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DISPERSION RELATION FOR WATER WAVES
WITH NON-CONSTANT VORTICITY

PASCHALIS KARAGEORGIS

Abstract. We derive the dispersion relation for linearized small-amplitude gravity waves
for various choices of non-constant vorticity. To the best of our knowledge, this relation is
only known explicitly in the case of constant vorticity. We provide a wide range of examples
including polynomial, exponential, trigonometric and hyperbolic vorticity functions.

1. Introduction

Consider the classical water wave problem with a free surface over a flat bottom under
the influence of gravity. Using bifurcation and degree theory, Constantin and Strauss [1]
proved the existence of large-amplitude, two-dimensional, inviscid, periodic traveling waves
with vorticity. A relation that arises in their work, also known as the dispersion relation,
is the necessary and su�cient condition for local bifurcation. It is known explicitly in the
case of constant vorticity [1, 4] but not for any other vorticity functions. Our goal in this
paper is to provide a wide range of examples of non-constant vorticity functions for which
the dispersion relation can be determined explicitly.

Before we go on, however, let us first summarize the existence result of Constantin and
Strauss [1]. We fix c > 0 and we look for periodic, traveling waves with speed c. Let (u, v)
denote the velocity field and define the relative stream function  (x, y) by

 
x

= �v,  
y

= u� c.

The vorticity ! = v
x

� u
y

satisfies ! = �� . Assuming that u < c, it can be expressed as
a function of  , say ! = �( ). The traveling wave problem now takes the form

8
>><

>>:

�� = �( ) in 0 < y < ⌘(x)
 = 0 on y = ⌘(x)

|r |2 + 2gy = Q on y = ⌘(x)
 = �p0 on y = 0

9
>>=

>>;
. (1.1)

Here, y = ⌘(x) describes the unknown free surface, g > 0 is the acceleration due to gravity
and Q > 0 is a constant, while

p0 =

Z
⌘(x)

0

 
y

(x, y) dy =

Z
⌘(x)

0

[u(x, y)� c] dy < 0

is the relative mass flux. It is easy to check that p0 is independent of x.
Next, we transform (1.1) into a problem over a fixed domain. Note that  is constant on

the free surface and also on the flat bottom, being decreasing in y since  
y

= u � c < 0 by
assumption. It is thus natural to use the change of variables

q = x, p = � (x, y).
1
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This allows us to express the traveling wave problem (1.1) in the equivalent form
8
<

:

(1 + y2
q

)y
pp

� 2y
p

y
q

y
pq

+ y2
p

y
qq

= ��(�p)y3
p

in p0 < p < 0
1 + y2

q

+ (2gy �Q)y2
p

= 0 on p = 0
y = 0 on p = p0

9
=

; . (1.2)

We refer the reader to [1, Section 2] for more details. It is easy to see that there is a curve of
trivial solutions corresponding to parallel shear flows. These are independent of q, so they
satisfy an ODE which can be readily solved. Let us now introduce the notation

�(p) =

Z
p

0

�(�s) ds, �min = min
[p0,0]

�(p)  0 (1.3)

and recall the following elementary fact from [1].

Lemma 1 (Parallel shear flows). For each �2�min < � < Q, there is a trivial solution

y(p) =

Z
p

p0

dsp
�+ 2�(s)

(1.4)

of equation (1.2) which corresponds to a parallel shear flow with velocity field

u(y) = c�
p
�+ 2�(p(y)), v(y) = 0. (1.5)

Here, p(y) is the inverse of y(p), which is related to the stream function by p(y) = � (y),
while c > 0 is the speed of propagation. The corresponding water depth is given by

d = y(0) =

Z 0

p0

dsp
�+ 2�(s)

=
Q� �

2g
. (1.6)

The linearization of (1.2) around the trivial solution (1.4) is easily found to be

m
pp

+ y2
p

m
qq

= �3�(�p)y2
p

m
p

subject to gm = �3/2m
p

on p = 0 and m = 0 on p = p0. To find periodic solutions of this
linearized problem, one can look for functions of the form m = M(p) cos(kq), where k is an
integer. This approach leads to the eigenvalue problem (1.7) and it is closely related to the
local bifurcation result of Constantin and Strauss [1].

Theorem 1 (Existence of small-amplitude periodic solutions). Let k > 0 be a given wave
number and assume that the vorticity function is su�ciently regular. Then there is a curve
of small-amplitude 2⇡

k

-periodic solutions of (1.1) bifurcating from the trivial flows of the
previous lemma if and only if the Sturm-Liouville problem

�M 00 +
3

2
� 0M 0 = k2M, M(p0) = 0, �3/2M 0(0) = gM(0) (1.7)

has a nontrivial solution M(p) for some � > �2�min. Here, �(p) is defined by

�(p) = �+ 2�(p) (1.8)

for each p0  p  0, while g > 0 denotes the acceleration due to gravity.

The main di�culty in addressing the solvability of (1.7) is that the solution of this problem
is not generally explicit. A typical exception to this rule is the case of constant vorticity, in
which case (1.7) can be transformed into an ODE with constant coe�cients. To the best of
our knowledge, no other exceptions seem to be known.

2
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The main goal of this paper is to provide a wide range of non-constant vorticity functions
for which the eigenvalue problem (1.7) can be solved explicitly. Our approach is inspired by
the case of constant vorticity, however, we are able to treat a much larger class of examples
including polynomial, exponential, trigonometric and hyperbolic vorticity functions.

Our main result is Theorem 2, which is given in Section 2 together with its proof. Here,
we use a rather technical change of variables, yet this is dictated by the case of constant
vorticity that we briefly recall in the beginning of the section. Several applications of our
main result are given in Section 3, where Examples 1 through 8 are discussed.

The dispersion relation provided by Theorem 2 appears in (2.13) and obviously applies
for all examples, so we shall not bother to restate it in each case. We only do so in the cases
of linear vorticity (Example 3) and exponential vorticity (Example 8), as those are cases for
which the dispersion relation (2.13) can be simplified quite a bit.

2. The main result

In this section, we present our main result regarding explicit solutions of

�(p)M 00(p) +
3

2
� 0(p)M 0(p) = k2M(p), (2.1)

where �(p) = �+ 2�(p) is given and k > 0 is the wave number. Our first step is to express
this equation in terms of the physical variables, see also [2, Lemma 2.3]. We note that our
definitions (1.3)-(1.6) imply

dp

dy
=
p
�+ 2�(p(y)) = c� u(y),

du

dy
= ��0(p(y)) = ��(�p(y)) (2.2)

as well as p(d) = 0 and p(0) = p0. Using the change of variables

'(y) = (c� u(y)) · M(p(y)), (2.3)

we can thus transform equation (2.1) into the Rayleigh equation

'̈(y)� k2'(y) =
ü(y)'(y)

u(y)� c
, (2.4)

where dots denote derivatives with respect to y. We now recall (2.2) and express ü(y) in
terms of the vorticity. This allows us to write the Rayleigh equation (2.4) as

'̈(y)� k2'(y) = ��0(�p(y))'(y). (2.5)

If the vorticity is linear, then this equation is linear with constant coe�cients, so it can
certainly be solved explicitly. Assume the vorticity is constant for simplicity. If we impose
the boundary condition M(p0) = 0 as in (1.7), then '(0) = 0 by (2.3) and so

'(y) = c1 sinh(ky)

for some constant c1. The corresponding solution of the original problem (2.1) is

M(p) =
c1 sinh(ky(p))p

�+ 2�(p)
=

c1p
�(p)

· sinh

 Z
p

p0

k dsp
�(s)

!
, (2.6)

where �(p) = �+ 2�(p), and every solution of (2.1) with M(p0) = 0 has this form.
3
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The computation above shows that the solution of the eigenvalue problem (1.7) can be
determined explicitly, if the vorticity is linear. To extend this observation to more general
vorticity functions, we now look for solutions of (1.7) that have the form

M(p) =

s
G(p)

�(p)
· sinh H(p) (2.7)

for some functions G, H . As it turns out, the unknown functions G, H must be related in a
very simple way. More precisely, (2.7) satisfies the ODE in (1.7) if and only if

⇥
2�GG00 � �(G0)2 + � 0GG0 � 2� 00G2 + 4�G2(H 0)2 � 4k2G2

⇤
sinh H

+
⇥
4�G2H 00 + 4�GG0H 0 + 2� 0G2H 0⇤ cosh H = 0. (2.8)

To ensure that the coe�cient of cosh H is zero, we have to ensure that

H 00

H 0 +
G0

G
+
� 0

2�
= 0

and this can be trivially integrated to yield the equivalent condition

H 0(p)G(p)
p
�(p) = a (2.9)

for some a 2 R. Assuming (2.9) and returning to (2.8), we end up with the ODE

2�GG00 � �(G0)2 + � 0GG0 � 2� 00G2 = 4k2G2 � 4a2. (2.10)

As an ODE for �, this can be easily solved by writing the left hand side as

2�GG00 � �(G0)2 + � 0GG0 � 2� 00G2 = �2G3/2

✓
G3/2

✓
�

G

◆0◆0

and then integrating twice. This approach already generates a large number of examples,
but one can also replace the hyperbolic sine in (2.7) by a regular sine, in which case (2.9) is
still applicable and the only change in (2.10) is that �4a2 becomes 4a2. We shall actually
treat these cases together in our next (and main) result.

Theorem 2. Let p0 < 0 < k. Suppose �(p), G(p) are positive and C2 on [p0, 0] with

✓
G3/2

✓
�

G

◆0◆0

=
2z � 2k2G2

G3/2
(2.11)

for some constant z 2 R. Define the bifurcation parameter � and the vorticity � by

� := �(0), �( ) = �(�p) :=
1

2
� 0(p) (2.12)

and consider the eigenvalue problem (1.7) which corresponds to this vorticity. Then (1.7) is
solvable if and only if the dispersion relation

g

�3/2
=

G0(0)

2G(0)
� �(0)

�
+

1

�1/2G(0)F (p0)
(2.13)

4
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holds, where F (p0) is given by

F (p0) =

8
>>>><

>>>>:

1p
z

tanh
R 0

p0

p
z ds

G(s)
p
�(s)

if z > 0
R 0

p0

ds

G(s)
p
�(s)

if z = 0

1p
|z|

tan
R 0

p0

p
|z| ds

G(s)
p
�(s)

if z < 0

9
>>>>=

>>>>;

. (2.14)

There are several things that are worth noting about this theorem.
1. Given any function G, equation (2.11) can be easily integrated twice to obtain �, and

this also determines the vorticity � by means of (2.12). Given any function G, in particular,
one can find a vorticity function � for which the dispersion relation is given by (2.13).

2. In practice, one would like to determine the function G in terms of the vorticity �
and not the other way around. This is generally a di�cult task because it involves solving a
nonlinear instead of a linear ODE. Nonetheless, it is still feasible for a wide range of vorticity
functions, as we show in Examples 1 through 8.

3. The integral (2.14) that appears in the dispersion relation is an elementary integral
only for two of our eight examples; see the case of linear vorticity (Example 3) and that of
exponential vorticity (Example 8).

4. Our assumption that � is positive is equivalent to the assumption � > �2�min that is
needed for the trivial flows of Lemma 1 to be defined. Our assumption that G is positive
can easily be replaced by the assumption that G has one sign; namely, equation (2.11) is
equivalent to equation (2.18) and G satisfies the latter if and only if �G does.

5. The bifurcation parameter � that appears in the dispersion relation (2.13) can also be
expressed in terms of the shear flows of Lemma 1, namely

p
� = c� u(d) by (1.5)-(1.6).

6. The dispersion relation (2.13) is the necessary and su�cient condition for the solvability
of the eigenvalue problem (1.7). The actual solution of this problem appears in (2.20) for
the case z > 0, in (2.21) for the case z < 0 and in (2.22) for the case z = 0.

Proof. We temporarily ignore one of the boundary conditions in (1.7) and focus on

�M 00 +
3

2
� 0M 0 = k2M, M(p0) = 0. (2.15)

To solve this explicitly, we recall that �, G are positive and we change variables by

M(p) =

s
G(p)

�(p)
· (p). (2.16)

Then a short computation shows that (2.15) is equivalent to

4�G2 00 + 2(2�GG0 + � 0G2) 0

+
�
2�GG00 � �(G0)2 + � 0GG0 � 2� 00G2 � 4k2G2

�
 = 0 (2.17)

subject to  (p0) = 0. Note that our assumption (2.11) can also be written as

2�GG00 � �(G0)2 + � 0GG0 � 2� 00G2 � 4k2G2 + 4z = 0. (2.18)

This allows us to reduce the problem (2.15) to the equivalent problem

2�G2 00 + (2�GG0 + � 0G2) 0 � 2z = 0,  (p0) = 0. (2.19)
5
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Suppose first that z > 0. Then the general solution of the last ODE is given by

 (p) = c1 sinh

 Z
p

p0

p
z ds

G(s)
p
�(s)

!
+ c2 cosh

 Z
p

p0

p
z ds

G(s)
p
�(s)

!

and the boundary condition  (p0) = 0 requires that c2 = 0. In particular, every solution of
the problem (2.15) has the form

M(p) =

s
G(p)

�(p)
· c1 sinh

 Z
p

p0

p
z ds

G(s)
p
�(s)

!
(2.20)

for some constant c1. We now turn to the original eigenvalue problem (1.7), namely (2.15)
with an additional boundary condition which reads

M 0(0)

M(0)
=

g

�3/2
.

Using logarithmic di↵erentiation, we see that (2.20) satisfies this condition if and only if

g

�3/2
=

G0(0)

2G(0)
� � 0(0)

2�(0)
+

1

G(0)
p
�(0)F (p0)

,

where F (p0) is given by (2.14). Since �(0) = � and � 0(0) = 2�(0), the result follows.
When z < 0, our previous approach applies with minor changes to give

M(p) =

s
G(p)

�(p)
· c1 sin

 Z
p

p0

p
|z| ds

G(s)
p
�(s)

!
(2.21)

instead of (2.20), while the analogous solution for the case z = 0 is

M(p) =

s
G(p)

�(p)
· c1

Z
p

p0

ds

G(s)
p
�(s)

. (2.22)

In either of these cases, the dispersion relation can be obtained exactly as before.

3. Some examples

In this section, we give several applications of Theorem 2. More precisely, we give several
choices of positive functions �, G such that (2.11) holds. In each case, the dispersion relation
is given by (2.13) and we shall only bother to restate it for Examples 3 and 8, namely the
ones for which the dispersion relation can be simplified to a large extent.

In our first two examples, we start with a function G and find a vorticity function � for
which our theorem applies. In all other examples, we follow the exact opposite approach
and start with the vorticity function, instead.

Example 1 (Polynomial vorticity). Let G(p) = (1 � ap)n for some a > 0 and some real
number n other than ±2, 2/3. Integrating (2.11) twice gives

�(p) = 2c1(1� ap)n +
2c2(1� ap)1�n/2

a(3n� 2)
+

4z(1� ap)2�2n

a2(3n� 2)2
+

4k2(1� ap)2

a2(n2 � 4)
.

6
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The coe�cients c1, c2, z can be arbitrary, but we do need �(p) to be positive on [p0, 0]. An
easy way to ensure this is to assume c1, c2, z are non-negative and n > 2. The vorticity � is
then determined using (2.12). In the special case c2 = z = 0, one finds that

�( ) = �anc1(1 + a )n�1 � 4k2(1 + a )

a(n2 � 4)
,

where  = �p as usual; the only restrictions in this case are a > 0, c1 � 0 and n > 2.

Example 2 (Exponential vorticity #1). Let G(p) = eap for some a 6= 0 and let z 2 R be
arbitrary. Then (2.11) can be easily integrated twice to give

�(p) = c1e
ap + c2e

�ap/2 +
4k2

a2
+

4ze�2ap

9a2
.

If we require c1, c2, z to be non-negative, then � is positive and our theorem applies. Once
again, the corresponding vorticity is given by (2.12), namely

�( ) =
ac1

2ea 

� ac2e
a /2

4
� 4ze2a 

9a
.

Example 3 (Linear vorticity). Suppose �( ) = a + b for some a, b 2 R. Then

�(p) = �+ 2

Z
p

0

(b� as) ds = �+ 2bp� ap2

so � 00(p) = �2a. In particular, (2.11) holds with G(p) = 1 and z = k2 � a. The dispersion
relation (2.13) provided by Theorem 2 involves the integral

Z 0

p0

ds

G(s)
p
�(s)

=

Z 0

p0

dsp
�+ 2�(s)

,

which is equal to the depth d by (1.6). Thus, the dispersion relation (2.13) reduces to

�� bF (d)�1/2 � gF (d) = 0, (3.1)

where F (d) is given by (2.14), namely

F (d) =

8
><

>:

tanh(d
p

k

2�a)p
k

2�a

if a < k2

d if a = k2

tan(d
p

a�k

2)p
a�k

2 if a > k2

9
>=

>;
.

Needless to say, one can also solve the quadratic equation (3.1) and write it as

p
� =

bF (d)

2
± 1

2

p
b2F (d)2 + 4gF (d), (3.2)

where the sign is chosen so that
p
� = c � u(d) is positive. To the best of our knowledge,

this dispersion relation was only known in the case of constant vorticity, in which case it
goes back to [4], see also [1, 3].

Example 4 (Quadratic vorticity). Suppose �( ) = a 2 for some a 6= 0 and let

G(p) =
50a3p3

3
� 20a2k2p2 + 16ak4p + (25a2�� 16k6), �(p) = �+

2ap3

3
.

7
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Then one can verify that (2.18), or equivalently (2.11), holds with

z = k2(1125a4�2 � 1056a2k6�+ 256k12) > 0.

We actually came up with this example by looking for solutions of (2.18) for which �, G are
both polynomials. The same approach applies to any quadratic vorticity whatsoever, but
the corresponding cubic solution G looks much messier in the general case. Note that � is
monotonic for this example and that the same is true for G, since

G0(p) = 2a(25a2p2 � 20ak2p + 8k4)

and the discriminant of the quadratic is �400a2k4. In particular, positivity of �, G on the
interval [p0, 0] amounts to positivity of �, G at the endpoints of the interval.

Example 5 (Cubic vorticity). Suppose �( ) = a 3 + b for some a, b 2 R and let

G(p) =
9a2p4

2
+ 3a(k2 + 3b)p2 + (2k4 + 6bk2 � 9a�), �(p) = �� ap4

2
� bp2.

Then one can verify that (2.18) holds with

z = 2k2(2k4 + 6bk2 � 9a�)(k4 + 2bk2 � 6a�� 3b2).

This example was also obtained by looking for polynomial solutions of (2.18), an approach
that no longer works for a more general cubic or even a quartic vorticity. To ensure that our
theorem is applicable on any interval [p0, 0] whatsoever, we impose the conditions

G(0) = 2k2(k2 + 3b)� 9a� > 0; a < 0 < �; b  0. (3.3)

Assuming those, � is decreasing with �(0) > 0, so it is positive on [p0, 0], while

G0(p) = 6ap(3ap2 + k2 + 3b).

If it happens that k2 + 3b  0, then G is also decreasing with G(0) > 0, so we are done. If
it happens that k2 + 3b > 0, then G has a unique critical point p⇤ < 0, where

p⇤ = �

s
k2 + 3b

3|a| , G(p⇤) = �9a� +
3

2
(k2 + 3b)(k2 � b) > 0.

In either case then, G is positive on the whole negative real axis, as needed. To avoid the
technical condition in (3.3), one may focus on the special case a < 0 < � and b = 0.

Example 6 (Trigonometric vorticity). Suppose �( ) = a1 cos(b ) + a2 sin(b ) for some
a1, a2 2 R and some b > 0. In this case, one can take

G(p) = �(p) +
4k2

b2
, �(p) = �+

2a1 sin(bp)

b
+

2a2(cos(bp)� 1)

b

and check that (2.18) holds with

z =
k2

b4
·
h
(4k2 + �b2)2 � 4a2b(4k

2 + �b2)� 4a2
1b

2
i
.

To ensure that �(p) is positive for all p, we have to impose the condition

� >
2

b

✓
a2 +

q
a2

1 + a2
2

◆
,
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while the positivity of G(p) follows trivially from that of �(p). This example is related to
the previous two in the following sense. When a1 = 0, the eigenvalue problem (1.7) can be
solved using the substitution u = cos(bp) that reduces the problem to one with polynomial
coe�cients; the solution G(p) was found by looking for polynomial solutions in u.

Example 7 (Hyperbolic vorticity). Suppose �( ) = a1 cosh(b ) + a2 sinh(b ) for some
a1, a2 2 R and some b > 0. In this case, one can take

G(p) = �(p)� 4k2

b2
, �(p) = �+

2a1 sinh(bp)

b
+

2a2(1� cosh(bp))

b
(3.4)

and check that (2.18) holds with

z =
k2

b4
·
h
(4k2 � �b2)2 � 4a2b(4k

2 � �b2) + 4a2
1b

2
i
. (3.5)

Needless to say, one can always obtain this example from the previous one by allowing the
coe�cients to be complex. If we assume a1  min{�a2, 0}, then we have

� 0(p) = (a1 � a2)e
bp + (a1 + a2)e

�bp  0

for all p  0. This is clear when a1� a2  0, in which case � 0 is the sum of two non-positive
terms, but it also holds when a1 � a2 > 0, in which case

� 0(p)  (a1 � a2)e
�bp + (a1 + a2)e

�bp = 2a1e
�bp  0.

It easily follows that our theorem applies when a1  min{�a2, 0}, b > 0 and � > 4k

2

b

2 .

Example 8 (Exponential vorticity #2). Suppose �( ) = aeb for some a, b 6= 0. This is a
special case of the previous example and one can take

G(p) = �(p)� 4k2

b2
, �(p) = �� 2a(e�bp � 1)

b
, z =

k2(4k2 � �b2 � 2ab)2

b4
. (3.6)

In this case, the dispersion relation (2.13) can be simplified quite a bit. Suppose z > 0 for
the moment. Then (2.20) shows that every solution of (1.7) is a scalar multiple of

M0(p) =

s
G(p)

�(p)
· sinh

 Z
p

p0

p
z ds

G(s)
p
�(s)

!
,

hence also a scalar multiple of

M1(p) =

s
G(p)

�(p)
· sinh

 Z
p

p0

k(4k2 � �b2 � 2ab)

b2G(s)
p
�(s)

ds

!

. (3.7)

We now recall our choice (3.6) of G(p) and we make use of the identity
"

1

2
log

p
�(p) + 2k/bp
�(p)� 2k/b

#0
� kp

�(p)
=

k(4k2 � �b2 � 2ab)

b2G(p)
p
�(p)

(3.8)
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that may be viewed as a partial fractions decomposition for the right hand side. Using this
identity and our choice of G(p) in (3.6), one finds that

M1(p) =

 
1

2
+

k

b
p
�(p)

!sp
�(p0)� 2k/bp
�(p0) + 2k/b

· exp

 

�
Z

p

p0

k dsp
�(s)

!

�
 

1

2
� k

b
p
�(p)

!sp
�(p0) + 2k/bp
�(p0)� 2k/b

· exp

 Z
p

p0

k dsp
�(s)

!
. (3.9)

Define the coe�cients c1, c2 by the formula

c1 =
p
�(p0)� 2k/b, c2 =

p
�(p0) + 2k/b.

In view of (1.5), these can also be expressed in terms of the velocity field as

c1 = c� u(0)� 2k/b, c2 = c� u(0) + 2k/b. (3.10)

Now, every solution of (1.7) is a scalar multiple of (3.9), hence also a scalar multiple of

M(p) = c1

 

1 +
2k

b
p
�(p)

!

· exp

 

�
Z

p

p0

k dsp
�(s)

!

� c2

 

1� 2k

b
p
�(p)

!

· exp

 Z
p

p0

k dsp
�(s)

!

. (3.11)

We remark that the last formula was obtained under the assumption that z, �, G are all
positive, yet this formula provides a solution of (1.7) as long as merely � is positive. Next,
we turn to the boundary condition at p = 0, which reads

�3/2M 0(0) = gM(0). (3.12)

Di↵erentiating (3.11), one finds that

M 0(p) =� kc1p
�(p)

 
1 +

2k

b
p
�(p)

+
� 0(p)

b�(p)

!
· exp

 
�
Z

p

p0

k dsp
�(s)

!

� kc2p
�(p)

 

1� 2k

b
p
�(p)

+
� 0(p)

b�(p)

!

· exp

 Z
p

p0

k dsp
�(s)

!

.

In view of (3.6) and (1.6), this implies

M 0(0) = �kc1e
�kd

p
�

✓
1 +

2k

b
p
�

+
2a

b�

◆
� kc2e

kd

p
�

✓
1� 2k

b
p
�

+
2a

b�

◆

and also

M(0) = c1e
�kd

✓
1 +

2k

b
p
�

◆
� c2e

kd

✓
1� 2k

b
p
�

◆
.

Thus, the boundary condition (3.12) holds if and only if

c1e
�kd


(g + k�)

✓
1 +

2k

b
p
�

◆
+

2ak

b

�
= c2e

kd


(g � k�)

✓
1� 2k

b
p
�

◆
� 2ak

b

�
.
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Multiplying through by b
p
�, one thus obtains the dispersion relation

c1

⇣
(g + k�)(b

p
�+ 2k) + 2ak

p
�
⌘

= c2e
2kd

⇣
(g � k�)(b

p
�� 2k)� 2ak

p
�
⌘
, (3.13)

where d is the depth,
p
� = c� u(d) and the coe�cients c1, c2 are given by (3.10).
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