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Dispersion relations of longitudinal and transverse waves in two-dimensional
screened Coulomb crystals
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Dispersion relations of longitudinal and transverse waves in two-dimensional~2D! screened-Coulomb crys-
tals were investigated. The waves were excited in 2D crystals made from complex plasmas, i.e., dusty plasmas,
by applying radiation pressure of laser light. The dependencies of the dispersion relation on the shielding
parameter, the damping rate, and the wave propagation direction were experimentally measured. The measured
dispersion relations agree reasonably with a recently developed theory, and the comparison yields the shielding
parameter and the charge on particles.
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I. INTRODUCTION

A screened Coulomb system is a collection of partic
interacting through a shielded Coulomb potential. For a po
particle of chargeQ, the interaction potential is the Yukaw
potentialV(r ), which is defined by

V~r !5
Q

4p«0r
expS 2

r

lD
D . ~1!

Here,r is the distance from a charged particle andlD is the
shielding length. When the system is in thermodynamic eq
librium, it is characterized by two parameters: the shield
parameterk and the Coulomb coupling parameterG. These
parameters are expressed as

k5
a

lD
, ~2!

G5
Q2

4p«0akBT
, ~3!

wherea is the mean interparticle spacing andT is the kinetic
temperature of the particles. The system is classified
‘‘strongly coupled’’ or ‘‘weakly coupled,’’ for G>1 or G
!1, respectively. WhenG@1, the system can be in a soli
state, where it usually has an ordered structure such as
and fcc, depending onk andG @1#. In the limit of k50, i.e.,
a one-component plasma, the critical value ofG for the tran-
sition between a liquid and solid state is known to be
proximately 170@1–4#. The screened Coulomb system ha
triple point, i.e., the intersection of fluid-solid and solid-so
phase boundaries, which is known to be atk54.28 andG
55.63103 @1#.

Within a screened Coulomb crystal, two kinds of wa
modes exist: longitudinal and transverse waves. The long
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dinal wave is a compressional wave that propagates par
to the particle motion in the medium. The transverse wa
also known as the shear wave, propagates perpendicul
the particle motion. It is known that the longitudinal wav
can propagate in all states of the screened Coulomb sys
~gas, liquid, and solid!; however, the transverse wave prop
gates only in the strongly coupled regime, i.e., liquid a
solid states.

A two-dimensional~2D! crystal is the system we conside
in this paper. One of the distinctions of waves in a 2D latt
is that the sound speed depends onk more weakly than for a
three-dimensional~3D! lattice. For the longitudinal mode a
k!1, Wanget al. @5# found that the sound speed is propo
tional to k21 for a 3D triangular lattice, tok21/2 for a 2D
triangular lattice, and to (2 ln k)1/2 for a one-dimensiona
~1D! chain. This is primarily because the number of partic
interacting with one another depends on the geometry.

Two examples of screened Coulomb systems are com
plasmas~often called dusty plasmas! and colloidal suspen-
sions. A main difference between these two systems is
damping rate for particle dynamics. Since colloidal susp
sions are generally produced in liquid electrolytes, parti
motion is strongly restricted due to the large friction with t
background liquid medium. However, in complex plasm
the particles are immersed in a rarefied gas, which exer
much weaker damping.

A complex plasma is an ionized gas containing small p
ticles of solid matter. It usually consists of four componen
electrons, ions, particles, and gas molecules. Particle
plasmas are usually negatively charged due to the hig
mobility of electrons as compared to ions. For example,
charge on a micron-sized sphere immersed in a plasma
an electron temperature of a few eV is thousands of e
trons. Therefore, the particles can affect each other throu
strong electrostatic repulsion, which leads the system to
strongly coupled@6#. In such a situation, the particles ma
organize themselves into a lattice, i.e., an ordered struct
called a plasma crystal@7–10#.

The electrons and ions in the plasma serve the roles
charging the particles and shielding the electrostatic fi
around the particles. The gas discharge used in experim
also includes gas molecules, because the gas is only we
ionized. The gas cools the particles to a particle kinetic te

of
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p
ac

ei

er

of

f
an
e
at

a
nc
o

nd
en

av
e
s
i-
st

an

de
sy
a
e

ol
th
he

n
ou
a
if-
im
tl
ri

n

ar
that

e of

non
rys-
y-
ts
ode
x-
-

the
e,
sø

re-

a
o-

to
en-
ry
er
te

ribe
ith
In
the
o-

ces
n-
m-
.

ve
itu-

in
t.

es-
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perature as low as the gas temperature. The damping of
ticle motion due to collisions with gas molecules is char
terized by the Epstein drag coefficientnE , which is
expressed as

nE5dA 8mg

pkBTg

p

rr p
, ~4!

where p is the gas pressure,mg and Tg are the mass and
temperature of gas molecules, andr p andr are the radius and
the material density of the particles, respectively. In Epst
theory @11#, the leading coefficientd ranges from 1.0 in the
case of specular reflection to 1.44 for diffuse reflection. H
we assume 1.44. Typical values ofnE for micron-sized par-
ticles are of the order of 1 s21 for a gas pressurep
;10 mTorr. This is smaller than in colloids by a factor
;103.

There have been several wave experiments reported
complex plasmas. In a strongly coupled regime, Pieper
Goree@12# excited longitudinal waves in a multilayer lattic
with a relatively high gas pressure, using an electrost
excitation scheme. Homannet al. @13# excited the same kind
of waves in a 1D chain and 2D crystal, but using laser m
nipulation. Here, we also use laser manipulation to lau
waves in our crystals. The transverse mode was recently
served by Nunomuraet al. in a 2D crystal@14# and Misawa
et al. in a 1D chain@15#. However, we know of no wave
experiments until now, where both the longitudinal a
transverse modes were excited under the same experim
conditions.

In this paper we present dispersion relations of both w
modes measured in 2D plasma crystals, and we compar
results with theoretical dispersion relations. Dependencie
the dispersion relations onk, the damping rate, and the d
rection of wave propagation are comprehensively inve
gated. We propose two diagnostic methods fork andQ, us-
ing dispersion relation measurements of both modes
sound speeds.

II. THEORY OF DISPERSION RELATIONS

Dispersion relations for longitudinal and transverse mo
have been theoretically developed in screened Coulomb
tems using two approaches. First, the hydrodynamic
proach is useful for gas and liquid phases because the kin
effects, i.e., particle thermal motions, play an important r
in wave propagation. Second, one can directly solve
equation of motion; this can be done analytically for t
solid phase, or using molecular dynamics~MD! simulation
for all phases.

For a liquid state, Kaw and Sen@16# developed dispersion
relations using the generalized hydrodynamic equatio
where they used a nonlocal viscoelastic operator to acc
for the memory effect and short range order. Latter, Kalm
et al. @17# also derived dispersion relations, but from a d
ferent approach, using the quasilocalized charge approx
tion method. Molecular dynamics simulations were recen
carried out to investigate the detail of dispersion characte
tics @18#. The theories and simulation results predict that i
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liquid there is a critical wave number, below which she
waves cannot be sustained. The reason is thought to be
long-range correlation diminishes in a liquid state becaus
kinetic effects.

For a solid state, Peeters and Wu presented a pho
spectrum, i.e., a dispersion relation, of a 2D hexagonal c
tal @19#. They carried out a numerical calculation of the d
namical matrix of the crystal, which ignores kinetic effec
and damping. In our previous work on the transverse m
@14#, we used this dispersion relation to compare with e
perimental results. Unfortunately, it did not allow us to com
pare the imaginary part of the wave number because
theory did not take damping into account. In a 1D lattic
dispersion relations were analytically derived by Meland
for the longitudinal mode@20# and Vladimirovet al. for the
transverse mode@21#.

In this paper we compare experimental results to the
cently developed dispersion relations of Wanget al. @5#.
They derived the dispersion relations of both modes from
unified perspective by solving the linearized equation of m
tion analytically. Their theory is basically applicable
strongly coupled screened Coulomb crystals in all dim
sions, and in a 2D triangular lattice it is similar to the theo
of Dubin @22#. It is possible to adopt the theory to anoth
kind of interaction potential, by choosing an appropria
spring constant matrix expression. Here, we only desc
the theory for a 2D triangular screened Coulomb lattice w
hexagonal symmetry, in which wave damping is included.
real experiments, the differences from the assumptions of
theory are as follows: the existence of particle thermal m
tion, defects, and particle size dispersion. Other differen
from theory, which we believe are insignificant, include no
linear particle interaction and gradients in the particle nu
ber density due to the influence of gravity and the sheath

For waves propagating parallel to one of the primiti
translation vectors, the dispersion relations for both long
dinal and transverse modes are expressed, respectively@Eqs.
6~a! and 6~b! in Ref. @5##, as

v l~v l1 in!52(
x,y

F~X,Y!sin2S kX

2 D , ~5a!

v t~v t1 in!52(
x,y

F~Y,X!sin2S kX

2 D , ~5b!

where the summation is carried out all over the particles
the 2D lattice, andn represents the frictional drag coefficien
The frequenciesv andn are normalized byv0 , and equilib-
rium particle positionX, Y, andk are normalized bya. Here,
v0 is defined as

v05A Q2

4p«0ma3 , ~6!

wherem is the mass of a particle. This resembles the expr
sion for a plasma frequency. The functionF(X,Y) represents
the spring constant matrix, which is given by
2-2
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DISPERSION RELATIONS OF LONGITUDINAL AND . . . PHYSICAL REVIEW E65 066402
F~X,Y!5R25e2kR@X2~313kR1k2R2!2R2~11kR!#,
~7!

whereR25(X21Y2).
According to the theory, wave dispersion relations depe

on three parameters:k, n, and the direction of wave propa
gation as compared to the crystal alignment. Wanget al. @5#
and Dubin@22# found that both the longitudinal and tran
verse waves had a nondispersive character, i.e.,v}k for
small values ofk. The slope of thev vs k curve, where it is
straight, is a sound speed. They found that the sound s
was independent of the propagation direction, for b
modes. As the wavelength becomes shorter,v is no longer
proportional tok, and then the dispersion relation depends
the propagation direction.

III. METHOD OF WAVE EXPERIMENT AND ANALYSIS

We performed wave experiments in a 2D triangular latt
with hexagonal symmetry. The lattice was formed by levit
ing a single horizontal layer of particles in the plasma she
A schematic view of experimental apparatus is shown in F
1~a!. The same apparatus was used earlier for a prev
series of transverse wave experiments@14#.

An argon plasma was generated by a capacitively coup
rf discharge operated at 13.6 MHz at a gas pressure of 18
33.6 mTorr. The various discharge conditions in which
performed wave experiments are listed in Table I. We ch
a relatively low gas pressure in order to reduce the gas
tion damping of the waves. The lower electrode was driv
by rf power with a peak-to-peak voltageVpp;60 V, using a
matching network. In order to characterize plasma para
eters in the main plasma, we made Langmuir probe meas
ments, and we found that typicallyTe;1 eV, ne53 – 6
3108 cm23, and the plasma potentialVs;20 V. We
checked that the plasma parameters in the main plasma
not change much when particles were introduced. On
lower electrode, a self-bias voltage appeared, which h
levitate particles. It varied fromVb5230 V to 240 V, de-
pending onp andVpp .

A 2D plasma crystal was made by introducing micr
spheres into plasma. The particles are polymer sphere
mean radiusr p54.04mm, and their size distribution has
standard deviation of 0.09mm. Their mass density is 1.5
g/cm3, corresponding tom54.17310213 kg. After particles
were dispersed into the plasma, some of the particles w
trapped in the plasma sheath area above the horizontal lo
electrode. A weak radial electrostatic field in the plasma c
fined the particles in the radial direction. Due to a combin
tion of this confinement and the interparticle repulsion, p
ticles organized themselves into a monolayer triangu
lattice with hexagonal symmetry. The crystal was;7 cm in
diameter, and it included 3000–10 000 particles. By add
or removing particles, we adjusted the number density
particles in a monolayer crystal, allowing us to controlk. By
doing this, the interparticle spacing was changed froma
50.67 to 1.3 mm, corresponding to a change of appro
mately a factor of 2 ink. In our experiment, the crysta
spontaneously rotated as a rigid body in a horizontal plan
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a constant angular speed of;30 °/min, which is much
slower than the wave propagation speed of either mode.
cause of this spontaneous rotation is unclear, but it prove
be useful because it allowed us to measure the disper
relations at various wave propagation directions with resp
to the primitive translation vectors of the lattice.

Particles were imaged by a charge-coupled device~CCD!
video camera located above the crystal. The particles in a
crystal were illuminated with a horizontal He-Ne laser sh
with a power small enough that it did not move the particl
The camera was equipped with a microlens and a He
interference filter. The field of view was 24318 mm, and it
included 300–1100 particles. Images were recorded on
SVHS videocassette recorder~VCR! tape at 30 frames pe
second.

We used the radiation pressure of an Ar laser shee
launch a plane wave in the 2D crystal. By changing the o
entation of the laser sheet, we were able to excite eithe
longitudinal or transverse wave. Three galvanome
scanning mirrors~SM1, SM2, and SM3, shown in the righ
side of Fig. 1! were employed to control the wave frequen
and the wave mode, i.e., a longitudinal or transverse wa

FIG. 1. ~a! Sketch of experimental apparatus. A wave was e
cited by applying an intensity-modulated laser sheet to a 2D pla
crystal. Microspheres were levitated in the plasma sheath above
lower electrode, and they formed an ordered structure, a so-ca
‘‘plasma crystal.’’ ~b! and ~c! Method of wave excitation for both
the longitudinal and the transverse modes. A laser sheet expand
the y direction was used for a longitudinal wave excitation. T
launch a transverse wave, the laser sheet was spread in thex direc-
tion. The direction of wave propagation was defined as the angu
with respect to one of the primitive translation vectors.
2-3
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TABLE I. Discharge conditions and plasma parameters in main plasma.

Quantity Unit

Experimental No.

I II III IV V VI VII VIII IX

Discharge conditions
P mTorr 18.6 18.6 18.6 18.6 18.6 18.6 23.6 28.6 33

Vpp V 62 62 62 62 62 62 60 61 62
Vb V 240 240 240 240 240 240 237 231 230

Plasma parameters
Te eV 1.2 1.1 1.0 1.0 1.0 1.2 0.8 0.8
ne 108 cm3 3.0 3.5 3.4 3.6 3.2 3.5 5.8 5.8
Vs V 20 21 20 20 20 21 21 21
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The procedure for wave excitation was as follows. Mirr
SM1 determined the wave frequency by chopping the la
beam. The driving frequency was varied up to several
The chopping was not a square wave; instead, we appli
smoother wave form to SM1, yielding a nearly sinusoid
modulation of the laser power. The second and third harm
ics had a power of typically only 3% of the fundamental, a
higher harmonics were too small to measure. After the la
beam was modulated, the beam was focused by a telesc
At the crystal, the Gaussian full width at half maximu
~FWHM! was 0.7 mm. Then, the focused laser beam w
deflected by mirrors SM2 and SM3. One of the two mirro
was stationary while the other formed a laser sheet by os
lating at 300 Hz. Note that this frequency is two orders
magnitude higher than the wave driving frequency; the p
ticles are too massive to respond to a stimulation at 300
Next, the laser sheet struck the crystal at a grazing angl
10°, so that it applied its momentum mainly in the horizon
direction. From images of the side view of the crystal,
checked that particles did not move in a vertical direct
when the laser sheet irradiated them, i.e., their motion
strictly 2D. The Ar laser power was adjusted to be relativ
low for three reasons: to suppress secular drift in the crys
to avoid disturbing the crystal structure, and to avoid non
ear wave motion. In the experiments, we applied a la
power of 0.5 W distributed in a sheet slightly wider than t
crystal diameter.

Here we define thex axis as parallel to the direction o
longitudinal wave propagation, and they axis is the direction
of transverse wave propagation. To excite a longitudi
wave, the Ar laser sheet was expanded in they direction, as
shown in Fig. 1~b!. In contrast, the Ar laser was expanded
the x direction to launch the transverse wave Fig. 1~c!. The
particle motion in both waves was always in thex direction.
The wave propagation direction was defined by the angu
with respect to one of the primitive translation vectors.

In order to obtain the wave dispersion relation, we a
lyzed particle motion. Our method, which was introduced
Refs.@14,23#, was as follows. First, video images were dig
tized with an 8-bit gray scale and a 6403480 pixel resolu-
tion. The frame rate for digitized images was chosen in
range of 10 to 30 frames per second, to include several
riods of wave motion. Then, individual particles were ide
tified as contiguous pixels that have a brighter intensity th
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the threshold value. By weighting the brightness over c
tiguous pixels, the center of a particle was calculated, w
subpixel resolution, inx-y coordinates. Each particle’s tra
jectory was obtained by tracing its position from one fram
to another over a total of 128 frames, corresponding to 4
12.7 s, depending on the wave excitation frequency. At
same time, the particle velocity was also calculated from
difference of particle position in consecutive two frame
Next, depending on the equilibrium particle position, pa
ticles were divided into 40 bins, i.e., stripes aligned perp
dicular to the wave propagation direction. The particle po
tion and velocity were averaged in each bin, yielding a tim
series of velocity for each bin. After that, the wave amplitu
and phase were obtained from a temporal Fourier transf
of particle motion associated with the fundamental f
quency. We used the particle velocity, not the particle po
tion, as the input for this Fourier transform to eliminate t
effect of any secular particle drift. Finally, the real an
imaginary parts of the wave number were obtained by fitt
the phase shift and amplitude decay of the wave as funct
of distance, as explained in the next section.

IV. RESULTS OF WAVE EXPERIMENTS

A. Crystal structure

An image of a typical 2D crystal is shown in Fig. 2. Th
image has been thresholded and inverted, so that part
appear as black spots. The upper right image is an enla
ment of part of the crystal, showing a triangular lattice w
hexagonal symmetry. To obtain the interparticle spacinga

FIG. 2. Image of a 2D plasma crystal. The inset is an enlar
ment of a part of the image, where we have also drawn lines
show the triangular lattice with hexagonal symmetry.
2-4
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DISPERSION RELATIONS OF LONGITUDINAL AND . . . PHYSICAL REVIEW E65 066402
and evaluate the crystal ordering, the pair correlation fu
tion g(r ) was calculated. Figure 3 is an example ofg(r ). In
our experiments, typically,a was ;1 mm and the transla
tional correlation length@24# was several times lager thana.
The presence of many peaks ing(r ) indicates a long-range
translational order.

B. Phase and amplitude of wave

To obtain both parts of the wave numberk5kr1 ik i , we
calculated the phase shift and the amplitude decay of w
from analyzing particle motions. Here, we show examp
for both the transverse and longitudinal modes, because
amplitude decay is different.

For the transverse mode, the phase shift and amplit
decay were as expected. Figure 4~a! clearly shows that the
phase is proportional to the distance from the wave exc

FIG. 3. Pair correlation functiong(r ). The large number of
peaks indicates a long-range translational order.

FIG. 4. ~a! Phase shift and~b! amplitude decay for transvers
waves. The linear slope in phase and exponential decay in am
tude givekr and ki , respectively. Solid lines are fits. The wave
were launched aty50.
06640
-

ve
s
he

de

-tion source aty50. By fitting it as a linear function, the
slope yieldskr . For a mode of highv, the slope is steep
corresponding to a short wavelength. The wave amplitudA
decays exponentially as the wave propagates. This is sh
in Fig. 4~b!, which is plotted with semilogarithmic axes. Th
amplitude decay is fit to an exponential function, yieldingki .
In experiments, the typical wave amplitude is a few tens
mm, corresponding to a few percent ofa. The wave ampli-
tude decreased withv because in a period of wave motion
the momentum supplied by the laser radiation decreased
v.

Since the wave amplitude is small, the waves were
lieved to be linear. In a test, we verified that the wave a
plitude varied linearly with the laser power up to 0.7 W,
range that includes the laser power used for the wave e
tation presented in this paper. As a further test of nonline
lity, we measured the harmonics present in the wave sp
trum. The harmonics were weak, and possibly origina
from our imperfect sinusoidal modulation of the laser pow
For example, the amplitude of the third harmonics w
,10% of the fundamental.

The amplitude decay of the longitudinal mode exhibit
an unexpected feature. In Fig. 5 the phase and amplit
decay for the longitudinal mode is shown, where the ph
varies linearly with the distance that the wave has pro
gated. Fitting this to a straight line yieldskr , which for this
example corresponds to a wavelength of 5 mm. The am
tude decay in Fig. 5~b!, however, was not a simple expone
tial decay; it included a beat structure. We found that the b

li-

FIG. 5. ~a! Phase shift and~b! amplitude decay, for a longitudi-
nal wave. The amplitude decay includes a beat structure, which
explain as a superposition of a sloshing mode and a longitud
wave. Solid curves are fits, yieldingkr andki . The wave excitation
is at x50.
2-5
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NUNOMURA, GOREE, HU, WANG, AND BHATTACHARJEE PHYSICAL REVIEW E65 066402
spacing corresponds to the wavelength of the longitud
wave obtained from linear fitting of the phase shift. From t
lower figure, the beat spacing is estimated to be 5 mm, c
parable to the wavelength determined from the phase pl

Here, we explain the beat structure in the amplitude
cay. We know that the beat cannot be explained as a refle
longitudinal wave because the beat spacing 2p/kr is not
p/kr as would be expected for the interference of two wa
of the same wavelength. Instead, the beat spacing is co
tent with the interference of the longitudinal wave with a
other disturbance having the same frequency, but a m
longer wavelength.

FIG. 6. Dispersion relations of~a! the longitudinal and~b! the
transverse waves. A dispersive characteristic is shown for the
gitudinal wave at highv while the transverse wave remains a line
relationshipv}kr over a wide range ofkr . The data were obtained
atu50° in Experiment II~see Tables I and II!. The closed and open
circles are experimental data forkr andki , respectively. The solid
and dashed curves arekr and ki , calculated from the theory o
Wang et al. @5#. The broken lines are sound speeds obtained fr
fitting experimental data less thanv/v0,1; Cl is faster thanCt .
For comparison, both dispersion relations are plotted in same s
with normalized axesv/v0 andka/p, whereka/p51 corresponds
to the wavelength of 2a. The upper horizontal and the right vertic
axes are labeled in real values.
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The lattice structure can oscillate several ways in addit
to the longitudinal and transverse modes. One way is
‘‘sloshing’’ mode, where the entire lattice oscillates as a rig
body, like a pendulum in an external confining potential c
responding to our radial electric field. Even a local dist
bance like our laser beam can cause the entire body to
displaced, because the lattice is crystalline and therefore
move as a rigid body. Superposing the longitudinal wa
with amplitudeA0 and a sloshing mode with amplitudeB0 ,
the particle displacementf (x) is

f ~x!5A0 cos~vt2krx!exp~2kix!1B0 cos~vt !. ~8!

Performing a Fourier transform of Eq.~8! yields a fitting
function A(x) for the amplitude decay:

n-

le

FIG. 7. Comparison of dispersion relations for two directionsu
of wave propagation. The longitudinal mode does not strongly
pend onu, as shown in~a!. The transverse mode, however, is se
sitive to u, especially for highv, as shown in~b!. The data were
measured atu50° and 90° in Experiment III.
A~x!5A0AS B0

A0
D 2

12S B0

A0
D cos~krx!exp~2kix!1exp~22kix!. ~9!
2-6
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TABLE II. Characteristic parameters of crystals.

Quantity Unit

Experiment No.

I II III IV V VI VII VIII IX

Pair correlation function
a mm 0.67 0.78 0.90 1.00 1.10 1.32 0.93 0.87 0.8

Wave dispersion relations
k 0.9 1.0 1.2 1.3 1.4 1.5 1.0 1.0 0.9

v0 s21 20.1 15.1 11.6 9.8 8.5 5.6 10.7 10.8 10.
Q 104e 1.5 1.4 1.3 1.3 1.3 1.1 1.3 1.2 1.1

Wave damping
nE /v0 0.19 0.25 0.32 0.38 0.44 0.67 0.44 0.53 0.6
nfit /v0 0.27 0.36 0.39 0.46 0.53 0.81 0.67 0.63 0.6

Particle velocity distribution
T eV 0.107 0.037 0.038 0.030 0.031 0.045 0.031 0.037 0.
G 4400 9700 7500 8500 7400 3100 8400 6400 62

G exp(2k) 1800 3600 2300 2300 1800 700 3100 2300 25
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There are four free parameters in Eq.~9! to fit the amplitude
decay:A0 , B0 , kr , and ki . However, we reduced the fre
parameters to three by substitutingkr obtained from the
phase plot. The solid curve in Fig. 5~b! is a fit calculated
from Eq.~9!, which gives a good agreement with experime
tal data points. From this fit, we foundki for the longitudinal
mode.

From the amplitude decay fit, we were also able to e
mateB0 . The amplitudeB0 indicated a tendency to decrea
with v for the longitudinal wave excitation. However,B0 /A0
remained almost the same, roughly 0.1 for all the conditi
we used.

C. Dispersion relations

The dispersion relations of both modes were measure
various values ofu, k, and n. To clarify the difference of
dispersion relations based on the wave propagation direc
we measured them at two distinctive angles,u50° and 90°,
with respect to the primitive translation vector. For meas
ing k dependence, the number density of particles in the
crystal was changed under the same discharge condit
The range ofk was varied as much as possible, 0.9 to 1
We also performed wave experiments at different values
gas pressure to study how the gas friction affects the w
damping. The normalized friction coefficientn/v0 was
changed from 0.27 to 0.68.

One of our chief results is a dispersion relation for bo
wave modes, measured for the same conditions, as show
Fig. 6. The transverse wave was dispersionless, i.e.,v}kr ,
over a wider range than for the longitudinal wave. The lat
exhibits dispersion, i.e.,v vs kr is a curved line, forv
.v0 . Looking at the slope of the dispersion relation atkr
50, which defines the sound speed, we notice that the so
speedCl of the longitudinal mode is faster thanCt of trans-
verse modes as expected. In our experiments the sound s
is a few cm/s for the longitudinal mode and several mm/s
the transverse mode, respectively. The ratio ofCl /Ct is ap-
proximately 5, fork;1. The wave frequency and wave
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length are typically a few Hz and several mm, respective
for both modes.

Comparing measured and theoretical dispersion relatio
we find a reasonable agreement over the range 0,kra/p
,0.6 for the longitudinal mode and 0,kra/p,1 for the
transverse mode. Since we do not know the actual value
k, n, andv0 in the experiment, we allowed them to be fre
parameters when fitting the theoretical curves to the exp
mental results. As initial estimates in the fit parameters,
usedk51, Epstein drag fornfit , andv0 as calculated from
Ct as discussed later. The resulting values ofk, nfit , andv0 ,
consequentlyQ, are listed in Table II.

The theory predicted that the dispersion relation is ani
tropic, i.e., the dispersion relations varies withu @5,19,22#.
We verified this experimentally. Figure 7 shows two kinds
dispersion relations atu50° and 90°. For long wavelengths
the dispersion relations are independent ofu. However, for
small wavelengths, typicallykra/p.0.5, the dispersion re
lation is sensitive tou, especially for the transverse wave.

The dispersion relations also depend onk. Figure 8 shows
results for thek dependence of the dispersion relations. T
sound speeds of both modes decrease withk, i.e., they in-
crease with the number density of particles. This result
be understood intuitively because particles that are spa
more closely will interact with greater force. The same d
are shown with normalized axes in Fig. 9. We also note t
the wave damping of longitudinal modes increased withk.

The friction coefficientn, as a parameter in the dispersio
relation, influenceski more thankr , for a given value ofv.
The way that the wave damping increases withn is shown by
experimental data in Fig. 10. In this comparison, we cho
the same value ofk;1, for both the large and smalln cases,
to eliminate thek dependence of wave damping. In our co
ditions, wave damping was not so strong, i.e.,ki!kr .

Here, we summarize our results for dispersion charac
istics, verified from comparing experimental results w
theory. The experimentally measured dispersion relati
agreed with the dispersion relations in a range 0.9,k,1.5
2-7
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and 0.27,n/v0,0.68. A dispersive characteristic for th
longitudinal mode was observed abovev/v0;1, while the
transverse mode remained dispersionless for 0,kra/p,1.
Comparing the sound speeds of both modes,Cl was found to
be approximately five times larger thanCt for k;1. As an
interesting feature based on the crystal geometry, we n
that the maximum possible frequency to sustain the w
was different, depending on the wave propagation direc
for the transverse mode, but not for the longitudinal mo
We also demonstrated that the sound speed of both w
modes increased with a decrease ofk. For the wave damp-
ing, we verified that increasingn and k led to a stronger
decay of the wave amplitude.

D. Wave damping

The wave damping is in rough agreement with Epst
drag, with a discrepancy of 7–50 %. The friction coefficie
nfit , obtained from fitting of the real and imaginary parts
both dispersion relations, is listed in Table II and plotted
Fig. 11. Calculating the Epstein drag using a leading coe
cient g51.44 for a diffuse reflection@11#, we found that the
fit resultnfit exceedsnE by 7–50 %. This might be caused b
additional damping mechanisms, which list below. It wou
require a more precise measurement of gas density than
and measurement for multiple particle sizes, to defi
whether any of these effects are significant.

FIG. 8. k dependence of dispersion relations. The slope akr

50, i.e., the sound speed increases with decrease ofk, for each
mode. Both the dispersion relations for the longitudinal~a! and
transverse mode~b! were measured atu50° in Experiments II, III,
and V for small, medium, and large values ofk.
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Generally speaking, damping mechanisms can be dis
guished according to whether they apply to a single part
or only to a collective body of particles. One single-partic
damping mechanism includes gas friction, i.e., Epstein dr
which is the only mechanism that has been accepted to
in the theory for the comparison with experimental data. A
ditional single-particle drag mechanism might include t
ion drag due to the horizontal movement of particles in v
tically flowing ions. Another mechanism might be resisti
dissipation of electric currents corresponding to the mo
ment of the charges induced on the surface of the electr
beneath the moving charged particles. However, our calc
tions suggest these mechanisms are much weaker than
stein drag at our gas pressure. If single-particle effects w
significant, they probably would have been observed in
binary Coulomb collision experiments of Konopkaet al.
@25#. However, they found that the particle damping agre
with Epstein drag, assuming a leading coefficient ofg
51.48 @26#, which is only 3% larger than the value we a
sume.

For collective effects, we note that waves can be scatte
by lattice defects or an inhomogeneity of a crystal. Therm
fluctuations of particle arrangements could also scatter
wave. One way to model this process would be a nonlin
wave-wave scattering, where the wave we excite is scatte
by a zero-frequency wave corresponding to the displa
ments of the particles from their positions in an ideal lattic
This would result in a deflection of our wave into anoth
direction, i.e., differentk, but the same frequency. For ex
ample, any curvature in the rows can be modeled as a z

FIG. 9. k dependence of dispersion relations. The same dat
Fig. 8 are shown here, normalized byv0 for v, and p/a for k.
Increasingk enhances a decay of the wave amplitude.
2-8
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DISPERSION RELATIONS OF LONGITUDINAL AND . . . PHYSICAL REVIEW E65 066402
frequency transverse wave, and any irregular particle spa
can be modeled as a zero-frequency longitudinal wave.
would not detect the scattered wave using our present F
rier analysis technique, which resolves waves only in
single direction.

Moreover, our finite particle size dispersion of 2.2% r
sults in a corresponding dispersion in spring constants. T
dispersion is one cause of curvature of particle rows
irregular particle spacing, as discussed above. It might
directly contribute to wave scattering, which would appear
damping in our experiment.

FIG. 10. Dispersion relations at differentn. The wave damping,
i.e.,ki , increases withn. To avoid the effect of varyingk, we chose
the same values ofk;1.0. The data were obtained atu50° in
Experiments II and VIII for small and large values ofn.

FIG. 11. Friction coefficientnfit obtained from fitting the disper
sion relation. The Epstein drag coefficientnE is shown as a solid
line for reference. The observed wave damping agreed with Eps
drag within experimental uncertainty.
06640
ng
e
u-
a

-
is
d
o
s

Another damping mechanism might include dissipati
related to a delay in particle charging, i.e., ‘‘delayed cha
ing’’ @27,28#. This dissipation mechanism is as follows. A
particles approach one another in wave motion, the equ
rium charge of a particle varies because of ion orbit defl
tion and electron density depression. Since particle charg
takes a finite time, the actual charge on a particle is differ
from the equilibrium value. It is known that the wave cou
be damped if the product of the electric field in the wave a
the space derivative of equilibrium charge is positive. A
cording to the estimate of Ivlevet al. @29#, they expected tha
delayed charging plays an important role in the longitudi
mode at approximatelyp,20 mTorr andr p,1 mm in ex-
perimental conditions similar to ours.

Resonant Landau damping, which is a process familia
plasma physicists, is unlikely to contribute to wave damp
in a crystalline lattice such as ours. This process requires
particles travel a significant distance at a constant speed
is nearly equal to the wave’s phase velocity. This occurs
weakly coupled plasmas, which are gaslike, but not
strongly coupled plasmas that are crystalline. Our partic
move only a distance that is small compared to the in
particle separation, and their velocity is not constant but fl
tuates randomly and reverses direction frequently in respo
to the forces applied by neighboring particles. Moreover,
particle thermal velocity is roughly ten times smaller than t
wave’s phase velocity whereas resonant Landau dampin
a weakly-coupled plasma requires that these velocities
nearly equal, for the damping to be strong.

V. k AND Q DIAGNOSTICS

As mentioned in the Introduction,k andG are important
parameters to characterize the screened Coulomb sys
and these two parameters are closely related to various
damental phenomena such as the structure of the sys
phase transition, wave propagation, and diffusion. SinceQ is
related toG through Eq.~3!, k andQ are important quantities
to measure. In this section we present two diagnostic m
ods for measuringk andQ, using the dispersion relations o
both modes and sound speeds.

A. Dispersion relation fitting method

In a screened Coulomb crystal, the normalized dispers
relation depends on three parameters:k, n/v0 , and u as
mentioned in Sec. II. Thus, fitting the dispersion relations
both modes yields values fork, Q, and n. Doing this re-
quired a value ofa andv0 for the normalization of experi-
mental values ofkr , ki , andv. We measureda as the first
peak of pair correlation functions. FromCt , v0 was esti-
mated, using

Ct50.513 av0 , ~10!

which is valid for a 2D triangular lattice withk50 andn
50 @5,19#. Equation~10! remains reasonably accurate ove
wide range ofk. The sound speed ofCt varies only 20%
over the range 0,k,2, where experiments were performe
Therefore, we relied on Eq.~10! to calculatev0 . By using
in
2-9
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the normalized values ofkra/p, kia/p, andv/v0 , the free
parameters to fit the dispersion relations were reduced
two: k and n/v0 because we know the wave propagati
directionu directly from the images.

The fitting for both wave modes was good over a wi
range ofk as shown in Figs. 6–10. This fit yielded preci
values fork andnfit , as listed in Table II. In our experiments
k and Q were estimated to be 0.9–1.5 and 11 000–15 0
electrons, depending ona and discharge conditions, respe
tively.

We also calculatedG as follows. From the particle veloc
ity distribution in the crystal without wave excitation,T was
obtained. This was done by fitting the particle velocity d
tribution as a Maxwellian distribution. Typically,T was
0.03–0.1 eV, i.e., slightly above the room temperature. T
result indicates that the crystal is not in thermodynamic eq
librium with the ambient gas. Using these values,G and
G exp(2k) are estimated to be in the range 3100–9700
700–3600, respectively, as listed at the bottom of Table
This large value ofG is consistent with highly ordered crysta
observed in experiment.

B. Sound speed ratio method

Next, we present another method to estimatek and Q,
using the sound speeds of both modes. For a 2D triang
lattice, the theoretical sound speedsCl /C0 andCt /C0 , and
the ratioCl /Ct are shown in Fig. 12. Here,C0 is defined by

C05v0a5A Q2

4p«0ma
. ~11!

The sound speeds were numerically calculated from
slope of the dispersion relation at the limit ofkr→0 @5#,
which are same results as those shown in Fig. 5 of Ref.@19#.
According to the theory,Cl /C0 andCt /C0 depend only onk

FIG. 12. Cl /C0 , Ct /C0 , andCl /Ct vs k in theory. A 2D trian-
gular lattice is assumed.Cl /C0}k21/2 and Ct /C0'0.513 at k
!1. These curves are useful fork and Q diagnostics. The ratio
Cl /Ct givesk. Accordingly,Q is obtained from one of two curve
Cl /C0 , Ct /C0 through Eq.~11!.
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and do not depend onu, i.e., the sound speed is the same
all wave propagation direction. It is well known thatCl /C0
}k21/2 andCt /C0'0.513 atk!1.

The method ofk and Q diagnostics is straightforward
SinceCl /Ct depends only onk, measuring the sound spee
ratio directly yields the value ofk from the curve shown in
Fig. 11. To get experimental values ofCl andCt , we fitted
data points of dispersion relations as a straight line be
v/v0;1. After k is determined,C0 is calculated from one of
two theoretical curves,Cl /C0 or Ct /C0 vs k, as shown in
Fig. 12. The resulting value forC0 yields Q, using Eq.~11!.
We usedCt /C0 because the transverse mode is dispersi
less over a wider range ofkr than the longitudinal mode. The
method mentioned here is convenient, but it is only valid
the case of weak wave damping, i.e.,n/v0!1. Since the
existence of strong damping causes the relationship ofv and
kr to deviate from a linear scaling for smallkr , the sound
speed can be no longer determined in such a situation.

FIG. 13. ~a! Cl ,Ct and~b! Cl /Ct vs a in experiments. Measured
Cl , Ct , and Cl /Ct fit with theory drawn as dotted curves.~c! k
measurement at differenta. Closed and open circles denote valu
of k obtained from the sound speed ratio and the dispersion rela
fitting methods, respectively. The dotted and solid lines are lin
fits of k, yielding the shielding lengthlD . ~d! Estimation ofQ. As
expected,Q is almost independent ofa. The data were obtained in
Experiments I–VI, all at the same discharge conditions.
2-10
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An example of using this method is shown in Fig. 1
Here, by changinga at the same discharge conditions, thek
dependencies ofCl , Ct , andCl /Ct are presented. We dem
onstrated that measuredCl , Ct , andCl /Ct increase asa is
decreased, and agree with theoretical curves shown in F
13~a! and 13~b!. In experiments, typical values ofCl andCt
are a few cm/s and several mm/s, respectively. Theref
Cl /Ct is ;5 at k;1. In Fig. 13~c! we plot k obtained from
the two methods: the sound speed method and the dispe
relation fitting method are plotted. As we expected,k is pro-
portional toa. That is because the discharge conditions
the same, i.e.,lD is the same for all of cases. This serves
evidence that the method worked reasonably well. The so
speed ratio method gives slightly smaller values ofk than
those obtained from the dispersion relation fitting. The lin
fitting of these data points giveslD , which is estimated to be
1.03 mm from the sound speed ratio method and 0.80 f
the dispersion relation fitting. Finally,Q is plotted in Fig.
13~d!. The calculatedQ is almost the same becauseQ does
not change much for a tenuous density of crystal whilea is
changed. SinceQ}Te , the slight variation ofQ seems to
reflect the change inTe shown Table I.
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VI. SUMMARY

We investigated the wave dispersion relations of longi
dinal and transverse modes in a 2D screened Coulomb c
tal. The experimental system was a monolayer plasma cry
with a triangular lattice and hexagonal symmetry. We exci
both wave modes by using laser manipulation, and we m
sured dispersion relations for both modes for the same
charge conditions. Dependencies of dispersion relations
k, n, andu were demonstrated, and they agree with the
cently developed theory@5#. We also presented two diagno
tic methods for measuringk and Q, using dispersion rela-
tions of both modes and sound speeds.
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