange of the sum

and integral needed for (23), and other operations to follow, we observe that,

for all / > 0,

0 < y* < y*A2<*);        x = -ylogT' < yZ(») < yNAZ(.t).

XN(t) < /f(/) < 1. (24)

Now the sums which appear in the integrands in (23) can be expressed in

terms of the xpk's as follows:

2>;*>(! - rr\x„(<)y-1 - 2 2;<vriMoy-1
y-i y-i r=o

OO mk

r=0      y=l

= 2 y%(y'M0)
r-0
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(since \pk = q'k). Similarly,

"•* 00

2y«i*Mi - -AT'iyntÇr n (o, t))y~l = 2 yr+\(y r+lm(T n (o, /))).
j=\ i—O

Moreover, the integrands in (23) are bounded:

<-T—; sup WOI <»,(y*A2(0)-l J  y^(y^(0)

r = 0

y~N

Y   /,*

and similarly for the other one. Thus, letting k -» oo,

mA N oo

um 2 «,*> 2 (n(yn)Y -/(r'n1 2 y'*vy%W)<ä
*     y=i „_o •'r r = 0

- ( 2 Y,+ I*(Y,+ I»i(r n (0, i))) df.

Finally, as N -» oo,

(ip"'t(i)-,   *(^w>4'^a)
and hence, by the monotone convergence theorem,

2 Q(H(y")) = ¡y-*« § y'Wy^ " <* 0) ) A
n = 0 •'r r = 0 \ yZ(,) /

- f 2 Yr+1*(yr+Vrn(0,r)))d/.
•;rr=o

The inequality in (22) now follows because

^-crnm,»!< *(H(/))

for all /> 0, r > 0 and y G (0, 1).   Q.E.D.
,4 counterexample (see §1). Let 0 < A(t)iO and rlA(t)f + oo ay 40. 77ie/i

?Aere exists a set T c (0, 1) such that 0 G dp(T) whereas

f A(0   .I —" dr < 00.
;r    t

Since A|0, we can choose a sequence {a„}|0 with 2A(a„) < 00  and

2an+, < a„ for all «. Define
00

r = U {an, 2an).
n-l

Then

AW „ _ v   (2°*AW ̂  « Aía)
Jr    * n=\Jan        t n = l     a„

00,
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and

1

2"

Note added in proof. Concerning the proof that (30 => (20 for general

^'s, Claude Dellacherie has shown me a clever reduction to the convex case.

This will appear elsewhere.
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