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1 Introduction

The recent emergence of an apparent deficit in the top-row Cabibbo-Kobayashi-Maskawa

(CKM) matrix unitarity [1],

|Vud|2 + |Vus|2 + |Vub|2 = 0.9985(5) (1.1)

has triggered a renewed interest in precise experimental studies of various β-decay pro-

cesses giving access to |Vud|. Superallowed 0+ −0+ nuclear decays have long been regarded

as the best avenue for such purpose. Recent works, however, pointed out that current

theory uncertainties in the nuclear-structure corrections may have been significantly un-

derestimated [2–5]. Reducing these uncertainties requires novel ab-initio nuclear theory

calculations that are not yet available. As a consequence, the role of alternative channels

such as the β-decays of the free neutron, mirror nuclei and pion becomes increasingly im-

portant. With the future improvement in the experimental precision, these other β decay

processes will offer competitive determinations of |Vud| and complementary sensitivity to

possible beyond standard model (BSM) signals.

Free neutron β-decay currently provides the second best determination of |Vud| through

the following master formula [6, 7]:

|Vud|2 =
4903.1(1.1) s

τn(1 + 3λ2)
, (1.2)
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where the uncertainty in the numerator arises from the Standard Model (SM) theory input.

The two required experimental inputs are the neutron lifetime τn, and the decay parameter

λ ≡ gA/gV which is the ratio between the neutron axial and vector coupling constant. This

parameter is renormalized by electroweak radiative corrections (RCs), and these latter are

the primary focus of this article.

The parameter λ can be measured either via the P-even correlation ~pe · ~pν (the a

coefficient), or the P-odd ês · ~pe (the A coefficient) and ês · ~pν (the B coefficient) ones,

with ês the unit 3-vector along the neutron polarization. The current best measurement

reported by the PERKEO III collaboration λ = −1.27641(45)stat(33)sys, with a 0.04%

precision [8] (in this paper we pick the sign convention λ < 0, also adopted in the Particle

Data Group (PDG) review). However, the current PDG average reads λ = −1.2756(13) [1],

where the much larger uncertainty is due to a scale factor of 2.6 that accounts for the large

discrepancy between the results before [9–12] and after 2002 [8, 13–16] (see ref. [17] for

more discussions). Future improvements are expected from the Nab [18] and PERC [19, 20]

collaborations, both aiming at an accuracy level of 10−4.

The exact value of λ not only serves for extracting Vud, but is also interesting in

itself. The “bare” (i.e. without electroweak corrections) neutron axial coupling g̊A is one of

the simplest hadronic matrix elements and has received much attention. Unlike its vector

counterpart g̊V which remains non-renormalized due to the conserved vector current (CVC),

the bare axial coupling is not protected and must be calculated, e.g. using lattice Quantum

Chromodynamics (QCD) [21–42]. The most recent FLAG average [43] reads:

Nf = 2 + 1 + 1 : g̊A = −1.251(33)

Nf = 2 + 1 : g̊A = −1.254(16)(30)

Nf = 2 : g̊A = −1.278(86) , (1.3)

but individual calculations have achieved higher precision. For instance, ref. [40] reported

a percent-level determination of g̊A = −1.271(10)(7) using an unconventional method in-

spired by the Feynman-Hellmann theorem, and follow-up works are aiming for sub-percent

precision [42]. Such a rapid development makes λ a powerful tool for searching for redBSM

physics. By comparing first-principles calculations of g̊A to the experimental results for λ

one thereby constraints the strength of possible BSM contributions that could modify gA,

in particular the right-handed currents [44–47].

When the lattice precision reaches 10−3, a valid comparison between g̊A and λ will

require precise O(αem/π) RCs that bring g̊A/̊gV to gA/gV . In particular, we need to

deal with sizable hadronic uncertainties originating from the γW -box diagram. The latter

can be written as a Q2-integral, and performing operator product expansion (OPE) it is

well-known that the corrections to gV and gA coming from large Q2 (which carries a large

electroweak logarithm) are the same. Therefore, it was believed that the difference between

g̊A and λ is numerically small [48–51]. However, for a long time there was no serious attempt

to understand the RC to gA from the low-Q2 part of the integral which is also of the order

10−3, comparable to the high-Q2 contribution. It includes the elastic contributions that are

fixed by the nucleon form factors, as well as the inelastic contributions that are governed by
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non-perturbative QCD. The first attempt for a complete analysis was performed recently

in refs. [52, 53]. Anticipating the results of this work, we found that those refs. originally

contained algebraic mistakes in the computation of the elastic contribution, invalidating

their numerical results. These mistakes were later corrected in the published version of

ref. [52]. Additionally, the inelastic contribution residing at low Q2 was obtained based

on a holographic QCD model, following ref. [54] where the RC to gV was addressed. The

model-dependent nature of this approach makes a rigorous estimation of the theoretical

uncertainty complicated.

In this article we improve on both points. We perform a novel analysis of the RC

to gA based on the dispersion relation (DR) approach. It is a powerful tool which has

proved successful in the treatment of the RCs to the Fermi amplitude in the free neutron

and superallowed β-decays [2–4, 7]. In this formalism, the γW -box diagram is expressed

as a dispersion integral over structure functions that are directly or indirectly related to

experimental data. This ultimately allows for a fully data-driven analysis of this RC. For

gA, the required input relies on the spin-dependent structure functions g1 and g2, well-

studied quantities in deep inelastic scattering (DIS) experiments. We utilize high-precision

world data on g1,2 to evaluate the dispersion integral, and fix the forward γW -box diagram

correction to gA to an unprecedented precision better than 10−4. We observe that the RCs

to gV and gA are numerically very close and largely cancel in the ratio, which practically

removes any distinction between g̊A and λ down to 2 × 10−4.

The contents in this paper are arranged as follows. In section 2 we define our notation

and introduce the starting point for the discussion of the RC. We introduce the γW -box

diagram in section 3, and derive its dispersive representation in section 4. The elastic

(Born) and inelastic contributions to the box diagram are computed in section 5 and 6

respectively. The final results and discussions are presented in section 7.

2 General framework

We start by defining the hadronic currents relevant to the β-decay of the free neutron:

Jµ
em =

2

3
ūγµu − 1

3
d̄γµd

Jµ
W = ūγµ(1 − γ5)d . (2.1)

Their single-nucleon matrix elements are given by:

〈N(pf , sf )|Jµ
em|N(pi, si)〉 = ūsf

(pf )

[

F N
1 γµ +

i

2M
F N

2 σµν(pf − pi)ν

]

usi
(pi)

〈p(pf , sf )|Jµ
W |n(pi, si)〉 = ūsf

(pf )

[

F W
1 γµ +

i

2M
F W

2 σµν(pf − pi)ν

+ GAγµγ5 − GP

2M
γ5(pf − pi)

µ

]

usi
(pi) , (2.2)

where N = p, n and M = (Mp + Mn)/2 ≈ 939 MeV. All the form factors above are

functions of −(pi −pf )2. We may also define the isospin combinations F S
1,2 = F p

1,2 +F n
1,2 and
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F V
1,2 = F p

1,2 −F n
1,2. The values of the vector and the axial charged weak form factors at zero

momentum transfer define the “bare” vector and axial coupling constants: F W
1 (0) = g̊V ,

GA(0) = g̊A, which represent the Fermi and Gamow-Teller matrix element in neutron β-

decay respectively. In particular, g̊V = 1 from isospin symmetry, and the correction due to

the strong isospin-breaking effects is negligible due to the Behrends-Sirlin-Ademollo-Gatto

theorem [55, 56]. On the other hand, g̊A is not protected by any exact symmetry. We do

not include the isospin-breaking correction to g̊A separately because it is already included

in the respective first-principles calculations.

The nucleon mass difference ∆ = Mn − Mp ≈ 1.3 MeV and the electron mass me ≈
0.511 MeV are much smaller than M . Therefore, the tree-level amplitude of the decay

process n(pn) → p(pp)e(pe)ν̄e(pν) is given by:

Mtree = −GF√
2

Lλūs′(p)γµ(̊gV + g̊Aγ5)us(p) + O(∆2) , (2.3)

where GF = 1.1663787(6) × 10−5 GeV−2 is the Fermi constant measured from the muon

decay [1], p = (pn+pp)/2 is the average nucleon momentum, and Lλ = ū(pe)γλ(1−γ5)v(pν)

is the lepton piece. The recoil corrections scale as ∆/M ∼ 10−3, which are small but

important in precision physics. They were studied in detail with both conventional methods

and effective field theory (EFT) [57–62], and will not be discussed here.

RCs of the order O(αem/π) must be included for a precise extraction of the weak

coupling parameters. In the usual nomenclature, they are divided into the “outer” and

“inner” corrections The former is a function of {Ee, me} calculable within Quantum Elec-

trodynamics (QED) and independent of details of strong interaction. The latter is instead

a constant in Ee but depends on details of the hadronic structure. The squared amplitude

for the decay of a polarized neutron (to unpolarized final states) after the inclusion of the

O(αem/π) RCs reads:

|M|2 = 16G2
F |Vud|2MnMpEe(Em −Ee)g2

V (1+3λ2)F (β)

(

1+
αem

2π
δ(1)

)

×
{

1+

(

1+
αem

2π
δ(2)

)

a0
~pe ·~pν

EeEν
+ ês ·

[(

1+
αem

2π
δ(2)

)

A0
~pe

Ee
+B0

~pν

Eν

]}

+O(∆3) ,

(2.4)

with

a0 =
1 − λ2

1 + 3λ2
, A0 = −2λ(λ + 1)

1 + 3λ2
, B0 =

2λ(λ − 1)

1 + 3λ2
. (2.5)

Here, Ee = pe · p/M is the electron energy, Em = (M2
n − M2

p + m2
e)/(2Mn) ≈ Mn − Mp

is the electron end-point energy, and β =
√

1 − m2
eM2/(pe · p)2 is the electron speed, all

in the nucleon’s rest frame. With these notations, the functions δ(1,2) describe the outer
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Figure 1. The forward γW -box diagrams in the free neutron β-decay.

corrections [48, 63]:

δ(1) = 3 ln
Mp

me
− 3

4
+ 4

(

1

β
tanh−1 β − 1

)(

ln
2(Em − Ee)

me
+

Em − Ee

3Ee
− 3

2

)

− 4

β
Li2

(

2β

1 + β

)

+
1

β
tanh−1 β

(

2 + 2β2 +
(Em − Ee)2

6E2
e

− 4 tanh−1 β

)

δ(2) = 2

(

1 − β2

β

)

tanh−1 β +
4(Em − Ee)(1 − β2)

3β2Ee

(

1

β
tanh−1 β − 1

)

+
(Em − Ee)2

6β2E2
e

(

1 − β2

β
tanh−1 β − 1

)

, (2.6)

whereas F (β) ≈ 1 + αemπ/β is the Fermi’s function that incorporates the Coulomb inter-

action between the final-state proton and the electron [64]. The function δ(1) is also known

as Sirlin’s function g(Ee, Em).

The axial to vector coupling constants’ ratio, parameter λ = gA/gV , is understood as

fully renormalized by the inner RCs. In near-degenerate semileptonic β-decay processes, the

inner RCs are most conveniently studied in Sirlin’s representation [65] (see also refs. [66–68]

for a detailed account). In this formalism, most of the O(αem/π) electroweak RCs are either

exactly known from current algebra, or give rise to the outer corrections in eq. (2.6) and the

Fermi’s function. As a result, the renormalized vector and axial coupling constants read:

gV = g̊V

{

1 +
αem

4π

[

3 ln
MZ

Mp
+ ln

MZ

MW
+ ãg

]

+
1

2
δQED

HO + �V
γW

}

gA = g̊A

{

1 +
αem

4π

[

3 ln
MZ

Mp
+ ln

MZ

MW
+ ãg

]

+
1

2
δQED

HO + �A
γW

}

, (2.7)

where ãg is a pQCD correction factor and δQED
HO summarizes the leading-log higher-order

QED effects [69, 70]. One observes that the fractional corrections to g̊V and g̊A are mostly

identical and cancel in the ratio gA/gV . The only exceptions are the constants �V
γW and

�A
γW that describe the inner RCs originated from the γW -box diagrams (see figure 1),

which are the focus of this paper.1 With the above, we obtain:

λ =
g̊A

g̊V

[

1 + �A
γW − �V

γW

]

. (2.8)

1In the existing literature, e.g. refs. [2, 3, 67], the quantity �V
γW was written as �V A

γW , where the super-

script indicates that it involves the product of a vector current and an axial current. In this paper, the super-

script carries a different meaning, namely which weak coupling constant (vector or axial) they are correcting.

– 5 –
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3 γW -box diagram

The γW -box correction is of the natural size αem/π ∼ 10−3. Taking into account recoil

corrections ∼ ∆/M, me/M on top of the overall αem/π factor would bring us to accounting

for effects in the 10−6 range that exceed the precision goal by two or three orders of

magnitude. This defines the level of the detalization that is needed in our analysis. We

will consistently set ∆ = me = 0 throughout the calculation below, as well as the proton

recoil. This approximation also leads to the neglect of the pion pole due to the partially-

conserved axial current (PCAC) hypothesis: the pion pole contribution, when contracted

with the lepton tensor, results in lepton mass terms which, as stated are neglected. This

precision level is supported by the fact that the lowest hadronic state is separated by the

pion mass ∼ 140 MeV which is about hundred times larger than ∆. Notice however that

this approximation may not be as safe for nuclear β-decay where the available Q-values may

be as large as 15–20 MeV which are comparable to the energy level of nuclear excitations.

The part of the γW -box diagram amplitude that contributes to the inner correction

must involve an antisymmetric tensor that stems from the lepton spinor structure. It reads:

Minner
γW = −GF√

2
LλIλ

γW , (3.1)

where

Iλ
γW = ūs(p)γλ

[

g̊V �
V
γW + g̊A�

A
γW γ5

]

us(p) = ie2
∫

d4q

(2π)4

M2
W

M2
W − q2

ǫµναλqα

(q2)2
T γW

µν (3.2)

with ǫ0123 = −1 in our convention. The forward generalized Compton tensor describing

the W +n → γp process, is defined as:

T µν
γW =

∫

dxeiqx〈p|T [Jµ
em(x)Jν

W (0)]|n〉. (3.3)

To extract �V
γW and �A

γW , we use following identities:

1

2
ūs(p)γµus(p) = pµ ,

1

2
ūs(p)γµγ5us(p) = Sµ , (3.4)

where the spin vector Sµ is fixed by S2 = −M2 and S · p = 0, we obtain:

�V
γW =

ie2

2M2g̊V

∫

d4q

(2π)4

M2
W

M2
W − q2

ǫµναλqαpλ

(q2)2
T γW

µν

�A
γW = − ie2

2M2g̊A

∫

d4q

(2π)4

M2
W

M2
W − q2

ǫµναλqαSλ

(q2)2
T γW

µν . (3.5)

In what follows, we use g̊A ≈ λ = −1.2756 as a normalization in the second expression.

Since �A
γW ∼ 10−3, the error induced by the ambiguity of g̊A is well below our precision goal.

Only those components in T µν
γW that contain an antisymmetric tensor contribute to

eq. (3.5). These are

T µν
γW = − iǫµναβqαpβ

2(p · q)
T3 +

iǫµναβqα

(p · q)

[

SβS1 +

(

Sβ − (S · q)

p · q
pβ

)

S2

]

+ . . . (3.6)

– 6 –
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The spin-independent, parity-violating amplitude T3 and spin-dependent, parity-conserving

amplitudes S1,2 are functions of two invariants, ν = (p · q)/M and Q2 = −qµqµ. Plugging

eq. (3.6) into eq. (3.5) gives:

�V
γW =

e2

2Mg̊V

∫

d4q

(2π)4

M2
W

M2
W + Q2

1

(Q2)2

ν2 + Q2

ν
T3

�A
γW =

e2

Mg̊A

∫

d4q

(2π)4

M2
W

M2
W + Q2

1

(Q2)2

{

ν2 − 2Q2

3ν
S1 − Q2

ν
S2

}

, (3.7)

where we have used the following identities:
∫

d4q

(2π)4
qαF (ν, Q2) =

∫

d4q

(2π)4

ν

M
pαF (ν, Q2)

∫

d4q

(2π)4
qαqβF (ν, Q2) =

∫

d4q

(2π)4

[

−ν2 + Q2

3
gαβ +

4ν2 + Q2

3

pαpβ

M2

]

F (ν, Q2) (3.8)

that hold for any Lorentz scalar function F (ν, Q2).

To evaluate the loop integrals, we need to discuss the symmetry properties of the

Compton amplitudes. We start by considering the isospin structure of amplitudes Ti, Si.

Electromagnetic interaction does not conserve isospin and contains both isoscalar (I = 0)

and isovector (I = 1) components. Therefore, each amplitude A = Ti, Si can be decom-

posed into components contributed by the isoscalar and isovector electromagnetic current

respectively:

A = A(0) + A(1). (3.9)

The two isospin amplitudes have a different behavior under ν → −ν:

A
(I)
i (−ν, Q2) = ξ

(I)
i A

(I)
i (ν, Q2), (3.10)

with ξ
(I)
i = ±1 and ξ

(0)
i = −ξ

(1)
i . It is easy to show that ξ

(0)
i = −1 for T3 and S1,2, so only

the I = 0 component of these amplitudes survives in the integrals in eq. (3.7).

4 Dispersion representation of the forward Compton amplitudes

Forward Compton amplitudes have singularities along the real axis ν: poles due to a

single nucleon intermediate state in the s− and u-channels at ν = ±νB = ±Q2/(2M),

respectively, and unitarity cuts at ν ≥ νπ and ν ≤ −νπ where νπ = (2Mmπ + m2
π +

Q2)/(2M) is the pion production threshold (see figure 2). The discontinuity of the forward

Compton tensor in the s-channel (i.e. ν ≥ νB) is given by the generalization of the on-shell

hadronic tensor to the γW -interference:

DiscT γW
µν (ν) ≡ T γW

µν (ν + iε) − T γW
µν (ν − iε) = 4πW γW

µν , (4.1)

where

W γW
µν =

1

4π

∑

X

(2π)4δ(4)(p + q − pX)〈p|Jem
µ (0)|X〉〈X|JW

ν (0)|n〉

= − iǫµναβqαpβ

2(p · q)
F3 +

iǫµναβqα

(p · q)

[

Sβg1 +

(

Sβ − (S · q)

p · q
pβ

)

g2

]

+ . . . (4.2)

– 7 –
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Figure 2. The singularities of the forward Compton amplitudes on the complex-ν plane, and the

contour chosen to derive the DRs in eq. (4.3).

The structure functions F3 and g1,2 can be decomposed similarly to I = 0, 1 components

just like eq. (3.9).

According to the crossing behavior established earlier and noticing that they cannot

diverge faster than ν when ν → ∞, the amplitudes entering eq. (3.7) have the following

dispersion representation:

T
(0)
3 (ν, Q2) = −4iν

∫

∞

0
dν ′

F
(0)
3 (ν ′, Q2)

ν ′2 − ν2

S
(0)
1 (ν, Q2) = −4iν

∫

∞

0
dν ′

g
(0)
1 (ν ′, Q2)

ν ′2 − ν2

S
(0)
2 (ν, Q2) = −4iν

∫

∞

0
dν ′

g
(0)
2 (ν ′, Q2)

ν ′2 − ν2
= −4iν3

∫

∞

0
dν ′

g
(0)
2 (ν ′, Q2)

ν ′2(ν ′2 − ν2)
, (4.3)

where the ν-integration is extended down to 0 to include the Born contribution. Notice that

in the last line we have slightly modified the DR of S
(0)
2 using the Burkhardt-Cottingham

(BC) sum rule [71]:
∫ 1

0
dxg2(x, Q2) = 0 , (4.4)

where x = Q2/(2Mν ′) is the Bjorken variable. This sum rule is a superconvergence relation

and is expected to hold at all Q2. The benefit of this treatment will become apparent in

the later section. Substituting eq. (4.3) into eq. (3.7) and using the following Wick rotation

formula [72],

∫

d4q

(2π)4
F (ν, Q2) =

i

8π3

∫

∞

0
dQ2Q2

∫ +1

−1
du
√

1 − u2F (iQu, Q2) , (4.5)

we can integrate the variable u analytically to obtain our final dispersive representation of

δgγW
V,A as follows:

�V
γW =

αem

πg̊V

∫

∞

0

dQ2

Q2

M2
W

M2
W + Q2

∫ 1

0
dx

1 + 2r

(1 + r)2
F

(0)
3 (x, Q2)

�A
γW = −2αem

πg̊A

∫

∞

0

dQ2

Q2

M2
W

M2
W + Q2

∫ 1

0

dx

(1 + r)2

[

5 + 4r

3
g

(0)
1 (x, Q2) − 4M2x2

Q2
g

(0)
2 (x, Q2)

]

,

(4.6)
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with r =
√

1 + 4M2x2/Q2. As a useful crosscheck, the two-photon exchange correction

to the hyperfine splitting in ordinary and muonic atoms is expressed through analogous

two-fold integrals over electromagnetic spin structure functions [73, 74].

The quantity �V
γW , relevant for the extraction of Vud from superallowed β-decays is

well-studied within the dispersive approach [2, 3, 7, 75] and is not addressed here. The main

obstacle in those studies is the absence of direct experimental data of the structure function

F
(0)
3 . This forces one to either rely on data of F3 from a different isospin channel (whose

relation to F
(0)
3 contains a residual model-dependence), or from indirect lattice QCD data.

On the other hand, despite having received much less attention, a high-precision dispersive

analysis of �A
γW is in fact much more robust because it depends on the parity-conserving,

spin-dependent structure functions g
(0)
1,2. The isospin symmetry unambiguously relates them

to gN
1,2 measured in ordinary DIS:

g
(0)
1,2 =

1

2

{

gp
1,2 − gn

1,2

}

, (4.7)

the latter are defined via

W γγ,N
µν =

1

4π

∑

X

(2π)4δ(4)(p + q − pX)〈N |Jem
µ (0)|X〉〈X|Jem

ν (0)|N〉

=
iǫµναβqα

(p · q)

[

SβgN
1 +

(

Sβ − (S · q)

p · q
pβ

)

gN
2

]

+ . . . (4.8)

Therefore, it is possible to perform a fully data-driven analysis of �A
γW without introducing

further model-dependence at low Q2. We will perform such an analysis in the sections

below. Following Sirlin’s notation [48], we express our result as

�A
γW =

αem

2π
d =

αem

2π
[dB + d1 + d2] , (4.9)

where dB, d1 and d2 represent the elastic (Born) contribution, the inelastic contributions

from g
(0)
1 and the inelastic contributions from g

(0)
2 respectively, which we will evaluate

separately in the following sections.

5 Elastic (Born) contribution

Substituting X = p into eq. (4.2) and using the elastic form factors defined in eq. (2.2)

give us the Born contribution to the spin structure functions needed for the evaluation of

the box correction:

g
(0),B
1 =

F W
1 GS

M + F S
1 GW

M

8
δ(1 − x) , g

(0),B
2 = −τ

F W
2 GS

M + F S
2 GW

M

8
δ(1 − x) , (5.1)

where GE ≡ F1 − τF2 and GM ≡ F1 + F2 are the usual electric and magnetic Sachs

form factors defined for both the electromagnetic and charged weak form factors, with

τ = Q2/(4M2). All the form factors above are functions of Q2 that drop at high Q2,

therefore one can neglect the Q2 dependence of the W -boxon propagator ∼ Q2/M2
W . With

this the Born contribution reads,

dB = − 1

2̊gA

∫

∞

0

dQ2

Q2

1

(1+rB)2

{

5+4rB

3

[

F W
1 GS

M +F S
1 GW

M

]

+
[

F W
2 GS

M +F S
2 GW

M

]

}

, (5.2)
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Figure 3. The pole (a,b) and seagull (c) diagrams that contribute to T µν
γW .

where rB ≡ r|x=1. We notice that F W
1,2 = F V

1,2 by isospin symmetry, which means eq. (5.2)

is fully determined by the four nucleon electromagnetic form factors: {Gp
E , Gp

M , Gn
E , Gn

M }.

Different parameterizations of these form factors [76–81] all give consistent results within

their respective error bars. In particular, the parametrization of ref. [79] leads to

dB = 1.216(6)G
p
E

(9)G
p
M

(1)Gn
E

(2)Gn
M

= 1.22(1)FF . (5.3)

In particular, the central values of the contribution from g
(0),B
1 and g

(0),B
2 are 1.17 and 0.04

respectively. We observe that the latter is much smaller, which turns out to also be the

case for the inelastic contributions.

We pause here to comment on the Born contribution before moving on to the inelastic

contributions. One may also try to derive it by calculating the Compton amplitudes from

the first two Feynman diagrams in figure 3 (the “pole diagrams”) using the form factors

in eq. (2.2) as effective vertex functions, and then plugging them into eq. (3.7). The pole

diagrams give:

S
(0),B
1 (ν, Q2) = − iMνQ2

Q4 − 4M2ν2 − iε

[

F W
1 GS

M + F S
1 GW

M

]

+
iν

2M
F W

2 F S
2

S
(0),B
2 (ν, Q2) =

iνQ4

4M (Q4 − 4M2ν2 − iε)

[

F W
2 GS

M + GW
M F S

2

]

− iν

4M

[

F W
2 GS

M + GW
M F S

2

]

.

(5.4)

We split each expression into two term, where the first term contains a singularity at

ν2 = ν2
B and vanishes as 1/ν when ν → ∞, while the second term is regular and diverges

as ν when ν → ∞. It is easy to see that, retaining only the first term leads again to

eq. (5.2), apart from a numerically small difference originating from our accounting for the

BC sum rule in the DRs, effectively redefining the g2 contribution to dB. The regular terms

in eq. (5.4) lead to an extra small deviation from eq. (5.2). The origin of this deviation lies

in the Gerasimov-Drell-Hearn sum rule [82, 83] and its extension to finite Q2 [84] which

relate the regular low-energy term to an integral over the inelastic part of g1.

This discussion simply means that the definition of the “elastic” contribution is not

exactly the same in the diagrammatic and the dispersive representation. Of course, if we

were able to calculate the full (i.e. pole + seagull) T µν
γW exactly at all values of {ν, Q2} with

the diagrammatic approach, then the outcome must be identical to the DR analysis. But

since this is impossible, the dispersive representation provides a much better starting point.
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We want to also point out that refs. [52, 53] attempted to calculate the Born contribution

from the pole diagrams in figure 3 (let us call it d′

B).2 Should all terms be retained, they

would have obtained the following result:

d′

B = − 1

2̊gA

∫

∞

0

dQ2

Q2

1

(1 + rB)2

×
{

5 + 4rB

3

[

F W
1 GS

M + F S
1 GW

M

]

+
[

F W
2 GS

M + F S
2 GW

M

]

− 3τ

2
(1 + rB)2F W

2 F S
2

}

= 1.23(1) (5.5)

which only differs from the DR’s definition of dB in eq. (5.2) by a numerically small term.

For the benefit of interested readers, we also provide in appendix A an alternative derivation

of eq. (5.5) without making use of the invariant amplitudes.

6 Inelastic contributions

Extensive measurements of the structure function gN
1 were carried out in SLAC [85–87],

CERN [88–91], DESY [92] and JLab [93–97]. In particular, we utilize the results from the

EG1b experiment at JLab that measured the gp
1 [97] and gn

1 [96] in a wide range of {x, Q2},

from which the moments ΓN
i (i = 1, 3, 5) were computed in bins of Q2, common for p and

n, from 0.05 GeV2 to 3.5 GeV2. Full results are available in the supplementary material of

each respective paper.3 Data on g2 are generally scarce [94, 97, 99–102] and insufficient

for a fully data-based analysis. Fortunately, its contribution is generally expected to be

small due to the BC sum rule that forces the first moment of g2 to vanish identically when

accounting for elastic and inelastic contributions.

Since the data do not extend to an arbitrarily large Q2 needed to evaluate the integrals,

we make use of perturbative QCD results which are well under control theoretically above

a separation scale Q2
0, while directly using the experimental data that contains both per-

turbative and nonperturbative physics below that scale. Following our earlier works on the

vector RC [2, 3] we take Q2
0 = 2 GeV2. For the vector RC case, not only does Q2

0 = 2 GeV2

mark the onset of pQCD regime, it also corresponds to the scale, below which the quality of

data deteriorates severely leading to some sensitivity to Q2
0. In the case of the axial RC, this

scale lies well within the region covered by data, hence shifting it to a slightly higher value

(not lower because pQCD description starts to break down) does not change the result.

6.1 Contribution of g
(0)
1

As shown in eq. (4.7), the polarized structure function g
(0)
1 is simply related to {gN

1 } that

are measurable in DIS experiments. We define their moments as:

ΓN
i (Q2) ≡

∫ xπ

0
xi−1gN

1 (x, Q2) , (6.1)

2In the earlier versions of these refs., the author made some algebraic mistakes when dealing with the

symmetric loop integral of the form
∫

d4qqαqβF (ν, Q2) (i.e. eq. (3.8)). As a consequence, an incorrect

analytic formula which gave an unexpectedly large value of d′

B = 2.64(3) was obtained. The published

version of ref. [52] corrected these mistakes, but retained only the term proportional to (5 + 4rB)/3.
3There is a more recent measurement of gp

1 from JLab at low Q2 [98], but unfortunately it does not

measure gn
1 simultaneously.
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where xπ = Q2/
[

(M + mπ)2 − M2 + Q2
]

is the pion production threshold. Notice that the

definition above excludes the elastic contribution at x = 1, which is a general convention

adopted by most of the experimental papers. The first moment Γp−n
1 ≡ Γp

1 − Γn
1 is of

particular interest because it satisfies the polarized Bjorken sum rule [103, 104] at Q2 → ∞.

However, at large but finite Q2 it receives a number of corrections [105]:

Γp−n
1,th (Q2) =

|̊gA|
6

CBj(Q
2) +

∞
∑

i=2

µp−n
2i

Q2i−2
, large Q2 (6.2)

here the subscript “th” denotes the theory prediction (at large Q2). The first term at

the right hand side is the Bjorken sum rule with a pQCD correction factor,4 while the

second term summarizes the higher-twist (HT) effects starting from twist-four. The pQCD

correction factor is written as:

CBj(Q
2) = 1 −

∞
∑

n=1

c̃n

(

αs

π

)n

, (6.3)

where αs is the running strong coupling constant in the MS scheme, while the coefficients

{c̃n} are calculated at present to n = 4 [106, 107]:

c̃1 = 1

c̃2 = 4.583 − 0.333nf

c̃3 = 41.44 − 7.607nf + 0.177n2
f

c̃4 = 479.4 − 123.4nf + 7.697n2
f − 0.1037n3

f , (6.4)

with nf the number of active quark flavors, and we refer the reader to refs. [2, 3] for full

detail of the pQCD contribution and relevant discussions and references. In the meantime,

only the twist-four term among all the HT corrections needs to be included for our precision

goal. There are several recent determinations of the coefficient µp−n
4 [108–110] that are

largely consistent with each other. In this work we quote the value µp−n
4 = (−0.047 ±

0.020)M2 in ref. [109]. We find that at 2 GeV2, the inclusion of the twist-four correction

reduces the size of Γp−n
1,th by about 13%, but its total contribution to d1 through the integral

at Q2 > 2 GeV2 is only about 1%. Coming back to our problem, we write

d1 = − 3

2̊gA

∫

∞

0

dQ2

Q2

M2
W

M2
W + Q2

Γ̄p−n
1 (Q2) ,

Γ̄p−n
1 (Q2) ≡

∫ xπ

0
dx

4(5 + 4r)

9(1 + r)2

{

gp
1(x, Q2) − gn

1 (x, Q2)
}

. (6.5)

When Q2 → ∞ the function Γ̄p−n
1 reduces to Γp−n

1 , but at low Q2 the two are not identical

due to target mass corrections ∼ M2/Q2 contained in the factor f(x, Q2) = 4(5+4r)/(9(1+

r)2), where r =
√

1 + 4x2M2/Q2

4Please be reminded that one should not consider again the running effect of the QED coupling constant

in �V
γW and �A

γW , because it is already contained in the factor δQED

HO in eq. (2.7). So, throughout this paper

we always take αem = 7.2973525693(11) × 10−3 as a constant.
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Figure 4. Left panel: comparison between the function 4(5 + 4r)/(9(1 + r)2) (blue solid curve),

its global fit approximation (orange dashed curve) and the Taylor-expansion approximation (red

solid curve) at Q2 = 1 GeV2, 0 < x < xπ. Right panel: data points of Γ̄p−n
1 reconstructed from the

EG1b experiment [96, 97] versus the theory prediction at large Q2 with (red band) and without

(brown curve) the twist-four correction.

We use the following strategy to reconstruct the full Γ̄p−n
1 at low Q2 from data. We

fit f(x, Q2) as function of x at fixed Q2 as

f(x, Q2) = a(Q2) + b(Q2)x2 + c(Q2)x4 + . . . , 0 < x < xπ , (6.6)

and obtain the three fitting parameters a(Q2), b(Q2) and c(Q2) by first dividing 0 < x < xπ

into, say, 1000 equal intervals, evaluating the 1000 respective discrete values for f(x, Q2),

and performing a three-parameter fit with these discrete points using, e.g. Mathematica.

We find that this procedure allows for a very precise reproduction of the entire curve at

0 < x < xπ, where the difference between the original and the fitted curve is negligible for

all practical purposes. Contrarily, a simple Taylor expansion in powers of x2M2/Q2,

a(Q2) + b(Q2)x2 + c(Q2)x4
≇ 1 − 10M2x2

9Q2
+

7M4x4

3(Q2)2
(6.7)

is only applicable at high Q2 and low x but significantly deviates for larger x. It breaks

down completely at Q2 = 0 where it becomes divergent, whereas f(x, 0) remains finite. As

an illustration, the two approximated expressions evaluated at a representative value of

Q2 = 1 GeV2 are plotted together with the analytic form in the left panel of figure 4, and

we clearly see that eq. (6.6) nicely reproduces the latter for the full range of x.

We thus reconstruct the full Γ̄p−n
1 in each bin of Q2 in terms of the lowest Mellin

moments,

Γ̄p−n
1 (Q2) = a(Q2)Γp−n

1 (Q2) + b(Q2)Γp−n
3 (Q2) + c(Q2)Γp−n

5 (Q2) + . . . , (6.8)

where Γp−n
i (i = 1, 3, 5) are obtained from refs. [96, 97]. We find that the difference between

Γ̄p−n
1 and Γp−n

1 (i.e., the effect of higher moments) does not exceed 3.5% for Q2 = 2 GeV2,

which implies a negligible difference in the integral at Q2 > 2 GeV2. Therefore we will not
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distinguish between the two above 2 GeV2. In contrast, the higher-twist correction due to

µp−n
4 reaches 13% and needs to be kept along.

The right panel in figure 4 shows the reconstructed Γ̄p−n
1 data points versus the large-

Q2 theory prediction using eq. (6.2). We find that the theory and experiment match well

at Q2 > 2 GeV2 (observe how the twist-four correction is needed to reconcile the two),

which justifies our choice of Q2
0 = 2 GeV2 as the separation scale between the perturbative

and non-perturbative regime. We therefore evaluate d1 separately in these two regions.

At Q2 < Q2
0, we fit three curves that correspond to the upper bounds, central values and

lower bounds of the discrete data points respectively, and evaluate the Q2-integral and its

uncertainty by integrating these three curves. Since the uncertainties of the data points are

mainly systematics, this prescription takes into account the possible positive correlation

effects. The resulting uncertainty is thus a conservative one; it is likely that it can further

be reduced, but this would require a dedicated study of the systematic uncertainties of the

data which lies beyond the scope of the present work. Meanwhile, at Q2 > Q2
0 we evaluate

the integral using the theory prediction in eq. (6.2). The results are as follows:

d<
1 = − 3

2̊gA

∫ Q2
0

0

dQ2

Q2

M2
W

M2
W + Q2

[

Γ̄p−n
1 (Q2)

]

data
= 0.30(4)data

d>
1 = − 3

2̊gA

∫

∞

Q2
0

dQ2

Q2

M2
W

M2
W + Q2

[

|̊gA|
6

CBj(Q
2) +

µp−n
4

Q2

]

= 1.83(1)HT , (6.9)

where we neglected the uncertainty associated with the leading twist contribution compared

to those coming from the data at low Q2 and the HT correction (i.e. the coefficient µp−n
4 )

at high Q2. The total contribution of g1 reads,

d1 = d<
1 + d>

1 = 2.14(4)data(1)HT . (6.10)

We note that the integral below Q2 ≤ 0.05 GeV2 not covered by the data but making

part of d<
1 is controlled by the isovector GDH sum rule [82, 83], dΓp−n

1 (Q2 = 0)/dQ2 =

(κ2
n − κ2

p)/8M2, with κp,n denoting the proton’s (neutron’s) anomalous magnetic moment,

respectively. Connecting the GDH-fixed value at Q2 = 0 to the lowest data point pro-

duces a negligible dlow Q2

1 . 0.003 contribution which is safely accommodated within the

uncertainty.

6.2 Contribution of g
(0)
2

In fact, we have already implemented this sum rule in the derivation of the DR of S
(0)
2 .

We emphasize the importance of this procedure for a reliable estimate of the contribution

of g
(0)
2 to �A

γW : since experimental data typically only cover the inelastic region, enforcing

an exact vanishing of the first moment of g
(0)
2 while operating with phenomenological

parametrizations of different pieces can be a delicate matter. The explicit use of the BC

sum rule thus precludes any numerically significant mistake caused by an imperfection of

these parametrizations. As a result, the dispersive representation of �A
γW only contains

higher moments of g
(0)
2 , in which the non-perturbative physics at small x is suppressed.

Additionally, since every extra power of x2 is accompanied by 1/Q2, the contribution of
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g
(0)
2 bears no large logarithms. Due to the smallness of the g2 contribution, we opt for an

approximate treatment and include this result in the estimate of the systematic uncertainty.

The inelastic contribution coming from g
(0)
2 reads,

d2 =
2

g̊A

∫

∞

0

dQ2

Q2

M2
W

M2
W + Q2

∫ xπ

0

dx

(1 + r)2

4M2x2

Q2

[

gp
2(x, Q2) − gn

2 (x, Q2)
]

, (6.11)

where the isospin relation in eq. (4.7) is used. Rather than relying on data on gN
2 , we

decompose g2 into twist-two and twist-three (and higher) components [1], gN
2 = gN

2,tw2 +

gN
2,tw3+, and use the Wandzura-Wilczek relation [111] for the former,

gN
2,tw2(x, Q2) = −gN

1 (x, Q2) +

1
∫

x

dy

y
gN

1 (y, Q2) . (6.12)

Notice that the relation above should be understood to not contain the elastic contribution

at x = 1, because otherwise one could take xπ < x < 1 at both sides, and then the left

hand side and the first term at the right hand side would vanish but the second term at

the right hand side would not, which is a contradiction. With this in mind, we multiply

both sides by xi−1 and integrate them at 0 < x < xπ to obtain:

∫ xπ

0
xn−1gN

2,tw2(x, Q2) =
1 − n

n
ΓN

n (Q2) , (6.13)

where ΓN
n is defined in eq. (6.1). Therefore, we may use the available information of g1 to

evaluate the twist-two contribution to d2.

Again, we discuss the integral at large and small Q2 separately. For Q2 > Q2
0, we keep

the leading term,

d>
2,tw2 ≈ − 4

3̊gA

∫

∞

Q2
0

dQ2

Q2

M2
W

M2
W + Q2

M2

Q2
Γp−n

3 (Q2) , (6.14)

where we have used eq. (6.13) and set r → 1. The Q2 dependence of the W propagator

can also be safely neglected as the integral converges. There is no simple sum rule for Γp−n
3

at large Q2, but we may adopt a naïve valence quark picture that assumes each valence

quark carries 1/3 of the nucleon’s momentum. This gives:

gp−n
1 (x) ≈ |̊gA|

6
δ (x − 1/3) , large Q2 (6.15)

which automatically reproduces the free polarized Bjorken sum rule. This naïve picture

predicts Γp−n
3 ≈ 0.11Γp−n

1 , which we may check against the experimental data: at Q2 ≈
3.4 GeV2, refs. [96, 97] give Γp−n

1 ≈ 0.1558, Γp−n
3 ≈ 0.0128, i.e. Γp−n

3 ≈ 0.08Γp−n
1 . So our

naïve picture overestimates the size of Γp−n
3 by some 30%, an acceptable uncertainty given

our precision goal. With the above, we obtain:

d>
2,tw2 ≈ 2

81

∫

∞

Q2
0

dQ2

Q2

M2

Q2
=

2M2

81Q2
0

= 0.010(3) . (6.16)
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Next we turn to the small-Q2 region where accounting for the leading twist may not

be sufficient. As before, the leading twist contribution

d<
2,tw2 =

2

g̊A

∫ Q2
0

0

dQ2

Q2

∫ xπ

0

dx

(1 + r)2

4M2x2

Q2

[

gp
2,tw2(x, Q2) − gn

2,tw2(x, Q2)
]

, (6.17)

is reconstructed by using the WW relation and the x-integral related to measured moments

of g1 by performing a two parameter fit of the kinematical function f ′(x, Q2) for fixed Q2

(since the first moment is removed by the BC sum rule, a two-parameter fit is already

sufficient for our precision goal).

f ′(x, Q2) =
1

(1 + r)2

4M2x2

Q2
= b′(Q2)x2 + c′(Q2)x4 + . . . , 0 < x < xπ . (6.18)

Using eq. (6.13), we obtain

∫ xπ

0

dx

(1+r)2

4M2x2

Q2

[

gp
2,tw2(x,Q2)−gn

2,tw2(x,Q2)
]

≈ −2

3
b′(Q2)Γp−n

3 (Q2)− 4

5
c′(Q2)Γp−n

5 (Q2) .

(6.19)

With Γp−n
i taken from refs. [96, 97], this gives,

d<
2,tw2 ≈ − 2

g̊A

∫ Q2
0

0

dQ2

Q2

[

2

3
b′(Q2)Γp−n

3 (Q2) +
4

5
c′(Q2)Γp−n

5 (Q2)

]

= 0.01(1) , (6.20)

where we assigned a conservative 100% uncertainty to the entire contribution.

To quantify higher twist contributions we recall the definition of the “color polarizabil-

ity” [112, 113]

d2(Q2) = 3

∫ 1

0
dxx2[g2(x, Q2) − g2,tw2(x, Q2)], (6.21)

of which we only consider the inelastic part d̄2(Q2) coming from the interval 0 ≤ x ≤
xπ [114] since the elastic part is already taken into account. In terms of this polarizability

and neglecting higher moments, we obtain for the contribution of twist-three and higher,

d<
2,tw3+ =

2M2

3̊gA

∫ Q2
0

0

dQ2

Q4
[d̄p

2(Q2) − d̄
n
2 (Q2)] . (6.22)

For numerical estimates, we rely on the recent analysis of generalized spin polarizabilities

of the nucleon in baryon chiral effective theory [114]. We obtain, assigning a conservative

100% uncertainty,

d<
2,tw3+ = 0.03(3) . (6.23)

Combining the various pieces we finally arrive at

d2 = 0.05(3) (6.24)

as our estimate of the total inelastic contribution from g
(0)
2 . We observe that it is two

orders of magnitude smaller than d1, following the same hierarchy as in dB.

The inelastic contribution in our DR analysis then reads d1+d2 =2.19(4)data(1)HT(3)g2
.

This is to be compared with 2.31(9) from refs. [52, 53], and we see that the two do not quite
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agree within error bars. While being identical in the large-Q2 treatment, their estimation

of the low-Q2 contribution is largely model-based, raising questions about the reliability of

the uncertainty. In contrast, in our treatment the low-Q2 contribution is completely fixed

by experimental data without any further assumption, apart from the small g2 correction

for which only few assumption were made, which will become testable as soon as new,

higher-quality low-Q2 data for g2 will become available.

7 Final discussions

Collecting all the results from section 5 and 6 gives:

�A
γW = 3.96(1)FF(5)data(1)HT(3)g2

× 10−3 = 3.96(6) × 10−3 , (7.1)

where the uncertainties come from the elastic form factors, the low-Q2 g1 data, the HT-

correction to g1 and g2, respectively. We compare this to our recent update of �V
γW using

indirect lattice inputs: �V
γW = 3.83(11) × 10−3 [7]. These two numbers are very close to

each other, and in fact their difference is consistent with zero:

�A
γW − �V

γW = 0.13(11)V (6)A × 10−3 . (7.2)

Using eqs. (2.8), (7.2) and the PDG average λ = −1.2756(13) [1], we obtain:

g̊A = −1.2754(13)exp(2)RC , (7.3)

which is consistent with the result from the current best lattice QCD determination. Our

result indicates that there is no practical distinction between λ and g̊A, unless the experi-

mental precision of the former and the lattice precision of the latter have reached 3 × 10−4

or better.

We wrap up with some discussions of the future prospects. Within the same DR

framework, a much better precision is achieved for �A
γW than for �V

γW thanks to the

existence of high-quality data of the structure function g1 at Q2 < 2 GeV2. On the other

hand, the precision of �V
γW is limited by the low-quality data of the structure function F3

from neutrino (antineutrino)-nucleus scattering experiments in the 80s [115, 116]. Better-

quality data may come from the Deep Underground Neutrino Experiment (DUNE) in the

next decade [117, 118].

It was pointed out that a direct lattice QCD calculation of �V
γW is a promising way to

proceed at the present stage [119]. Several exploratory calculations of mesonic γW -box di-

agrams have shown great success [67, 120] and the same technology is directly applicable to

nucleon. At present, no such direct calculation on the nucleon is available yet. A more in-

volved comparison of the DR result for �V
γW with the lattice computation of the respective

quantity on the pion, amended with further phenomenological ingredients shows a nearly

perfect agreement [7]. Even with this reassuring agreement, it is not unthinkable of that a

direct lattice calculation could still disagree with the phenomenological, DR-based evalua-

tion. Examples of such an unexpected disagreement are the pion-nucleon sigma term σπN

(see ref. [43] and references therein) and, more recently, the hadronic vacuum polarization
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contribution to gµ − 2 [121, 122]. They show that even carefully-performed first-principles

calculations or fully data-driven analysis may still contain unknown, previously unantici-

pated systematic effects which may seriously affect the implications of the corresponding

precision experiments. Given these precedents, it is always useful to cross-check the lattice

calculations with alternative methods. Our new result of �A
γW is perfectly up to this task as

it is a solid phenomenological determination with the uncertainty very well under control.

Further effort from the DR side should be dedicated to RCs to the GT strength in

nuclear mirror decays where a recent study [123] revealed inconsistencies in the previous

analyses. Removing these inconsistencies led to a better agreement for the Vud extracted

across mirror and superallowed nuclear decays, as well as neutron decay. However, ref. [123]

only partially accounted for the γW -box contribution. The dispersion formulation of the

�A
γW correction developed in this work can be directly applied to mirror systems. Following

refs. [3, 4], nuclear modifications of the universal free-neutron γW -box correction can be

computed, and we defer this task to future work.
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A Alternative derivation of eq. (5.5)

In this appendix we outline a derivation of eq. (5.5), namely the elastic contribution in

the diagrammatic representation, directly from the tensor T γW
µν without going through its

invariant amplitudes. It involves some interesting tricks to deal with fermionic spinors and

thus is worthwhile to be displayed for pedagogical purposes.

We start by computing T γW
µν from the direct (D) and crossed (C) pole diagrams in

figure 3. Using the elastic form factors as effective vertices, we obtain:

T γW,B
µν =

ūs(p)ΓD
µνus(p)

2Mν − Q2
+

ūs(p)ΓC
µνus(p)

−2Mν − Q2
(A.1)
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where

ΓD
µν =

[

F p
1 γµ − iF p

2

2M
σµαqα

]

i
[

/p + /q + M
]

[

F W
1 γν +

iF W
2

2M
σνβqβ + GAγνγ5 − GP

2M
γ5qν

]

ΓC
µν =

[

F W
1 γν +

iF W
2

2M
σνβqβ + GAγνγ5 − GP

2M
γ5qν

]

i
[

/p − /q + M
]

[

F n
1 γµ − iF n

2

2M
σµαqα

]

(A.2)

are matrices in the Dirac space.

We can get rid of the nucleon spinors ūs(p), us(p) in the expression of T γW,B
µν using the

following trick. First, we recall that any Dirac structure Γ can be decomposed in terms of

standard Dirac basis 1, γ5, γα, γαγ5, σαβ using the following identity:

Γ =
1

4
Tr[Γ] +

1

4
Tr[γ5Γ]γ5 +

1

4
Tr[γαΓ]γα − 1

4
Tr[γαγ5Γ]γαγ5 +

1

8
Tr[σαβΓ]σαβ . (A.3)

Next, we have the following identities when a Dirac basis is sandwiched between ūs(p)

and us(p):

ūs(p)us(p) = 2M

ūs(p)γ5us(p) = 0

ūs(p)γαus(p) = 2pα

ūs(p)γαγ5us(p) = 2Sα

ūs(p)σαβus(p) =
2

M
ǫαβρσpρSσ . (A.4)

Combining eqs. (A.3) and (A.4), we obtain:

ūs(p)Γi
µνus(p) =

M

2
Tr[Γi

µν ] +
pα

2
Tr[γαΓi

µν ] − Sα

2
Tr[γαγ5Γi

µν ] +
1

4M
ǫαβρσpρSσTr[σαβΓi

µν ],

(A.5)

where i = D, C. The right hand side is free from the nucleon spinors. The trace of the

Dirac matrices can be performed using various Mathematica packages, so we do not display

the explicit results here.

We then plug our expression of T γW,B
µν , now free from nucleon spinors, into eq. (3.5)

and use eq. (3.8) to simplify the integrals. Finally, we perform the Wick rotation using

eq. (4.5) and integrate out the variable u analytically. This brings us exactly to eq. (5.5).
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