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1 Introduction

Apart from the two-photon decay of the neutral pion, the reaction γγ → ππ constitutes

the simplest process that gives access to the electromagnetic properties of the pion, most

notably its dipole polarizabilities [1]. Experimentally, most information on the scatter-

ing process comes from e+e− colliders via the reaction e+e− → e+e−ππ [2–7], while the

kinematics relevant for the extraction of the polarizabilities is more directly probed in the

Primakoff process, where an incident pion scatters of the Coulomb field of a heavy nucleus

and produces a final-state photon-pion pair [8–10]. The measurement of the polarizabili-

ties, as well as the energy dependence of the γγ → ππ cross section, also provides a key test

of chiral perturbation theory (ChPT) [11–14], not only because it is the simplest electro-

magnetic scattering process involving hadrons, but also due to the sensitivity to chiral loop

corrections, see [15, 16] and [17–21] for the one- and two-loop calculation, respectively.
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While an extraction of the charged-pion polarizability via radiative pion production off

the nucleon [22] had been interpreted as a potential tension with ChPT [21]—despite the

model-dependence from the extrapolation to the pion pole — the most recent Primakoff

measurement [10] confirmed the chiral prediction. In addition to a future update from

COMPASS [23], further low-energy measurements that would entail additional informa-

tion on the charged-pion polarizabilities are planned at Hall D at Jefferson Lab via the

Primakoff process with an incident photon [24].

To extend the description of γγ → ππ beyond the low-energy region, dispersion rela-

tions (DRs) have been widely applied in the literature [25–38], most importantly to include

the strong ππ rescattering in the S-wave. More recently, this method has been extended to

a single off-shell photon [39, 40], as well as the doubly-virtual case [41–43], with numerical

results provided for the S-wave contribution. In this paper, we address, comprehensively,

the general case in which both photons are virtual, as required as input for a dispersive

approach to hadronic light-by-light (HLbL) scattering in the anomalous magnetic moment

of the muon g − 2 [41–48]. In particular, we consider several technical challenges that

appear in the contribution of two-meson intermediate states beyond the S-waves.

First of all, the ChPT amplitudes for the doubly- (or even singly-) virtual case have

only been worked out at one-loop order [45]. Since the one-loop contribution does not

display any angular dependence except for the charged-pion Born terms, this implies that

chiral predictions for D- and higher partial waves are not available. Second, it was shown

in [35] that an adequate description of the D-waves requires the inclusion of vector mesons

in the left-hand cut (LHC) of the γγ → ππ amplitudes, most efficiently in terms of the

LHC of the partial waves. This strategy extends the standard Muskhelishvili-Omnès (MO)

solution [49, 50], and, as we will show here, its necessity is related to the high-energy

behavior of the vector-meson partial waves and thus potential subtractions in the MO

solution. Third, the derivation of partial-wave DRs for the helicity amplitudes has to be

based on scalar functions that avoid kinematic singularities and zeros [51, 52]. Based on

the corresponding set of amplitudes from [41] we explicitly write down the kernel functions

that couple the various partial waves and perform a basis change that diagonalizes their

MO solution. Finally, we observe that if vector resonances are to be included in the MO

solution in terms of the LHC also in the doubly-virtual case, the analytic structure of these

amplitude complicates the implementation for sufficiently large (space-like) virtualities.

While the occurrence of anomalous thresholds [53] is expected in the time-like regime [41,

44, 54], the analytic structure of the resonance LHCs is sufficiently complicated that even

in the space-like case a deformation of the integration contour becomes unavoidable.

We first recall the definition of helicity amplitudes, partial waves, and Bardeen-Tung-

Tarrach (BTT) invariant functions in section 2, based on which we then derive all relevant

kernel functions that define the full system of Roy-Steiner (RS) equations for the partial-

wave helicity amplitudes. In section 3 we then write down the MO solution of these

equations, and discuss in detail the role of subtraction constants as well as the analytic

structure of the resonance partial waves. Some numerical results will be presented in

section 4, before we conclude in section 5 and comment on the implications of our results

for the application to HLbL scattering.
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Figure 1. γ∗γ∗ → ππ as a sub-process of e+e− → e+e−ππ [41].

2 Helicity amplitudes and Roy-Steiner equations

2.1 Helicity amplitudes

We largely follow the conventions of [41], but for completeness repeat the basic definitions.

The process γ∗γ∗ → ππ is strictly speaking not observable, but derived from processes

with well-defined asymptotic states under certain assumptions. We start from

e+(k1)e
−(k2) → e+(k3)e

−(k4)γ
∗(q1)γ

∗(q2) → e+(k3)e
−(k4)π

a(p1)π
b(p2), (2.1)

shown in figure 1, with isospin labels a and b for the pion states and momenta as indicated.

At O(e4), the amplitude for this process is given by

iT = v̄(k1)(−ieγα)v(k3)ū(k4)(−ieγβ)u(k2)

× −i

q21

(

gαµ − (1− ξ)
qα1 q

µ
1

q21

) −i

q22

(

gβν − (1− ξ)
qβ2 q

ν
2

q22

)

ie2W ab
µν(p1, p2, q1),

(2.2)

where ξ is a gauge parameter for the photon propagators and the tensor

Wµν
ab (p1, p2, q1) = i

∫

d4x e−iq1·x〈πa(p1)π
b(p2)|T{jµem(x)jνem(0)}|0〉 (2.3)

is defined in pure QCD. The contraction of this tensor with appropriate polarization vectors

is then identified as an amplitude for the off-shell process

γ∗(q1, λ1)γ
∗(q2, λ2) → πa(p1)π

b(p2), (2.4)

where λ1,2 denote the helicities of the photons. The connected part is given by

〈πa(p1)π
b(p2)|γ∗(q1, λ1)γ

∗(q2, λ2)〉

= −e2ǫλ1
µ (q1)ǫ

λ2
ν (q2)

∫

d4x d4y e−i(q1·x+q2·y)〈πa(p1)π
b(p2)|T{jµem(x)jνem(y)}|0〉

= −e2(2π)4δ(4)(p1 + p2 − q1 − q2)ǫ
λ1
µ (q1)ǫ

λ2
ν (q2)

×
∫

d4x e−iq1·x〈πa(p1)π
b(p2)|T{jµem(x)jνem(0)}|0〉

= ie2(2π)4δ(4)(p1 + p2 − q1 − q2)ǫ
λ1
µ (q1)ǫ

λ2
ν (q2)W

µν
ab (p1, p2, q1) (2.5)
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and the contraction with polarization vectors finally defines the helicity amplitudes accord-

ing to

ǫλ1
µ (q1)ǫ

λ2
ν (q2)W

µν
ab (p1, p2, q1) = ei(λ1−λ2)φHab

λ1λ2
. (2.6)

Next, the kinematic invariants are taken as1

s = (q1 + q2)
2 = (p1 + p2)

2,

t = (q1 − p1)
2 = (q2 − p2)

2,

u = (q1 − p2)
2 = (q2 − p1)

2,

(2.7)

satisfying

s+ t+ u = q21 + q22 + 2M2
π = Σππ. (2.8)

For the helicity amplitudes it is also convenient to choose a frame, we construct the helicity

amplitudes with the momenta and polarization vectors in the s-channel center-of-mass

system. This gives

q1 = (Eq1 , 0, 0, |~q|), q2 = (Eq2 , 0, 0,−|~q|),
p1 = (Ep, |~p| sin θ cosφ, |~p| sin θ sinφ, |~p| cos θ),
p2 = (Ep,−|~p| sin θ cosφ,−|~p| sin θ sinφ,−|~p| cos θ),

(2.9)

where

Eq1 =
√

q21 + ~q2 =
s+ q21 − q22

2
√
s

, Eq2 =
√

q22 + ~q2 =
s− q21 + q22

2
√
s

, |~q| = λ1/2(s, q21, q
2
2)

2
√
s

,

Ep =
√

M2
π + ~p2 =

√
s

2
, |~p| =

√
s

4
−M2

π =

√
s

2
σπ(s). (2.10)

and we introduced the notation

σπ(s) =

√

1− 4M2
π

s
, λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ca), (2.11)

the s-channel scattering angle

z = cos θ =
t− u

4|~q||~p| =
t− u

σπ(s)λ1/2(s, q21, q
2
2)
, (2.12)

as well as the polarization vectors

ǫ±(q1) = ∓ 1√
2
(0, 1,±i, 0),

ǫ0(q1) =
1

ξ1
(|~q|, 0, 0, Eq1),

ǫ±(q2) = ∓ 1√
2
(0, 1,∓i, 0),

ǫ0(q2) =
1

ξ2
(−|~q|, 0, 0, Eq2).

(2.13)

1We denote γ∗γ∗ → ππ as the s-channel process, which is the canonical choice in the context of HLbL.

Note that in the literature on RS equations [36, 55–58] usually the elastic channel, here pion Compton

scattering, is considered the s-channel.
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For the particular choice of ξi =
√

q2i the longitudinal states are normalized to 1, but,

since the off-shell photons are not physical states, the choice of ξi cannot affect physical

observables, a useful check on the calculation. For convenience, we also define helicity

amplitudes that stay finite in the limit q2i → 0

Hλ1λ2
= κ1λ1

κ2λ2
H̄λ1λ2

, κi± = 1, κi0 =
q2i
ξi
, (2.14)

and introduce the labeling

H̄1 = H̄++, H̄2 = H̄+−, H̄3 = H̄+0 + H̄0+, H̄4 = H̄+0 − H̄0+, H̄5 = H̄00. (2.15)

Finally, the helicity amplitudes are expanded into partial waves according to [59]

H̄λ1λ2
=
∑

J

(2J + 1)dJm0(z)hJ,λ1λ2
(s), (2.16)

where m = |λ1 − λ2|.

2.2 Tensor decomposition and dispersion relations

DRs should not be derived for the helicity amplitudes directly due to their complicated an-

alytic structure, but instead for scalar functions that are free of kinematic singularities and

zeros. Such a basis has been derived in [41] following the general recipe established in [51].

In contrast to the singly-virtual case, however, the doubly-virtual process is sufficiently

complicated that an additional limitation first observed in nucleon Compton scattering [52]

occurs, i.e. that to cover all kinematic limits a sixth Lorentz structure needs to be pro-

vided, in addition to the five expected in correspondence to the five independent helicity

amplitudes. Fortunately, the number of required scalar functions can be reduced by using

crossing symmetry in the pion system, again in analogy to nucleon Compton scattering [60],

finally leading to the scalar functions Ai as defined in [41]. Explicitly, we have

Wµν =

5∑

i=1

T i
µνAi, (2.17)

with

Tµν
1 = q1 · q2gµν − qµ2 q

ν
1 ,

Tµν
2 = q21q

2
2g

µν + q1 · q2qµ1 qν2 − q21q
µ
2 q

ν
2 − q22q

µ
1 q

ν
1 ,

Tµν
3 = (t− u)(T̃µν

3 − T̃µν
4 ),

Tµν
4 = q1 · q2qµ3 qν3 − 1

4
(t− u)2gµν +

1

2
(t− u) (qµ3 q

ν
1 − qµ2 q

ν
3 ) ,

Tµν
5 = q21q

2
2q

µ
3 q

ν
3 +

1

2
(t− u)

(
q21q

µ
3 q

ν
2 − q22q

µ
1 q

ν
3

)
− 1

4
(t− u)2qµ1 q

ν
2 ,

(2.18)
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where q3 = p2 − p1 and

T̃µν
3 = q1 · q2qµ1 qν3 − q21q

µ
2 q

ν
3 − 1

2
(t− u)q21g

µν +
1

2
(t− u)qµ1 q

ν
1 ,

T̃µν
4 = q1 · q2qµ3 qν2 − q22q

µ
3 q

ν
1 +

1

2
(t− u)q22g

µν − 1

2
(t− u)qµ2 q

ν
2 .

(2.19)

In terms of these functions, the helicity amplitudes read as follows

H̄++ = − 1

2
(s− q21 − q22)A1 − q21q

2
2A2 +

1

2s
(s− 4M2

π)λ12(s)z
2(q21 + q22)A3

+
1

4
(s− 4M2

π)

(

(s− q21 − q22) +

(
(q21 − q22)

2

s
− (q21 + q22)

)

z2
)

A4

+
1

2
q21q

2
2(s− 4M2

π)(1− z2)A5,

H̄+− = − 1

4
(s− 4M2

π)(1− z2)

(

(s− q21 − q22)A4 + 2q21q
2
2A5

)

,

H̄+0 =
1

4

√

2

s
(s− 4M2

π)z
√

1− z2
(

λ12(s)A3 − (s+ q21 − q22)A4 − q21(s− q21 + q22)A5

)

,

H̄0+ =
1

4

√

2

s
(s− 4M2

π)z
√

1− z2
(

λ12(s)A3 − (s− q21 + q22)A4 − q22(s+ q21 − q22)A5

)

,

H̄00 = −A1 −
1

2
(s− q21 − q22)A2 −

1

s
(s− 4M2

π)λ12(s)z
2A3

+ (s− 4M2
π)z

2A4 +
1

4s
(s− 4M2

π)
(
s2 − (q21 − q22)

2
)
z2A5, (2.20)

where λ12(s) = λ(s, q21, q
2
2). In this paper, we will make repeated reference to the expressions

that follow from the pion-pole terms as well as the tree-level exchange of vector mesons,

with partial waves NJ,i(s) and hVJ,i(s), see appendix A.

The form of the DRs for the coefficient functions Ai is defined by a second constraint

on the Mandelstam variables besides the on-shell condition (2.8). As argued in [55], the

optimal choice for a process with crossing properties of γ∗γ∗ → ππ is given by hyperbolic

DRs (HDRs), for which the dispersive variables are constrained to lie on hyperbolas of

the form

(t− a)(u− a) = (t′ − a)(u′ − a) = b, s+ t+ u = s′ + t′ + u′ = q21 + q22 + 2M2
π , (2.21)

which implies the relation

ds′

s′ − s
= dt′

(
1

t′ − t
+

1

t′ − u
− 1

t′ − a

)

(2.22)

for the differentials and

z =
t− u

σπ(s)λ
1/2
12 (s)

, z′ =
t′ − u′

σπ(s′)λ
1/2
12 (s′)

, (2.23)
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for the scattering angles, leading to

Ai(s, t, u) = Aπ
i (s, t, u) +

1

π

∫ ∞

4M2
π

ds′
ImAi(s

′, z′)

s′ − s

+
1

π

∫ ∞

t0

dt′ImAi(t
′, u′)

(
1

t′ − t
+

1

t′ − u
− 1

t′ − a

)

,

(2.24)

with Born terms Aπ
i given in appendix A. In writing (2.24) we have implicitly assumed

that the Born-subtracted amplitudes fulfill unsubtracted HDRs. We stress that this is not

equivalent to assuming unsubtracted HDRs for the full amplitude, since for A1 the Born

term itself goes asymptotically to a constant along the hyperbola. Assuming unsubtracted

HDRs for the full amplitude would thus imply cancellations of this constant behavior with

a contribution from heavier intermediate states.

A realistic description of γ∗γ∗ → ππ beyond the S-waves requires further contribu-

tions to the LHC, most importantly the exchange of vector mesons, see appendix A for

the explicit expressions. This Lagrangian-based representation suffers from a polynomial

ambiguity [35]: choosing a different Lagrangian representation alters the real part of the

amplitude, while the residues of the vector-resonance poles are free from such ambiguities.

In the narrow-width limit, in which the imaginary parts of the vector-meson exchange col-

lapse to δ-functions, this can be demonstrated by comparing the expression resulting from

the HDRs (2.24) with the starting point (A.6). We find the differences

∆AV,HDR
1 = C2

V FV π(q
2
1)FV π(q

2
2)

(
(t−M2

V )(u−M2
V )

2(a−M2
V )

2
+

s− 3M2
π −M2

V

a−M2
V

− 4

)

,

∆AV,HDR
2 = −∆AV,HDR

4 = −C2
V FV π(q

2
1)FV π(q

2
2)

1

a−M2
V

,

∆AV,HDR
3 = ∆AV,HDR

5 = 0.

(2.25)

where ∆AV,HDR
i = AV,HDR

i −AV
i . In the limit a → ∞ most of these differences disappear

lim
a→∞

∆AV,HDR
1 = −4C2

V FV π(q
2
1)FV π(q

2
2),

lim
a→∞

∆AV,HDR
i = 0, i ∈ {2, 3, 4, 5}.

(2.26)

The remaining ambiguity maps onto the polynomial obtained when changing the represen-

tation of the vector mesons from vector to antisymmetric tensor fields [35, 61, 62], and due

to (2.20) only affects the S-waves. In the following, we will indeed define the resonance

LHCs by their a → ∞ limit, which corresponds to a fixed-s DR, because this is the situa-

tion encountered in a dispersive approach to HLbL scattering where the different topologies

are defined using the Mandelstam representation. Moreover, we will not comment further

on the S-wave case — there, the consideration of subtractions is unavoidable to capture

model-independently the effect of vector resonances in the LHC — but concentrate on how

to extend the dispersive description to D-waves.

The basic idea in the derivation of RS equations is then as follows: expand the imagi-

nary parts of (2.24) into partial waves, express the internal angle z′ in terms of the external

– 7 –
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angle z by means of the hyperbola conditions (2.21), and project the whole system onto

partial waves. In contrast to [36] we will not calculate the kernel functions for the LHC

explicitly, but directly work with a narrow-width approximation for the resonances. The

resulting system of partial-wave DRs then takes the form

hJ,i(s) = NJ,i(s) + hV,fixed-sJ,i (s) +
∑

J ′

∑

j

1

π

∫ ∞

4M2
π

ds′Kij
JJ ′(s, s

′)ImhJ ′,j(s
′), (2.27)

with s-channel kernel functions Kij
JJ ′(s, s′). The calculation of these kernel functions is

straightforward, but reveals ostensible singularities in 1/s as well as factors involving
√
s

that originate from the definition of the helicity amplitudes. Before turning to the explicit

form of the kernel functions, we therefore first study singularities that may be produced

by the partial-wave expansion.

2.3 Kinematic singularities and partial-wave expansion

Using the recipe of [63], the kinematic singularities in the helicity amplitudes can be sep-

arated according to

H̃1 = λ12(s)H̄1,

H̃2 =
1

s− 4M2
π

1

1− z2
H̄2,

H̃3 =
λ
1/2
12 (s)

√

s− 4M2
π

1√
1− z2

H̄3,

H̃4 =
λ
1/2
12 (s)

√

s− 4M2
π

1√
1− z2

H̄4,

H̃5 = λ12(s)H̄5, (2.28)

and indeed the H̃i are given by a sum of the Ai with coefficient functions that are poly-

nomials in s, t, u. However, we are mainly interested in the kinematic singularities of the

partial waves, not the full amplitudes. To derive the corresponding singularities — with

critical points s = 0, s = 4M2
π , and the zeros of λ12(s) — let us assume that the scalar

functions Ai fulfill an unsubtracted fixed-s DR

Ai(s, t) =
1

π

∫

dt′
ImAi(s, t

′)

t′ − t
. (2.29)

By performing the angular integrals in terms of Legendre functions of the second kind, in

analogy to the partial-wave projection in appendix A, this leads to the representation

hJ,1(s) =
1

π

∫

dt′
2

σπ(s)λ
1/2
12 (s)

[

QJ(xt′)

(

− s− q21 − q22
2

ImA1(s, t
′)− q21q

2
2ImA2(s, t

′)

+
(s− 4M2

π)(s− q21 − q22)

4
ImA4(s, t

′) +
q21q

2
2(s− 4M2

π)

2
ImA5(s, t

′)

)

– 8 –
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+ (x2t′QJ(xt′)− xt′δJ0)σ
2
π(s)

(
(q21 + q22)λ12(s)

2
ImA3(s, t

′)

+
(q21 − q22)

2 − s(q21 + q22)

4
ImA4(s, t

′)− sq21q
2
2

2
ImA5(s, t

′)

)]

,

hJ,2(s) =
1

π

∫

dt′
2(s− 4M2

π)

σπ(s)λ
1/2
12 (s)

√

(J + 2)!

(J − 2)!

×
[

QJ−2(xt′)

(2J − 1)(2J + 1)
− 2QJ(xt′)

(2J − 1)(2J + 3)
+

QJ+2(xt′)

(2J + 1)(2J + 3)

]

×
[

− s− q21 − q22
4

ImA4(s, t
′)− q21q

2
2

2
ImA5(s, t

′)

]

,

hJ,3(s) =
1

π

∫

dt′
1√
2s

2(s− 4M2
π)

σπ(s)λ
1/2
12 (s)

√

J

J + 1
xt′
[

xt′QJ(xt′)−QJ−1(xt′)
]

×
[

λ12(s)ImA3(s, t
′)− sImA4(s, t

′) +
(q21 − q22)

2 − s(q21 + q22)

2
ImA5(s, t

′)

]

,

hJ,4(s) =
1

π

∫

dt′
1√
2s

2(s− 4M2
π)

σπ(s)λ
1/2
12 (s)

√

J

J + 1
xt′
[

xt′QJ(xt′)−QJ−1(xt′)
]

× (q21 − q22)

[

− ImA4(s, t
′)− s− q21 − q22

2
ImA5(s, t

′)

]

,

hJ,5(s) =
1

π

∫

dt′
2

σπ(s)λ
1/2
12 (s)

[

QJ(xt′)

(

− ImA1(s, t
′)− s− q21 − q22

2
ImA2(s, t

′)

)

+ (x2t′QJ(xt′)− xt′δJ0)σ
2
π(s)

(

− λ12(s)ImA3(s, t
′) + sImA4(s, t

′)

+
(s− q21 + q22)(s+ q21 − q22)

4
ImA5(s, t

′)

)]

, (2.30)

where

xt′ =
s− Σππ + 2t′

σπ(s)λ
1/2
12 (s)

. (2.31)

From these relations we may read off the kinematic singularities as follows: at threshold

the combination

Q̃J(s, t
′) =

1

σπ(s)λ
1/2
12 (s)

QJ(xt′) (2.32)

behaves as

Q̃J(s, t
′) ∼

[

(s− 4M2
π)λ12(s)

]J/2
, (2.33)

while at s = 0, s−1/2Q̃J(s, t
′) is finite. Since, in addition xt′/(σπ(s)λ

1/2
12 (s)) ∼ s for s → 0,

the 1/s singularities in σ2
π(s) cancel and we find2

hJ,1(s) =

[
(s− 4M2

π)λ12(s)
]J/2

λ12(s)(1−δJ0)
h̃J,1(s),

2The signs and factors in hJ,3(s) and hJ,4(s) have been chosen to simplify the form of the final kernel

functions.
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hJ,2(s) =

[
(s− 4M2

π)λ12(s)
]J/2

λ12(s)
h̃J,2(s),

hJ,3(s) = −
√

s

2

[
(s− 4M2

π)λ12(s)
]J/2

λ12(s)
h̃J,3(s),

hJ,4(s) = −(q21 − q22)

√
s

2

[
(s− 4M2

π)λ12(s)
]J/2

λ12(s)
h̃J,4(s),

hJ,5(s) =

[
(s− 4M2

π)λ12(s)
]J/2

λ12(s)(1−δJ0)
h̃J,5(s), (2.34)

where the functions h̃J,i(s) are regular at the thresholds. s−1/2h̃J,i(s), i = 1, 2, 5, are finite

at s = 0 for J ≥ 2. Further zeros are possible for specific contributions, but should be

considered to be of dynamical origin [64]. The functions h̃J,i(s) have LHCs, encoded in the

QJ(xt′), as well as the right-hand cuts from the direct-channel contribution in Ai(s, t
′). As

a cross check on (2.30), we recover the fixed-s resonance partial waves lim
a→∞

hV,HDR
J,i (s) if

the δ-function imaginary parts of the narrow-width resonance amplitudes are inserted.

For the RS system (2.27), the central conclusion of this derivation is that upon the

rescaling

h0,i(s) = h̃0,i(s), i = 1, 5,

h2,i(s) = (s− 4M2
π)h̃2,i(s), i = 1, 2, 5,

h2,3(s) = −
√

s

2
(s− 4M2

π)h̃2,3(s),

h2,4(s) = −(q21 − q22)

√
s

2
(s− 4M2

π)h̃2,4(s), (2.35)

of the S- and D-waves, the h̃J,i(s) do not have further kinematic singularities provided

that the full amplitudes Ai(s, t) satisfy unsubtracted fixed-s DRs. This situation changes

once subtractions are introduced in the fixed-s DR. In this case, both the subtraction

polynomial and the dispersion integral display 1/s singularities, whose residues will cancel

each other if sum rules exist that reinstate the unsubtracted version. In the derivation of RS

equations the amplitudes are expanded into partial waves both at the level of the hyperbolic

dispersion integrals as well as in the integrands. This implies that the full amplitudes are

approximated by a truncated partial-wave series, which spoils the asymptotic behavior in

the crossed channel, so that unsubtracted fixed-s DRs are no longer possible. Therefore,

additional 1/s singularities may appear at any finite order in the partial-wave expansion,

and these are precisely the singularities observed in the RS kernels in (2.27).

2.4 Kernel functions

Motivated by the discussion in the preceding section, we write the RS kernels not for the

hJ,i, but for the h̃J,i according to (2.35), replacing (2.27) by

h̃J,i(s) = ÑJ,i(s) + h̃V,fixed-sJ,i (s) +
∑

J ′

∑

j

1

π

∫ ∞

4M2
π

ds′Kij
JJ ′(s, s

′)Im h̃J ′,j(s
′). (2.36)
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The S-wave kernel functions recover the corresponding results from [41]

K11
00 (s, s

′) = K55
00 (s, s

′) =
1

s′ − s
− s′ − q21 − q22

λ12(s′)
,

K15
00 (s, s

′) =
2q21q

2
2

λ12(s′)
, K51

00 (s, s
′) =

2

λ12(s′)
,

(2.37)

as do the diagonal D-wave kernels. The full list of non-vanishing kernel functions reads

K22
22 (s, s

′) =
1

s′ − s
− s′ − q21 − q22

λ12(s′)
,

K44
22 (s, s

′) =
s′

s

(
1

s′ − s
− s′ − q21 − q22

λ12(s′)

)

,

K24
22 (s, s

′) =
2s′q21q

2
2

λ12(s′)
, K42

22 (s, s
′) =

2

sλ12(s′)
,

K32
22 (s, s

′) =
2

λ12(s′)
, K33

22 (s, s
′) =

s′

s

λ12(s)

λ12(s′)

1

s′ − s
,

K34
22 (s, s

′) =
s′

s

s(q21 + q22)− (q21 − q22)
2

λ12(s′)
,

K11
22 (s, s

′) = K55
22 (s, s

′) =
s′

s

λ12(s)

λ12(s′)

(
1

s′ − s
− s′ − q21 − q22

λ12(s′)

)

,

K15
22 (s, s

′) =
2s′q21q

2
2

s

λ12(s)

λ2
12(s

′)
, K51

22 (s, s
′) =

2s′

s

λ12(s)

λ2
12(s

′)
,

K12
22 (s, s

′) =
λ12(s

′)
(

s(q21 + q22)− (q21 − q22)
2
)

− λ12(s)
(

s′(q21 + q22)− (q21 − q22)
2
)

√
6sλ2

12(s
′)

,

K13
22 (s, s

′) =
s′

s

λ12(s)

λ2
12(s

′)

s′(q21 + q22)− (q21 − q22)
2

√
6

,

K14
22 (s, s

′) =
s′

s

2sq21q
2
2λ12(s

′)− (s′ − q21 − q22)(q
2
1 − q22)

2λ12(s)√
6λ2

12(s
′)

,

K52
22 (s, s

′) =
2s′λ12(s)− 4sλ12(s

′)√
6sλ2

12(s
′)

, K53
22 (s, s

′) = −
√

2

3

s′2

s

λ12(s)

λ2
12(s

′)
,

K54
22 (s, s

′) =
s′

s

2(q21 − q22)
2λ12(s)− (s+ q21 − q22)(s− q21 + q22)λ12(s

′)√
6λ2

12(s
′)

. (2.38)

There is no coupling of D- to S-waves, i.e. Kij
20(s, s

′) = 0, but the S-waves couple to the

D-waves through the kernels Kij
02(s, s

′), which depend linearly on the hyperbola parameter

a. In the basis of the h̃J,i, these kernel functions are lengthy and therefore not reproduced

here. We will give them in a more convenient basis in section 2.5 and their role in the MO

solution will be studied in detail in section 3.2.

We remark that this pattern seems to persist at higher orders in the partial-wave expan-

sion: we have calculated all the kernel functions for J, J ′ ≤ 8 and found that Kij
JJ ′(s, s′) = 0

for J > J ′. The kernels with J = J ′ do not depend on the hyperbola parameter a, while

the J < J ′ kernels are polynomials in a of the order (J ′ − J)/2. This behavior was indeed

obtained in [57] and it should be possible to prove the same here with similar methods.
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2.5 Diagonalization of the kernel functions

The DRs for the helicity partial waves that follow from the RS system are integral equations

that relate the helicity partial waves with their imaginary parts. The equations have the

form of an inhomogeneous Omnès problem [49, 50] and we will discuss the solution in

section 3. The MO solution is most easily found by performing another change of basis

that diagonalizes the system of equations for a given angular momentum J and decouples

the system into a set of independent equations in standard MO form. The S- and D-wave

basis changes are given by

ȟ0,1(s) =
1

s− s−

[

h̃0,1(s) +
s+ − s−

4
h̃0,5(s)

]

,

ȟ0,5(s) =
1

s− s+

[

h̃0,1(s)−
s+ − s−

4
h̃0,5(s)

]

,

ȟ2,1(s) =
1

(s− s−)(s− s+)

[

h̃2,2(s) +
s

2

(s+ + s−
2

h̃2,4(s)− h̃2,3(s)
)]

,

ȟ2,2(s) =
1

(s− s−)2(s− s+)

[

s
(

h̃2,1(s) +
s+ − s−

4
h̃2,5(s)

)

+
s−√
6

(

h̃2,2(s)− sh̃2,3(s)
)

+
s

4
√
6

(

s−(s− + 3s+) + s(s+ − s−)
)

h̃2,4(s)

]

,

ȟ2,3(s) =
1

(s− s+)2(s− s−)

[

s
(

h̃2,1(s)−
s+ − s−

4
h̃2,5(s)

)

+
s+√
6

(

h̃2,2(s)− sh̃2,3(s)
)

+
s

4
√
6

(

s+(s+ + 3s−)− s(s+ − s−)
)

h̃2,4(s)

]

,

ȟ2,4(s) =
1

s− s−

[

h̃2,2(s) +
s+ − s−

4
sh̃2,4(s)

]

,

ȟ2,5(s) =
1

s− s+

[

h̃2,2(s)−
s+ − s−

4
sh̃2,4(s)

]

, (2.39)

where s± =
(√

q21±
√

q22
)2
. In the on-shell or singly-virtual case, the poles in the kinematic

prefactors get canceled by the soft-photon zeros at s = s± = q2 [65]. By writing the basis

change in matrix form

ȟJ,i(s) = Aij
J (s)h̃J,j(s), (2.40)

we find that the kernels with J = J ′ are diagonalized to Cauchy kernels:

AJ(s)KJJ(s, s
′)A−1

J (s′) =
1

s′ − s
, J = 0, 2, (2.41)

hence the new functions fulfill DRs in standard MO form with inhomogeneities ∆̌J,i that

contain the LHCs and the couplings due to the off-diagonal kernels:

ȟJ,i(s) = ∆̌J,i(s) +
1

π

∫ ∞

4M2
π

ds′
Im ȟJ,i(s

′)

s′ − s
,

∆̌J,i(s) = NJ,i(s) + ȟV,fixed-sJ,i (s) +
∑

J ′>J

∑

j

1

π

∫ ∞

4M2
π

ds′Ǩij
JJ ′(s, s

′)Im ȟJ ′,j(s
′). (2.42)
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In the new basis, the kernels that couple the S- to theD-waves turn out to be very compact:

Ǩ11
02 (s, s

′) = 2s−Ǩ
15
02 (s, s

′) = −5s−√
6

[
4M2

πs+
ss′

− 1

]

, Ǩ14
02 (s, s

′) = Ǩ55
02 (s, s

′) =
5√
6
,

Ǩ51
02 (s, s

′) = 2s+Ǩ
54
02 (s, s

′) = −5s+√
6

[
4M2

πs−
ss′

− 1

]

,

Ǩ12
02 (s, s

′) = Ǩ53
02 (s, s

′) = 5

[

− 2M2
πs−s+
ss′

+ 6a− 4M2
π − s− − s+ + s+ s′

]

, (2.43)

where a is the hyperbola parameter and the kernel functions not listed explicitly vanish.

As an alternative to (2.42), the resonance LHC can be written in terms of a dispersion

integral over its discontinuity, see section 3.4 for details. This results in a representation

ȟJ,i(s) = ∆̌J,i(s) +
1

π

∫ 0

−∞
ds′

Im ȟV,fixed-sJ,i (s′)

s′ − s
+

1

π

∫ ∞

4M2
π

ds′
Im ȟJ,i(s

′)

s′ − s
,

∆̌J,i(s) = NJ,i(s) +
∑

J ′>J

∑

j

1

π

∫ 0

−∞
ds′Ǩij

JJ ′(s, s
′)Im ȟV,fixed-sJ ′,j (s′)

+
∑

J ′>J

∑

j

1

π

∫ ∞

4M2
π

ds′Ǩij
JJ ′(s, s

′)Im ȟJ ′,j(s
′). (2.44)

2.6 Asymptotic behavior and sum rules

The DRs (2.42) are a direct consequence of the HDRs (2.24), following upon partial-wave

projection and the basis change (2.39). They can be written without any subtractions

provided that the initial HDRs are unsubtracted. The pure rescattering contributions

ȟrescJ,i (s) := ȟJ,i(s)− ∆̌J,i(s) =
1

π

∫ ∞

4M2
π

ds′
Im ȟJ,i(s

′)

s′ − s
(2.45)

are functions that contain only the right-hand unitarity cut. If we make the additional

assumption that not only ȟrescJ,i (s) but s ȟrescJ,i (s) vanishes for s → ∞, then the DR

s ȟrescJ,i (s) =
1

π

∫ ∞

4M2
π

ds′
s′ Im ȟJ,i(s

′)

s′ − s
(2.46)

holds, which in turn implies the sum rules

1

π

∫ ∞

4M2
π

ds′Im ȟJ,i(s
′) = 0. (2.47)

These sum rules are essential to justify unsubtracted Omnès representations in section 3,

however they need to be validated. Based on the general consideration of unsubtracted

fixed-s DRs for the scalar functions (2.30), we expect an asymptotic behavior of the D-wave

rescattering contribution of

ȟresc2,i (s) ≍
{

s−2 log s, i = 1, 4, 5,

s−3 log s, i = 2, 3,
(2.48)
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which implies two additional sum rules

1

π

∫ ∞

4M2
π

ds′s′ Im ȟ2,i(s
′) = 0, i = 2, 3. (2.49)

For the S-waves, we would expect a behavior ≍ s−1 log s, which in general would require

a subtraction in the Omnès representation, in line with the discussion in section 2.2. Due

to these sum rules, most of the contributions from the off-diagonal kernels in (2.43) in fact

vanish and only the simplified kernels

Ǩ11
02 (s, s

′) = 2s−Ǩ
15
02 (s, s

′) = Ǩ51
02 (s, s

′) = 2s+Ǩ
54
02 (s, s

′)

=
2√
6
Ǩ12

02 (s, s
′) =

2√
6
Ǩ53

02 (s, s
′) = −20M2

πs+s−√
6ss′

(2.50)

need to be taken into account. In particular, the dependence on the hyperbola parameter

drops out, as has to happen to avoid an unphysical dependence on a. In cases where

ȟrescJ,i (0) =
1

π

∫ ∞

4M2
π

ds′
Im ȟJ,i(s

′)

s′
(2.51)

vanishes, no couplings of S- to D-waves would survive at all.

As a special case we may consider the LHC resonance partial waves, for which the

sum rules

1

π

∫ 0

−∞
ds′

Im ȟV,fixed-s2,i (s′)

s′
= 0, i = 1, 2, 3, 4, 5,

1

π

∫ 0

−∞
ds′Im ȟV,fixed-s2,i (s′) = 0, i = 1, 2, 3,

1

π

∫ 0

−∞
ds′s′ Im ȟV,fixed-s2,i (s′) = 0, i = 2, 3, (2.52)

are indeed fulfilled, but the two sum rules

1

π

∫ 0

−∞
ds′Im ȟV,fixed-s2,i (s′) 6= 0, i = 4, 5, (2.53)

are violated since the asymptotic behavior of the resonance contribution is worse than what

we assume for the rescattering contribution:

ȟV,fixed-sJ,i (s) ≍







s−1 log s, J = 0, i = 1, 5,

s−2, J = 2, i = 1,

s−1, J = 2, i = 4, 5,

s−3 log s, J = 2, i = 2, 3.

(2.54)

However, the asymptotic behavior in (2.54) still implies that all S- and D-waves fulfill

unsubtracted DRs

ȟV,fixed-sJ,i (s) =
1

π

∫ 0

−∞
ds′

Im ȟV,fixed-sJ,i (s′)

s′ − s
. (2.55)
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3 Muskhelishvili-Omnès solution

3.1 MO solution: S-waves

Since the functions defined in (2.39) fulfill Watson’s theorem [66]

Im ȟJ,i(s) = sin δJ(s)e
−iδJ (s)ȟJ,i(s)θ

(
s− 4M2

π

)
, (3.1)

with ππ phase shifts δJ(s), the solution to the MO problem can be given immediately in

terms of the Omnès functions

ΩJ(s) = exp

{

s

π

∫ ∞

4M2
π

ds′
δJ(s

′)

s′(s′ − s)

}

. (3.2)

We start the discussion by considering the restricted S-wave system [42, 43]. The MO

solution has the form

ȟ0,i(s) = ∆̌0,i(s) +
Ω0(s)

π

∫ ∞

4M2
π

ds′
∆̌0,i(s

′) sin δ0(s
′)

|Ω0(s′)|(s′ − s)
, (3.3)

provided that (ȟ0,i(s) − ∆̌0,i(s))/Ω0(s) tends to zero for s → ∞. For a phase shift reach-

ing asymptotically δ0(s) ≍ π, the Omnès function behaves as Ω0(s) ≍ s−1, i.e. the sum

rules (2.47) are employed to write the MO solution without subtractions. Performing the

basis change back to the original helicity amplitudes leads to

h0,1(s) = ∆0,1(s) +
Ω0(s)

π

∫ ∞

4M2
π

ds′
sin δ0(s

′)

|Ω0(s′)|

×
[(

1

s′ − s
− s′ − q21 − q22

λ12(s′)

)

∆0,1(s
′) +

2q21q
2
2

λ12(s′)
∆0,5(s

′)

]

,

h0,5(s) = ∆0,5(s) +
Ω0(s)

π

∫ ∞

4M2
π

ds′
sin δ0(s

′)

|Ω0(s′)|

×
[(

1

s′ − s
− s′ − q21 − q22

λ12(s′)

)

∆0,5(s
′) +

2

λ12(s′)
∆0,1(s

′)

]

. (3.4)

In [42, 43] this solution was evaluated using the pion Born terms as LHCs and a ππ phase

shift that cuts off the f0(980) and thus the coupling to the KK̄ channel. Phenomenologi-

cally, the pion-pole LHC produces the polarizabilities [42, 43]

(α1 − β1)
π±,π-pole LHC = (5.4 . . . 5.8)× 10−4 fm3,

(α1 − β1)
π0,π-pole LHC = (11.2 . . . 8.9)× 10−4 fm3, (3.5)

for the charged pion in perfect agreement with the chiral 2-loop prediction 5.7(1.0) ×
10−4 fm3 [21] as well as the COMPASS measurement 4.0(1.2)stat(1.4)syst×10−4 fm3 [10]. For

the neutral pion the chiral prediction −1.9(2)×10−4 fm3 [20] is much smaller, a discrepancy

explained by the fact that the neutral channel is much stronger affected by the contribution

from vector-meson exchange [67]

Γω × BR[ω → π0γ] + Γρ × BR[ρ0 → π0γ]

Γρ × BR[ρ± → π±γ]
∼ 12. (3.6)
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Therefore, the discrepancy does not necessarily point at a violation of the sum rule (2.47),

but rather the approximation of the LHC by the pion Born term only. However, as argued

in section 2.2, to get the phenomenology of the neutral-pion dipole polarizabilities right

the introduction of subtractions is nevertheless unavoidable, otherwise the vector-meson

LHC remains ambiguous. For the quadrupole polarizabilities the vector-meson contribution

indeed restores agreement with ChPT even for the neutral pion [43].

For the D-waves, polynomial ambiguities in the vector-meson LHCs do not occur, so

that unsubtracted DRs in principle become possible. To this end, a modified MO solution

was derived in [35] in which the vector mesons are not included via the inhomogeneities,

but directly in terms of their partial waves. This corresponds to the MO solution of the

DR (2.44), which in the S-wave case leads to a modification of (3.4) according to

h0,1(s) = N0,1(s) +
Ω0(s)

π

∫ 0

−∞

ds′

Ω0(s′)

×
[(

1

s′ − s
− s′ − q21 − q22

λ12(s′)

)

ImhV0,1(s
′) +

2q21q
2
2

λ12(s′)
ImhV0,5(s

′)

]

+
Ω0(s)

π

∫ ∞

4M2
π

ds′
sin δ0(s

′)

|Ω0(s′)|

[(
1

s′ − s
− s′ − q21 − q22

λ12(s′)

)

N0,1(s
′) +

2q21q
2
2

λ12(s′)
N0,5(s

′)

]

,

h0,5(s) = N0,5(s) +
Ω0(s)

π

∫ 0

−∞

ds′

Ω0(s′)

×
[(

1

s′ − s
− s′ − q21 − q22

λ12(s′)

)

ImhV0,5(s
′) +

2

λ12(s′)
ImhV0,1(s

′)

]

+
Ω0(s)

π

∫ ∞

4M2
π

ds′
sin δ0(s

′)

|Ω0(s′)|

[(
1

s′ − s
− s′ − q21 − q22

λ12(s′)

)

N0,5(s
′) +

2

λ12(s′)
N0,1(s

′)

]

,

(3.7)

where the new integrals extend over the LHC, see section 3.4 for details. Although a

subtracted DR was used for the numerical analysis in [35], it was shown that sum rules that

would establish an unsubtracted version are nearly fulfilled, indicating that an approximate

description should be possible based on an unsubtracted system as well.

3.2 MO solution: D-waves

With the diagonalization of the D-wave system derived in section 2.5, the MO solutions

follow immediately, as the defining DRs are given in decoupled form (2.42) or (2.44). The

solution reads3

ȟ2,i(s) = ∆̌2,i(s) +
Ω2(s)

π

∫ ∞

4M2
π

ds′
∆̌2,i(s

′) sin δ2(s
′)

|Ω2(s′)|(s′ − s)
, (3.8)

where δ2 is theD-wave ππ-scattering phase shift and Ω2 the corresponding Omnès function.

From the functions ȟ2,i, we obtain the original helicity partial waves by inverting the basis

3For brevity, we will only quote the standard MO solutions in the following, with straightforward exten-

sions to vector-resonance LHCs as in (3.7).
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change (2.39):

sh̃2,1(s) = − (s− s+)(s− s−)

[
s+ + s−√

6
ȟ2,1(s)−

1

2
ȟ+23(s)

]

+
1

4
√
6

[

(s+ + s−)ȟ
+
45(s) + (s+ − s−)

2ȟ−45(s)

]

,

h̃2,2(s) =
1

2
ȟ+45(s),

sh̃2,3(s) = − 2(s− s+)(s− s−)ȟ2,1(s) + ȟ+45(s) + (s+ + s−)ȟ
−
45(s),

sh̃2,4(s) = 2ȟ−45(s),

sh̃2,5(s) = (s− s+)(s− s−)

[
4√
6
ȟ2,1(s) + 2ȟ−23(s)

]

− 1√
6

[

ȟ+45(s) + (2s+ s+ + s−)ȟ
−
45(s)

]

, (3.9)

where we have introduced the combinations

ȟ+23(s) := (s− s−)ȟ2,2(s) + (s− s+)ȟ2,3(s), ȟ+45(s) := (s− s−)ȟ2,4(s) + (s− s+)ȟ2,5(s),

ȟ−23(s) :=
(s− s−)ȟ2,2(s)− (s− s+)ȟ2,3(s)

s+ − s−
, ȟ−45(s) :=

(s− s−)ȟ2,4(s)− (s− s+)ȟ2,5(s)

s+ − s−
.

(3.10)

In the singly-virtual limit one has s+ = s− = q2, hence ȟ2,2(s) = ȟ2,3(s), ȟ2,4(s) = ȟ2,5(s),

so that ȟ−23(s) and ȟ−45(s) remain finite. Their MO solution reads

ȟ+23(s) = ∆̌+
23(s) +

Ω2(s)

π

∫ ∞

4M2
π

ds′
sin δ2(s

′)

|Ω2(s′)|

× 1

2

[
(s+ − s−)

2∆̌−
23(s

′)

λ12(s′)
+

(
s− s+
s′ − s+

+
s− s−
s′ − s−

)
∆̌+

23(s
′)

s′ − s

]

,

ȟ−23(s) = ∆̌−
23(s) +

Ω2(s)

π

∫ ∞

4M2
π

ds′
sin δ2(s

′)

|Ω2(s′)|

× 1

2

[
∆̌+

23(s
′)

λ12(s′)
+

(
s− s+
s′ − s+

+
s− s−
s′ − s−

)
∆̌−

23(s
′)

s′ − s

]

,

ȟ+45(s) = ∆̌+
45(s) +

Ω2(s)

π

∫ ∞

4M2
π

ds′
sin δ2(s

′)

|Ω2(s′)|

× 1

2

[
(s+ − s−)

2∆̌−
45(s

′)

λ12(s′)
+

(
s− s+
s′ − s+

+
s− s−
s′ − s−

)
∆̌+

45(s
′)

s′ − s

]

,

ȟ−45(s) = ∆̌−
45(s) +

Ω2(s)

π

∫ ∞

4M2
π

ds′
sin δ2(s

′)

|Ω2(s′)|

× 1

2

[
∆̌+

45(s
′)

λ12(s′)
+

(
s− s+
s′ − s+

+
s− s−
s′ − s−

)
∆̌−

45(s
′)

s′ − s

]

, (3.11)

where ∆̌±
23 and ∆̌±

45 are defined in analogy to (3.10). We also remark that for space-

like virtualities, the zeros s± of λ12(s) need to be analytically continued according to
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s± = −(
√

−q21 ±
√

−q22)
2. The complete set of MO D-wave solutions is given by (3.8),

together with the basis change (2.39) and its inverse (3.9). In particular, the solution (3.11)

amounts to a rewriting of the S-wave solution (3.4), which can indeed be cast into the

form (3.11) once expressed in terms of

h̃0,1(s) =
1

2
ȟ+15(s), h̃0,5(s) = 2ȟ−15(s),

ȟ+15(s) := (s− s−)ȟ0,1(s) + (s− s+)ȟ0,5(s), ȟ−15(s) :=
(s− s−)ȟ0,1(s)− (s− s+)ȟ0,5(s)

s+ − s−
.

(3.12)

Finally, we turn to the D-wave contribution to the S-waves. According to (2.43), these

kernels produce an additional term in the S-wave inhomogeneities of the form

∆̌0,i(s) =
α̌0,i

s
, (3.13)

leading to

ȟ0,i(s) → ȟ0,i(s) +
α̌0,i

s
Ω0(s), (3.14)

with

α̌0,1 = − 10M2
πs+√
6

1

π

∫ ∞

4M2
π

ds′

s′

(

2s−Im ȟ2,1(s
′) +

√
6s−Im ȟ2,2(s

′) + Im ȟ2,5(s
′)
)

,

α̌0,5 = − 10M2
πs−√
6

1

π

∫ ∞

4M2
π

ds′

s′

(

2s+Im ȟ2,1(s
′) +

√
6s+Im ȟ2,3(s

′) + Im ȟ2,4(s
′)
)

. (3.15)

For the inversion (3.12) one needs

ȟ±15(s) → ȟ±15(s) +
α̌±
15(s)

s
Ω0(s), (3.16)

with

α̌+
15(s) =− 5M2

π√
6

1

π

∫ ∞

4M2
π

ds′

s′

[

4s+s−(2s− s+ − s−)Im ȟ2,1(s
′)

+
√
6s+s−

((
s− s+
s′ − s+

+
s− s−
s′ − s−

)

Im ȟ+23(s
′) +

(s+ − s−)
2(s′ − s)

(s′ − s+)(s′ − s−)
Im ȟ−23(s

′)

)

+

(
s+(s− s−)

s′ − s+
+

s−(s− s+)

s′ − s−

)

Im ȟ+45(s
′) +

(s+ − s−)
2(s+s− − s′s)

(s′ − s+)(s′ − s−)
Im ȟ−45(s

′)

]

,

α̌−
15(s) =− 5M2

π√
6

1

π

∫ ∞

4M2
π

ds′

s′

[

4s+s−Im ȟ2,1(s
′)

+
√
6s+s−

(
s′ − s

(s′ − s+)(s′ − s−)
Im ȟ+23(s

′) +

(
s− s+
s′ − s+

+
s− s−
s′ − s−

)

Im ȟ−23(s
′)

)

− s+s− − s′s

(s′ − s+)(s′ − s−)
Im ȟ+45(s

′)−
(
s+(s− s−)

s′ − s+
+

s−(s− s+)

s′ − s−

)

Im ȟ−45(s
′)

]

.

(3.17)

α̌+
15(s) vanishes for s+ = s− = 0, so that the onshell process remains unaffected. As argued

in section 2.3, the appearance of the 1/s singularities is an artefact of the partial-wave
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expansion, and accordingly the size of α̌±
15(s) should be in line with effects expected from

higher partial waves to allow for a cancellation in the full amplitude. We checked numeri-

cally that this residual coupling between S- andD-waves is indeed small, but this conclusion

remains to be verified after integration over the weight functions in the g − 2 integral.

3.3 Subtractions and the f2(1270) resonance

In [35] it was shown that sum rules for the subtraction constants in the modified Omnès

representation are nearly fulfilled, making an approximate description possible that is based

on an unsubtracted system. Surprisingly, the same observation does not hold for the D-

wave analog of (3.4), where the vector-meson LHC is treated as part of the inhomogeneity.

Here, we want to clarify the reason why the two strategies lead to different results.

The assumption that an unsubtracted MO solution can be used relies in the standard

Omnès representation on an asymptotic behavior

hstd(s)−∆(s)

Ω(s)
≍ 1

s
, (3.18)

with ∆(s) = N(s)+hV (s), whereas in the modified Omnès representation an unsubtracted

DR is justified for

hmod(s)−N(s)

Ω(s)
≍ 1

s
. (3.19)

If the Omnès function behaves as Ω(s) ≍ s−1, the two assumptions are equivalent provided

that the vector-meson LHC vanishes asymptotically at least as hV (s) ≍ s−2. According

to (2.54), this is not the case for the S-waves and the two D-waves ȟV,fixed-s2,i , i = 4, 5. The

difference between the two representations is proportional to the Omnès function:

hstd(s)− hmod(s) = Ω(s)

[

hV (0)− 1

π

∫ 0

−∞
ds′

ImhV (s′)

Ω(s′)s′
+

1

π

∫ ∞

4M2
π

ds′
hV (s′) sin δ(s′)

|Ω(s′)|s′
]

.

(3.20)

In order for an unsubtracted standard MO solution to work, one would have to assume

a cancellation of the bad high-energy behavior of the vector-meson LHC with the high-

energy behavior of the rescattering contribution in hstd(s), which seems unlikely. Therefore,

the standard MO form is expected to work only when subtractions are introduced. Note

that the somewhat pathological high-energy behavior of the vector-meson LHC is only

present in the real part, while the imaginary part is much better behaved. While the

MO solution in the standard form keeps the bad high-energy behavior of the resonance

LHC, the modified representation only involves the imaginary part of the vector-meson

LHC and imposes a better high-energy behavior on the Born-subtracted partial waves.

According to the general considerations of section 2.6, the asymptotic behavior for the

D-wave rescattering (2.48) should make an unsubtracted dispersion relation possible for

the Born-subtracted part, hence a priori one would expect the modified MO solution to

work even without subtractions.
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Checking the MO solutions numerically, indeed it turns out that the unsubtracted

standard MO form does not reproduce the peak of the narrow f2(1270) D-wave resonance.

The effect on the resonance peak can be understood by noting that the modified MO solu-

tion is equivalent to the standard form with a subtraction, where the subtraction constant

is effectively calculated in terms of the vector-meson LHC. In this case, the resonance peak

is fully described by the subtraction term: let us consider the part without subtraction

constant,

h(s) = ∆(s) + Ω(s)
s

π

∫ ∞

4M2
π

ds′
∆(s′) sin δ(s′)

|Ω(s′)|s′(s′ − s)
, (3.21)

and let us further consider the simple case in which ∆(s) = α/s. In this case, the dispersive

integral can be performed analytically by using the spectral representation of the inverse

Omnès function

Ω−1(s) = 1− sΩ̇(0)− s2

π

∫ ∞

4M2
π

ds′
sin δ(s′)

|Ω(s′)|s′2(s′ − s)
, (3.22)

yielding

h(s) =
α

s
Ω(s)

(
1− sΩ̇(0)

)
. (3.23)

The result is proportional to the Omnès function, as expected, but one finds an additional

polynomial whose coefficients are determined by normalization and derivative of the Omnès

function at s = 0. For a narrow resonance with mass MR, as the f2(1270) in the D-wave,

one has Ω(s) ∼ M2
R/(M

2
R − s), so that 1− sΩ̇(0) vanishes at s = M2

R. The resonance peak

is thus described exclusively by the subtraction term that we dropped in (3.21). Using an

unsubtracted standard MO solution corresponds to fixing the subtraction constant with a

sum rule that cannot be expected to hold and therefore leads to an incorrect description

of the resonance. Such a situation indeed occurs for some of the D-waves, which is why

in the following we develop the formalism to include the vector mesons in the LHC in the

modified MO representation as in (3.7) even in the doubly-virtual case, to be able to put

forward an unsubtracted DR in the description of the f2(1270) resonance in γ∗γ∗ → ππ.

Avoiding the introduction of subtraction constants is advantageous for the generalization

to the singly- or doubly-virtual case, because otherwise their q2-dependence would need to

be addressed as well.

3.4 Analytic structure of the resonance partial waves

To include the vector mesons directly in terms of the LHCs of their helicity partial waves,

as in (3.7), we need to analyze the analytic structure of their LHCs in more detail. These

LHCs are produced by the t- and u-channel exchange of a resonance with mass MV . For

the cut structure itself the details of the partial-wave projection, i.e. angular momentum

and helicity states, are irrelevant, let us therefore write symbolically

hV (s) ∼ 1

σπ(s)λ
1/2
12 (s)

Q(xV ), (3.24)
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where Q(x) is a Legendre function of the second kind with a cut in the complex x-plane

between ±1 and xV is given in (B.1). Instead of considering the Legendre function, we can

also study the angular integration path in the complex t- or u-plane, with endpoints at

t± = u∓ =
1

2

(

q21 + q22 + 2M2
π − s± σπ(s)λ

1/2
12 (s)

)

. (3.25)

In this way, the wrapping of the integration contour around the pole at t, u = M2
V de-

termines possible singularities. Throughout, we will restrict the analysis to space-like

virtualities, q2i < 0, as required for HLbL scattering. For time-like virtualities anomalous

thresholds are certain to appear in any dispersive representation, even in MO solutions in

the standard form (3.4), see [44].

First, possible kinematic square-root singularities at s = 4M2
π , s = 0, and s =

−(
√

−q21 ±
√

−q22)
2 = s± are in fact absent: in the explicit representation, these sin-

gularities of the Legendre function are balanced by the kinematic prefactor. Equivalently,

in the path-deformation approach, they are lifted by the same factors coming from the

Jacobian when switching from z to t or u as integration variables. The only singularities

are therefore logarithmic branch points at x = ±1 or, equivalently t± = M2
V , given by

s±cut =
M2

π(2M
2
V + q21 + q22)−M4

π − (M2
V − q21)(M

2
V − q22)± λ1/2(M2

V ,M
2
π , q

2
1)λ

1/2(M2
V ,M

2
π , q

2
2)

2M2
V

.

(3.26)

The other ends of the branch cuts are located at s = 0 and s = −∞, respectively, as can

be inferred from the replacement M2
V → ∞. For q2i → 0, the two branch points are at

lim
q2
i
→0

s±cut =







0

− (M2
V
−M2

π)
2

M2
V

, (3.27)

hence only one branch cut from −∞ to − (M2
V
−M2

π)
2

M2
V

is present, while the other one disap-

pears. By writing the Källén function as

λ(M2
V ,M

2
π , q

2
i ) = (q2i − (MV −Mπ)

2)(q2i − (MV +Mπ)
2), (3.28)

it follows that the square roots in s±cut can only produce an imaginary part for

q2i ∈
(

(MV −Mπ)
2, (MV +Mπ)

2
)

, (3.29)

i.e. for time-like virtualities. Therefore, for space-like virtualities the cut structure seems

to remain simple: one expects just two branch cuts on the negative real axis, one from −∞
to s−cut, the other from s+cut to 0.

However, an important subtlety arises that is reminiscent of anomalous thresholds in

triangle diagrams, which appear for sufficiently large time-like virtualities: there, the dis-

continuity itself has singularities that depend on the virtualities and cross the unitarity cut

of the triangle diagram. By entering the physical sheet, they require a deformation of the
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s

s−cut s+cut

sa sb

Figure 2. Sketch of the LHC structure of the resonance partial waves.

integration contour and add an “anomalous” discontinuity [41, 44, 54]. Here, the discon-

tinuity itself has the two square-root branch cuts from the kinematic factors in (3.24), i.e.

cuts for s ∈ [0, 4M2
π ] and s ∈ [s+, s−]. For space-like q

2
i , the second cut in the discontinuity

lies between the two LHCs of the partial waves, i.e. s± ∈ [s−cut, s
+
cut], where the points s+

and s−cut coincide for

q21q
2
2 = (M2

V −M2
π)

2. (3.30)

This condition can be fulfilled even for space-like virtualities, so that the corresponding

points deserve special attention.

Let us consider the difference

∆cut = s+ − s−cut (3.31)

and add a small imaginary part to the virtualities, q2i → q2i + iǫ. Then, for fixed values of

q21 we trace the path of ∆cut as a function of q22. We find that

1. q22 >
(M2

V
−M2

π)
2

q2
1

: ∆cut has a positive real part and a small positive imaginary part of

order ǫ.

2. q22 =
(M2

V
−M2

π)
2

q2
1

: the imaginary part vanishes and the real part is negative (of or-

der ǫ2).

3. q22 <
(M2

V
−M2

π)
2

q2
1

: the real part becomes again positive, the imaginary part is negative.

This implies that the square-root singularity of the discontinuity of the partial waves,

which for q21q
2
2 < (M2

V − M2
π)

2 lies on the second sheet of the logarithmic LHCs, moves

onto the physical sheet for q21q
2
2 > (M2

V −M2
π)

2, see the sketch in figure 2. This requires

a deformation of the left-hand integration contour. In the case q21q
2
2 < (M2

V − M2
π)

2, the

left-hand integral consists of two integrals

hV (s) =
1

π

∫ s−cut

−∞
ds′

ImhV (s′)

s′ − s
+

1

π

∫ 0

s+cut

ds′
ImhV (s′)

s′ − s
, (3.32)
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while for q21q
2
2 > (M2

V −M2
π)

2 the dispersion integral picks up an anomalous contribution

hV (s) =
1

π

∫ s−cut

−∞
ds′

ImhV (s′)

s′ − s
+

1

π

∫ s+

s−cut

ds′
∆anomh

V (s′)

s′ − s
+

1

π

∫ 0

s+cut

ds′
ImhV (s′)

s′ − s
. (3.33)

In the case of the Legendre functions, the normal imaginary part is given by

Im

(
1

σπ(s)λ
1/2
12 (s)

QJ(xV )

)

=
1

σπ(s)λ
1/2
12 (s)

π

2
PJ(xV )θ(1− x2V ). (3.34)

Since the anomalous singularity is a square-root branch cut, the anomalous discontinuity

is simply

∆anom

(
1

σπ(s)λ
1/2
12 (s)

QJ(xV )

)

= 2× 1

σπ(s)λ
1/2
12 (s)

π

2
PJ(xV ), (3.35)

which again can be verified by considering the path deformation in the complex t-plane.

The representation (3.33) indeed displays the correct integration regions, including

anomalous contributions, but does not yet fully cover the realistic case encountered in

γ∗γ∗ → ππ, in which the singularities are stronger than in the schematic example discussed

above. In the case of higher partial waves, the discontinuity at the anomalous singularity

behaves as (s−s+)
−(J+1)/2 due to QJ(xV ) alone. However, additional kinematic prefactors

appear both in the partial waves and in the kernel functions, so that in the realistic cases

the anomalous singularity actually scales as (s− s+)
−5/2 for the S-waves, as (s− s+)

−7/2

for ȟ2,1 and ȟ±45, and as (s− s+)
−9/2 for ȟ±23. Clearly, this is not integrable and the above

representation (3.33) has to be modified further.

To resolve this apparent contradiction, the important observation is that the contour

integral around the anomalous singularity gives a non-vanishing contribution, so that the

full anomalous integral is finite. The total anomalous integral can then be calculated as

follows. We write

∆anomh
V (s′)

s′ − s
=

4∑

k=0

ak(s)

(s+ − s′)(2k+1)/2
+ ∆̃(s, s′), (3.36)

where the first term collects the singular pieces of the integrand and ∆̃(s, s′) vanishes as

a square root for s′ → s+. The coefficients ak(s) can be calculated analytically. The

anomalous integral splits into two pieces

1

2πi

∫

γanom

ds′
hV (s′)

s′ − s
=

1

π

∫ s+

s−cut

ds′∆̃(s, s′)− 1

π

4∑

k=0

2

2k − 1

ak(s)

(s+ − s−cut)
(2k−1)/2

. (3.37)

The integral around the singularity cancels exactly the singular pieces of the integral along

the real axis, as can be seen by splitting the path into an integral up to s+−ǫ and a circular

integral around the singularity with radius ǫ.

Finally, if the integral over ∆̃(s, s′) is calculated numerically, one faces the problem of

numerical instabilities close to s+, given that ∆̃(s, s′) is defined by the difference of two
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divergent expressions. This numerical issue can be handled by replacing ∆̃(s, s′) close to

s+ by a fit function that has the same square-root-like behavior, i.e.

√

s+ − s′
n∑

k=0

bk(s)s
′k (3.38)

with some appropriate power n. The coefficients bk(s) are determined by a fit to ∆̃(s, s′)

in the vicinity of s′ = s+, but outside the region where numerical instabilities occur. The

size of this region depends on the values of the virtualities, so that the fit region needs to

be adapted accordingly.

We first verified that with this strategy we can indeed recover the original resonance

partial waves from a representation such as (3.33), even for large space-like virtualities

that exceed the critical point (3.30). The generalization to the unitarized case with Omnès

functions as in (3.7) proceeds along the same lines, given that the Omnès functions do

not alter the singularity structure, see appendix B for more details. In this case, however,

the derivatives of the Omnès function need to be provided as well, which in a numerically

stable way follow from the spectral representation

Ω
(n)
J (s) =

n!

π

∫ ∞

4M2
π

ds′
ImΩJ(s

′)

(s′ − s)n+1
, (3.39)

or directly by taking derivatives of (3.2). With increasing degree of singularity, numerical

stability of the extrapolation becomes more of an issue, but even for the −9/2 singularities

of ȟ±23 remains under good control as long as the fit region is chosen prudently. However,

we stress that for all D-waves besides ȟ±45 the standard MO representation still applies,

which does not involve integrals over the LHC. We verified that for ȟ2,1 and ȟ±23 the above

recipe for the treatment of the anomalous threshold in the modified MO representation

indeed reproduces the same result as the standard MO representation.

4 Numerics

In this section we present some numerical applications of the formalism developed in sec-

tion 3, mainly focused on the contribution of the f2(1270) resonance to the various helic-

ity amplitudes. Experimentally, there is ample information on the on-shell cross section

γγ → π+π−, π0π0, derived from e+e− → e+e−ππ via suitable cuts on the lepton momenta.

4.1 On-shell case

In the on-shell case only the helicity amplitudes H++ and H+− contribute. Adjusting the

flux factor to an actual γγ initial state, one has

dσ

dΩ

(
γγ → π+π−) =

σπ(s)α
2

8s

(∣
∣H̄c

++

∣
∣2 +

∣
∣H̄c

+−
∣
∣2
)

,

dσ

dΩ

(
γγ → π0π0

)
=

σπ(s)α
2

16s

(∣
∣H̄n

++

∣
∣2 +

∣
∣H̄n

+−
∣
∣2
)

, (4.1)
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Figure 3. Cross section for γγ → π+π− (left) and γγ → π0π0 (right), in comparison to the data

from Belle [5, 7], Mark II [3], CELLO [4], and Crystal Ball [2]. The lines indicate the pion Born

terms (blue dashed, all partial waves), including the I = 0 unitarization of S- and D-waves (red

dot-dashed), and the full solution (black solid).

where the particle-basis amplitudes are related to the isospin ones by the rotation given

in (A.2).

To illustrate the behavior of the f2(1270), an isospin-0 D-wave resonance, we neglect

unitarity corrections in the isospin-2 partial waves and combine our results for the D-

waves with the S-waves from [42, 43] (as well as the higher partial waves for the pion

pole without rescattering). The only free parameters are then the photon couplings of the

vector resonances CV , which in a narrow-width picture are related to the partial widths

by means of (A.7). We find that the physical couplings do not exactly reproduce the cross

section. This observation corresponds to the fact that the sum rules for the subtraction

constants introduced in [35] are not fulfilled exactly, pointing to a small correction from

higher intermediate states not explicitly included in the calculation.4 To ensure agreement

with the measured cross section, we therefore allow the couplings to vary, as a means to

include phenomenologically the effect of higher intermediate states.

Note that the experimental cross sections are not integrated over the full angular range,

with | cos θ| ≤ 0.6 and | cos θ| ≤ 0.8 for the charged and neutral channels, respectively. The

results in figure 3 follow this convention. The relevant helicity amplitudes in the on-shell

case are

h0,++(s) =
1

2
ȟ+15(s), h2,++(s) =

s(s− 4M2
π)

2
ȟ+23(s), h2,+−(s) =

s− 4M2
π

2
ȟ+45(s). (4.2)

In the figure, the blue dashed lines indicate the pion Born terms and the red dot-dashed

ones their unitarization. The S-waves are treated as in [42, 43], with a phase shift from the

inverse-amplitude method as specified in [68]. This phase shift agrees well with dispersive

ππ phase shift analyses [69–71] at low-energies, but removes the f0(980) contribution in

4A similar observation was made in [40], where the authors argued that the difference between the fit

values for the photon couplings and the ones extracted from the radiative widths reflected SU(3) uncertain-

ties. We disagree with that statement: if the deficit were due to SU(3) uncertainties, it should disappear

once the known couplings for the individual states, ω, ρ±, ρ0, are used instead of a common SU(3) coupling,

but this is not the case.
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a controlled manner, which otherwise would require a coupled-channel treatment of the

ππ/K̄K S-waves. Further, we do not include the S-waves resulting from the vector-meson

exchanges, given that these contributions are not relevant for the f2(1270) and need to be

studied together with the pion polarizabilities to ensure the correct low-energy properties

of the γγ → ππ reaction, see [42, 43]. These details can be improved most conveniently

by introducing subtractions in the S-wave dispersion relations, but instead we focus here

on the f2(1270) resonance, as it emerges mainly from the unitarization of the vector-

meson D-waves, see figure 3, using the phase shift from [70]. In the neutral channel, the

unitarization of the Born terms alone actually results in a small resonant contribution,

while in the charged channel it displays the pathological behavior of the standard MO

solution illustrated in (3.23). In both cases the physical couplings need to be reduced by

about 13% to match the physical cross section, reflecting the impact of higher LHCs beyond

the lightest vector mesons ω, ρ±, ρ0 and potentially inelastic effects in the ππ D-wave.5

4.2 Singly- and doubly-virtual case

Given that the f2(1270) resonance in the on-shell process can be largely understood as a

unitarization of the vector mesons in the LHC, the only additional information required for

the virtual processes concerns the V π transition form factors as introduced in appendix A,

in analogy to the pion vector form factor for the pion-pole terms. For the ω, this form

factor is again available from a detailed dispersive analysis [72–74]. In contrast, a rigorous

implementation of the ρ should proceed in terms of 2π intermediate states, based on a

suitable γ∗ → 3π amplitude [47, 48, 75–78]. Here, we illustrate the numerical solution

by approximating the dependence on the photon virtuality by a vector-meson-dominance

(VMD) suppression M2
V /(M

2
V −q2), which in the case of the pion form factor reproduces the

full solution very accurately [42, 43, 79]. For the ω transition form factor the deviations

from VMD are more sizable, but a refined analysis should address the ρ LHC at the

same time.

For the virtual processes the canonical generalization of (4.1) would be

dσ

dΩ

(
γ∗γ∗ → π+π+

)

=
σπ(s)α

2

36λ
1/2
12 (s)

(

2
∣
∣H̄c

++

∣
∣2 + 2

∣
∣H̄c

+−
∣
∣2 − 2q22

∣
∣H̄c

+0

∣
∣2 − 2q21

∣
∣H̄c

0+

∣
∣2 + q21q

2
2

∣
∣H̄c

00

∣
∣2
)

,

dσ

dΩ

(
γ∗γ∗ → π0π0

)

=
σπ(s)α

2

72λ
1/2
12 (s)

(

2
∣
∣H̄n

++

∣
∣2 + 2

∣
∣H̄n

+−
∣
∣2 − 2q22

∣
∣H̄n

+0

∣
∣2 − 2q21

∣
∣H̄n

0+

∣
∣2 + q21q

2
2

∣
∣H̄n

00

∣
∣2
)

, (4.3)

but we stress that these cross sections are not actual observables, only the e+e− cross

section is [80, 81], which can be seen from the fact that in the definition of (4.3) we needed

to choose a convention for the flux factor and the counting of the polarization states (due

to the latter this choice is discontinuous in the limit q2i → 0). For these reasons we present

5The uncertainties for the radiative widths given in [67] are at the level of 3% for ω → π0γ and 10% for

ρ → πγ.
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Figure 4. Angular-integrated helicity amplitudes (4.4), for singly-virtual virtualities Q2
i
= −q2

i
.

our results instead directly in terms of the squared moduli of the helicity partial-wave

amplitudes, which are also the most relevant objects for the future application to HLbL

scattering. For convenience, we combine S- and D-waves into

1

2

∫ 1

−1
d cos θ |H̄λ1λ2

|2 =
∑

J

(2J + 1)|hJ,λ1λ2
|2. (4.4)

Moreover, we focus on the I = 0 amplitudes, where the unitarization effects that produce

the f2(1270) occur.

The results are shown in figure 4 for several singly-virtual cases and in figure 5 for

doubly-virtual ones. Already for the on-shell case the Born terms appear suppressed com-

pared to the f2(1270) peak, due to their enhancement in the cross section by the flux

factor 1/s, and that relative size does not change much once the virtualities are increased.

In all cases, the H+− helicity amplitude gives the dominant effect, but the other helicity

projections become increasingly important for larger virtualities. In addition, the overall

size of the contribution decreases rapidly, as expected from the form factor suppression of

the vector-meson couplings.

5 Conclusions and outlook

Dispersion relations for processes involving virtual photons require a careful study of the

(helicity) amplitudes to ensure that results are not invalidated by kinematic singularities.

A suitable such decomposition for the γ∗γ∗ → ππ amplitudes has been derived before as

a precursor to HLbL scattering [41–43], with first numerical solutions provided for the

S-waves of the process. In this paper, we extended the solution to higher partial waves,
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Figure 5. Angular-integrated helicity amplitudes (4.4), for doubly-virtual virtualities Q2
i
= −q2

i
.

introducing a new basis in which that solution takes a simple form. In particular, we studied

the role of vector mesons in the left-hand cut of the amplitudes, in terms of which the D-

wave resonance f2(1270) can be understood as an effect of the ππ final-state rescattering.

Phenomenologically, the D-waves of γ∗γ∗ → ππ are indeed expected to contribute to

HLbL scattering mainly via the f2(1270) resonance. For this application it is therefore

crucial to understand all helicity amplitudes of γ∗γ∗ → ππ including the potential role

of subtraction constants. Here, we settled this issue conclusively, detailing how the high-

energy behavior of a given partial wave is tied to the necessity of subtractions in particular

variants of the Muskhelishvili-Omnès solution, which explains why for the helicity ampli-

tudes most relevant for the f2(1270) the standard variant fails, but a description in terms of

the left-hand singularities of the vector-meson amplitudes still applies. We then developed

a strategy how to cope with the anomalous thresholds that appear in the doubly-virtual

case, even for space-like virtualities, and presented some numerical results for the helicity

amplitudes that illustrate the role of the f2(1270) depending of the photon virtualities.
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Our results will be crucial for a model-independent evaluation of the f2(1270) con-

tribution to HLbL scattering in the anomalous magnetic moment of the muon, which so

far has only been estimated within a Lagrangian-based hadronic model as a narrow reso-

nance [82, 83]. To this end, we demonstrated how all helicity amplitudes can be derived

numerically from the unitarization of pion-pole and vector-meson-exchange contributions,

with parameters determined from the comparison to the measured γγ → ππ cross sec-

tion. The same intermediate states in the dispersion relation for HLbL scattering should

thus allow one to capture effects corresponding to the f2(1270) beyond the narrow-width

approximation, and without further assumptions on the form factors corresponding to he-

licity amplitudes that cannot be probed by available data. Even if data for the offshell

process γ∗γ∗ → ππ were available, currently under study at BESIII [84] and potentially

in the future at Belle II [85], the weighting with respect to energies and virtualities in

the g − 2 integral need not resemble the one in the cross section, which makes a detailed

understanding of the various helicity amplitudes all the more important. In this way, the

f2(1270) will be an important test case also for other resonances in the 1–2GeV region

that are hard to describe explicitly in terms of their decay channels, but still need to be

reliably estimated to confront the Standard-Model prediction for the muon g − 2 at the

level of accuracy anticipated for the E989 Fermilab experiment [86].
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A Pion pole and resonance exchange

The pion-pole contribution to the scalar functions Ai reads [41]

Aπ
1 = −F V

π (q21)F
V
π (q22)

(
1

t−M2
π

+
1

u−M2
π

)

,

Aπ
4 = −F V

π (q21)F
V
π (q22)

2

s− q21 − q22

(
1

t−M2
π

+
1

u−M2
π

)

,

Aπ
2 = Aπ

3 = Aπ
5 = 0,

(A.1)

where F V
π (q2) refers to the electromagnetic form factor of the pion. As shown in [41], these

expressions are identical to the result in scalar QED multiplied by F V
π (q2i ) to account for

the photon virtualities. Accordingly, we use “Born terms” and “pion pole” interchangeably.

Moreover, the overall sign is determined as for the Compton scattering process, because

this sign does not depend on the conventions chosen for the pion field. For the partial-wave

helicity amplitudes of γ∗γ∗ → ππ we then choose the sign in such a way that the helicity

amplitudes in particle and isospin bases are related by
(

Hc

Hn

)

=





1√
3

1√
6

1√
3
−
√

2
3





(

H0

H2

)

,

(

H0

H2

)

=





2√
3

1√
3√

2
3 −

√
2
3





(

Hc

Hn

)

, (A.2)
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for charged (c) and neutral (n) pions and isospin I = 0, 2, respectively, which in practice

implies an overall sign in the transition from (A.1) to the helicity amplitudes. In these

conventions the Born-term partial-wave projections become [43]

NJ,1(s) = F V
π (q21)F

V
π (q22)

×
{

8

σπ(s)λ
1/2
12 (s)

(
sq21q

2
2

λ12(s)
+M2

π

)

QJ(x) + 2δJ0
(q21 − q22)

2 − s(q21 + q22)

λ12(s)

}

,

NJ,2(s) = F V
π (q21)F

V
π (q22)

2sσπ(s)

λ
1/2
12 (s)

J

√

(J − 2)!

(J + 2)!

×
{

2xQJ−1(x)−
(
(J + 1)− x2(J − 1)

)
QJ(x)

}

,

NJ,3(s) = F V
π (q21)F

V
π (q22)

4
√
2sσπ(s)

λ
1/2
12 (s)

s

s− q21 − q22

√

J

J + 1
x
{

xQJ(x)−QJ−1(x)
}

,

NJ,4(s) = F V
π (q21)F

V
π (q22)

4
√
2sσπ(s)

λ
1/2
12 (s)

q21 − q22
s− q21 − q22

√

J

J + 1
x
{

xQJ(x)−QJ−1(x)
}

,

NJ,5(s) = F V
π (q21)F

V
π (q22)

4

λ12(s)

{

(q21 − q22)
2 − s2

σπ(s)λ
1/2
12 (s)

QJ(x) + 2s δJ0

}

, (A.3)

with

x =
s− q21 − q22

σπ(s)λ
1/2
12 (s)

(A.4)

and Legendre functions of the second kind

QJ(x) =
1

2

∫ 1

−1

PJ(z)

x− z
dz. (A.5)

In particular, the isospin matrices in (A.2) ensure that the standard form of Watson’s

theorem [66] holds, i.e. in the elastic regime the phases of the γ∗γ∗ → ππ helicity partial

waves agree with the corresponding ππ phase shifts.

In the same way, the exchange of a vector meson based on a Lagrangian model [35]

leads to

AV
1 =

1

2
C2
V FV π(q

2
1)FV π(q

2
2)

(
4t+ 4M2

π − s− q21 − q22
t−M2

V

+
4u+ 4M2

π − s− q21 − q22
u−M2

V

)

,

AV
2 = −AV

4 = C2
V FV π(q

2
1)FV π(q

2
2)

(
1

t−M2
V

+
1

u−M2
V

)

,

AV
3 = −C2

V FV π(q
2
1)FV π(q

2
2)

1

s− Σππ + 2M2
V

(
1

t−M2
V

+
1

u−M2
V

)

,

AV
5 = 0,

(A.6)

where FV π(q
2) denotes the V π transition form factor and CV is the coupling in the La-

grangian model, related to the decay width V → πγ by [35]

ΓV→πγ =
α

2
C2
V

(M2
V −M2

π)
3

3M3
V

. (A.7)
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The helicity partial waves are

hVJ,1(s) = − C2
V FV π(q

2
1)FV π(q

2
2)

{
4

σπ(s)λ
1/2
12 (s)

QJ(xV )f
V
1 (s)

− δJ0

[

2s+
(

s− Σππ + 2M2
V

)(q21 − q22)
2 − s(q21 + q22)

λ12(s)

]}

,

hVJ,2(s) = C2
V FV π(q

2
1)FV π(q

2
2)
s(s− q21 − q22)σπ(s)

λ
1/2
12 (s)

J

√

(J − 2)!

(J + 2)!

×
{

2xV QJ−1(xV )−
(
(J + 1)− x2V (J − 1)

)
QJ(xV )

}

,

hVJ,3(s) = C2
V FV π(q

2
1)FV π(q

2
2)

(

s− λ12(s)

s− Σππ + 2M2
V

)

× 2
√
2sσπ(s)

λ
1/2
12 (s)

√

J
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{
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,
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2
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2
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2
√
2sσπ(s)

λ
1/2
12 (s)

√

J

J + 1
xV

{

xV QJ(xV )−QJ−1(xV )
}

,

hVJ,5(s) = − C2
V FV π(q

2
1)FV π(q

2
2)

{
16

σπ(s)λ
1/2
12 (s)

QJ(xV )f
V
5 (s)− 4sδJ0

s− Σππ + 2M2
V

λ12(s)

}

,

(A.8)

where

fV
1 (s) = M2

V (s− q21 − q22)

+

(
(M2

V −M2
π)

2 + q21q
2
2

)(
(q21 − q22)

2 − s(q21 + q22)
)
− 4sq21q

2
2(M

2
V −M2

π)

λ12(s)
,

fV
5 (s) =

s(M2
V −M2

π)
2 + s

(
q21q

2
2 +M2

V (s− q21 − q22)
)
+M2

π

(
(q21 − q22)

2 − s(q21 + q22)
)

λ12(s)
,

xV =
s− Σππ + 2M2

V

σπ(s)λ
1/2
12 (s)

.

B Anomalous singularities in the modified MO representation

In this appendix, we explain in more detail how the dispersive integrals over the anomalous

LHC can be computed in a numerically stable way. The appearance of the Omnès function

in the unitarized case leads to additional complications compared to the description in

section 3.4. Instead of (3.37), the anomalous integral is given by

I :=
1

2πi

∫

γanom

ds′
hV (s′)

Ω(s′)(s′ − s)
. (B.1)

One could proceed as in (3.37) and directly subtract the part of the expanded integrand

that diverges for s′ → s+. However, in this case, the numerical instabilities in the function

∆̃(s, s′) become worse, since the cancellation of the two divergent expressions involves
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the Omnès function and its derivatives, both of which are calculated only numerically.

However, these intricate cancellations can be avoided if not the full integrand including

the Omnès function is expanded but only the part involving the resonance LHC, exactly

as in (3.36). We define

g(s, s′) :=
4∑

k=0

(−1)k+1ak(s)

(s′ − s+)(2k+1)/2
, (B.2)

so that

Im g(s, s′) =
4∑

k=0

ak(s)

(s+ − s′)(2k+1)/2
, s′ < s+, (B.3)

which leads to

I =
1

π

∫ s+

s−cut

ds′
∆̃(s, s′)

Ω(s′)
+

1

2πi

∫

γanom

ds′
1

Ω(s′)
g(s, s′)

︸ ︷︷ ︸

=:I2

. (B.4)

The first integral is manifestly finite and the cancellation of divergences in ∆̃(s, s′) is iden-

tical to the case without unitarization, in particular no further instabilities are introduced

by derivatives of the Omnès function. The second integral can be split into a path up to

close to the singularity at s+ and an integral circling around the singularity:

I2 =
1

π

∫ s+−ǫ

s−cut

ds′
1

Ω(s′)
Im g(s, s′) +

ǫ

2π

∫ −π

π
dφeiφ

1

Ω(s′(φ))
g(s, s′(φ)). (B.5)

For ǫ → 0, both integrals contain divergent pieces that cancel in the sum. The result can

be obtained by multiple integration by parts, leading to

I2 =
1

π

∫ s+

s−cut

ds′
√

s+ − s′

Ω(s′)

4∑

k=0

ak(s)bk(s
′) +

1

π

1

Ω(s−cut)

4∑

k=0

ck(s, s
−
cut)

(s+ − s−cut)
(2k−1)/2

. (B.6)

The integral in the first term has to be done numerically but does not introduce any

instabilities as the integrand vanishes as a square root for s′ → s+. The functions bk(s
′)

depend on the first k+1 derivatives of the Omnès function at s′. The second term denotes

the lower boundary term of the integration by parts at s−cut. The divergent upper boundary

term at s+ − ǫ has canceled against the circular integral in (B.5). The above expression is

numerically stable as long as s+ is not too close to s−cut, i.e. as long as we stay away from

the exceptional point q21q
2
2 = (M2

V −M2
π)

2. In the vicinity of this singular point, one can

further expand the coefficients ak(s) around q21 ∼ (M2
V
−M2

π)
2

q2
2

to obtain a manifestly finite

expression.
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