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DISPERSION RELATIONS, STORED ENERGY AND GROUP VELOCITY
FOR ANISOTROPIC ELECTROMAGNETIC MEDIA*

H. KURSS
Adelphi University

Abstract. The Hermitian and skew-Hermitian components of the susceptibility
matrix of a general linear electromagnetic medium are represented as Hilbert transforms
of each other. These so-called dispersion relations lead to a priori inequalities which
must be satisfied by the susceptibility of a passive medium in a frequency interval in
which the medium is lossless. One such inequality states that the stored energy density
for a given E(«) and H(ai) is always greater than in free space. This is also verified directly
from the usual gyrotropic susceptibilities of ferrites and plasmas.

The group velocity for an eigenwave or mode of a structure with one, two or three
independent translational symmetry vectors is shown to be, in general, an average
Poynting vector divided by an average stored energy density. This formula is then
combined with the above inequality for the stored energy density to show that the
magnitude of the group velocity is less than c, the velocity of light in free space.

I. Introduction. A main point of the present paper is to extend some results,
known for isotropic media [1], to the case of general anisotropic media. Moreover, some
of the discussion, for example that relating to group velocity, is novel even when spe-
cialized to the isotropic case.

For simplicity as well as for generality the discussion is phrased for a medium where

D(co)

B(«)J
= 7(w)

E(«)
l_H(w)J

and none of the components of the matrix y(u) are necessarily zero. (The susceptibility
of such a medium is defined to be 7(01) — y0 where y0 is the value of y(w) in free space.)
Such a general medium, often called a Tellegen medium, is referred to in a number of
recent works [2], [3], [4].

As in the isotropic case, a consequence of causality and time invariance is that the
susceptibility, 7(0>) —y0, satisfies an integral equation with (Cauchy) Kernel 1/(jV(x — «)),
where the range of integration of x is from - co to + co. One can separate this integral
equation into its real and imaginary components. The resulting equations [1], [5], called
dispersion relations, state that the real and imaginary components of the susceptibility
matrix, in their dependence upon frequency, are Hilbert transforms of each other.
However, in the anisotropic case one has the additional possibility of separating the
integral equation into its Hermitian and skew-Hermitian components. This leads to the
new dispersion relations stated in Sec. III. These are particularly significant with regard
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to passivity considerations since the skew-Hermitian component of 7 is a measure of
the loss in the medium.

It is physically important to consider the case of a medium which is lossless for
frequencies in an interval A. Such an interval is referred to as a transparency interval
fl]. It is noted in Sec. IV that the dispersion relations do not restrict the location of A.
However, the behavior of 7 (to) in such a transparency interval is constrained by the
inequalities indicated in Sec. IV. One such inequality is interpreted in Sec. V as stating
that the stored energy density for a given E(oj) and H(co) is greater than in free space.
This inequality is then verified for the usual susceptibilities of ferrites [6] and plasmas [7].

Recent papers have proved the equivalence of group velocity and velocity of energy
transport for the modes of special structures. For example, the literature contains dis-
cussions for plane waves in a uniform medium [8], [9], [10]; modes in a uniform waveguide
[10], [11]; modes in a periodically loaded waveguide containing isotropic media [12];
Bloch waves in a crystalline medium [13]; surface waves in a plane stratified medium
[14], etc. In Sec. VI of the present paper, the above discussions are unified and generalized
so as to apply to the modes of a general structure with one, two or three independent
translational symmetry vectors a< . (The mode is characterized by a propagation vector
k in the space, £, spanned by the a* by means of the phase-shift boundary conditions

<I»(r + a.i) = exp (?k-a,)«I»(r)

imposed upon both the E and H field vectors.) A key item for this purpose is an identity
of which various versions exist in the literature [10], [11], [14], [15]. A proof for the case
of a genera] Tellegen medium is contained in the Appendix.

Another contribution of Sec. VI is the proof that the group velocity has a magnitude
which, in general, is less than c, the velocity of light in free space. (This result was
previously proved only for the case of plane wave modes in an isotropic medium [1].)
The proof is based upon the above inequality for the stored energy density combined
with a simple upper estimate for the magnitude of the Poynting vector.

II. The susceptibility matrix. We shall employ the Maxwell equations in MKS
units, i.e.,

V X £(0 = -<3<B{t)/dt, V X 3C(0 = dS>(t)/dt, (1)

where ffl(0 and £>(/) include the effects of any magnetic and electric currents which
may be present. The constraint imposed by the medium will be taken to be

»(0 = e£(£) + W«), (2)

<B(0 = <?£(<) + /WC(0,
where, for a linear medium, t, p., £ and fj are linear operators.

It is convenient to replace (2) by the single equation

iKO = 7<i>(0 (3a)
where

= 35(0 , 4>(0 = £(<) (3b)
<B(f)j Lk(<)_
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and

7 = £ (3c)

In practice the most common case is

| = 0 and rj = 0. (4)

However, for simplicity as well as for generality the subsequent discussion is phrased
in terms of the matrix f without the restriction in (4). (One often refers to a medium
in which | and fj are not both zero as being a Tellegen medium. Thus (4) is said to char-
acterize a non-Tellegen medium.)

In free space y is simply the constant matrix

7o
e0I 0

. 0 /ifjlj
(5)

where I is the three-dimensional identity matrix and e0 , a»o are real scalar constants.
For later purposes we note here that in MKS units

1/0*0 «o)1/2 = c (6)

where c is the velocity of light in free space.
For a general linear, time-invariant, causal medium

7<K0 = 7o<K0 + [ — T) dr, (7)
Jo

where g(r) is a matrix which accounts for the memory retained by the medium of events
which took place r seconds in the past. Causality is incorporated into (7) by the fact
that only positive values of r occur in the integration, i.e., only the past affects the
present. Since the fields i|<(t) in (3) are real, g(j) in (7) must be real.

Consider now the specialization of (7) and (3a) to the case of a time variation of
angular frequency «. More precisely, let

i\(t) = [»F(«) exp (—iut)]r , $(0 = [4>(oj) exp (-«'«<)], (8)

where A r denotes the real part of A. When (8) and (7) are substituted into (3) one obtains

*F(co) = 7(aj)<J>(u) (9)

where

7(«) = 7o + [ g(T)e'"r dr. (10)
Jo

The matrix y(w) — 70 is called the susceptibility of the medium.
A less compact but perhaps more familiar form of (9) results when one sets

xF(co) = D(w) , 4»(co) = E(w) (11a)
_B(w)J LH(o.)_
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and

7(«) = I e(w) ^ (lib)i
\_r](w) ^(w)J

in (9).

From the fact that ij(t) is real one concludes from (10) that for real w

y(w) = y( — u) (1'2)

where y denotes the complex conjugate of y. In terms of the real and imaginary com-
ponents of y, yr and 7, , one can rewrite (12) as

7r(w) = 7r( — «), 7i(a)) = —7<( —«)• (13)

Thus y, is an even function of 01 and 7,• is an odd function of «. However, (12) and
(13) do not simplify the subsequent discussion and are not employed further in this
paper.

III. Dispersion relations. From (10) one concludes that for real &>, 7(00) satisfies
the integral equation

■rM - T„ - i f ^ dx (14)
ITT J X — CO

where the range of integration in (14), and in all subsequent such equations, is from — <»
to +00 and where the stroke through the integral sign indicates that the integration
over the singularity at a: = co is defined to be the Cauchy principal value. (One approach
to deriving (14) from (10) is to apply the Cauchy integral theorem to (7(co) — y0/(« — co0)
in the upper half plane [1]. Another approach is to exploit the fact, evident from (10),
that 7(01) — 70 is the Fourier transform of a function of r which vanishes for r negative
[16].)

When (14) is separated into its real and imaginary components one obtains the
dispersion relations

/ s 1 1 dx (1 " >1
- 7o = " f , (15a)

7,(o>) = -- { yr(x) ~ T° dx. (15b)
7T J X — 03

An equally valid but more useful set of dispersion relations arises when one separates
(14) into its Hermitian and skew-Hermitian components. More precisely,

„ _ T + 7+ „ _ 7 - y+7ft 2 ' 7* 2 i t16)

where y*, called the Hermitian adjoint of 7, is the complex conjugate of the transpose
of 7. Then clearly

7 = 7* + h. (17)
and (14) is equivalent to
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c \ 1 _£ Ts(^) dx /ho \- 7o = - J   , (18a)
T J X — O)

/ \ 1 1 (y>Sx) - To) dxy ,(w) = —- J     (18b)
X — CO

These dispersion relations state that the Hermitian and skew-Hermitian components
of the susceptibility, y(u) — y0 , are Hilbert transforms of each other. (The usual trick
[1] of employing (13) to convert the range of integration to 0 < x < 00 instead of — <» <
x < oo works for (15) but not for (18).)

A medium is said to be reciprocal if 7 is a symmetric matrix, i.e., if

7 = yT (19)

where yT denotes the transpose of 7. In this case, and only in this case, will the dispersion
relations (15) and (18) be identical. When this is not the case, i.e., for a nonreciprocal
medium, (18) is more meaningful than (15) with regard to passivity considerations since
7,(«) is a measure of the loss in the medium. This interpretation of 7,(0;) is discussed
below.

IV. Transparency intervals for passive media. The instantaneous power flow or
Poynting vector, <P(t), is defined by

<P(<) = £(f) X JC(t). (20)

For a simple harmonic variation of angular frequency 01 the average value of
denoted by P, is

I*2 t/ojr% Z T / 01

= f <K0 dt. (21)
Z7T J 0

For later purposes we note the well known result

P = |[(E(co) X H(co)]r . (22)

This follows when one substitutes

E(t) = (E(w) exp (—iut))r ; X(() = (H(w) exp (—iut))r

into (20) to obtain

2<p(t) = (E(u) X H(w) exp (-2iat))r + (E(«) X S(w))r (23)

and then notes that the double frequency term in (23) does not contribute to the average
value of <9 (t) indicated in (21).

From (20) and the Maxwell equations (1),

-V-<P(0 = £-dS)/dt + 3C- d(R/dt

or in terms of <j>(t) and 1Jr(f) introduced in (3b)

— V • <V = <J)7"-3i|[/dl,

and hence from (8)

-V-<P = i[(4»r-(-to)^F exp ( — 2iut))r + (0+-(-t«)T)r]. (24)
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In taking the average indicated in (21) the double frequency term in (24) does not
contribute. One thus obtains from (24), with the aid of (9),

— V-P = |(«I,+ -( — iMy)<t>)r — K*+ 'u7*).' = (25)

Since — V-P represents the average power dissipated in the medium, one concludes
from (25) that a medium is passive at frequency co if

<I>* -co7s«I> > 0 for arbitrary <1>. (26)

A customary shorthand notation for (26) is

cor.(co) > 0. (27)

From (25) it is also evident that a medium is lossless at a frequency co 0 if

7.(«) = 0. (28)
A frequency interval in which 7s(co) = 0 is called a transparency interval. For def-

initeness let A be such an interval defined by, say, those co for which |co — co0| < S
where co0 and S are fixed real numbers. The dispersion relations do not impose any con-
straint on the location of A. This can be seen as follows. Let A be arbitrarily given.
Define 7„(co) to be zero in A and "arbitrary" outside of A to the extent that one can
define yh(co) — 70 from the dispersion relation (18a). This specifies a 7 = yh + iys con-
sistent with dispersion relations (18) and with a transparency interval in A. In particular,
if A is selected to be the entire real frequency axis — » < co < co one concludes from
(18a) that

7(w) = To • (29)

In other words, free space is the only medium which is lossless at all frequencies.
A natural question which arises is the extent to which one can specify 7«(co) and

7»( co) simultaneously in a given frequency interval. In particular, for a medium which is
passive at all frequencies to what extent is y(u) constrained by the dispersion relations
for co in a transparency interval A? An obvious constraint from (18) is that 7(0) must
be an analytic function of co for co in A. A further constraint is that y(u) must satisfy
the inequality

L(<j)(y(oj) — 70)) > 0 for co in A (30)

where
N

L = y, co)(d/3co)' (31)
• -1

and the <2;(co) are any scalar functions of co such that

L(l/(.r — co)) > 0 for co in A and x not in A. (32)

In order to prove (30) one first notes that

co/(x co) — — 1 + x/(x — co) (33)

so that for L defined by (31)

L(co/(:r — co)) = L(x/(x — co)) = xL{\/{x — co)). (34)
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Hence, from (18a), for to in A,

L(to(7(to) — 7o)) = - f xy,(x)l(—1—) dx. (35)
7T J \X — to/

The integration in (35) is effectively over all x not in A since for x in A, y,{x) = 0
by hypothesis. But then in the integrand of (35) L(l/(x — to)) > 0 by (32) and xy,(x) > 0
by the passivity constraint. This then proves (30). Furthermore, if the strict inequality
occurs in (32) then it is evident from (35) that the equality in (30) can only occur if the
medium is free space. Thus, since

(d/do})2N+1(l/(x - to)) > 0 (36)

one concludes from (30) that for any medium different from free space

(tZ/rfto)2A+1(to(7(to) — 70)) > 0 for to in A. (37)

The case N — 0 in (37) can be rewritten as

{d/doS)(a>7(to)) > 70 for to in A. (38)

An interpretation of (38) in terms of stored energy density is given in the next
section.

The case N > 0 in (37) is

{d/dw)2N+l(uy(co)) > 0 for to in A. (39)

This shows that if <07(01) is a polynomial in to for to in a transparency interval A then the
medium must be free space. In particular, free space is the only medium which is non-
dispersive, i.e., for which 7(0;) is a constant, for to in A.

V. Stored energy. We will show that, as in the isotropic case, the average stored
energy density in a medium at a frequency to in a transparency interval is

U — f<i»+(to)-[(d/dto)(to7(to))]<l>(co). (40)

(Some authors, for example [14], employ RMS values for the field quantities and thus
obtain a factor 1/2 instead of 1/4 in (40).)

One can derive (40) by a beat frequency approach [1], [18] or by a complex frequency
(or damped harmonic frequency) approach [19]. We now sketch a variant of the latter
approach for a general (Tellegen) medium. For this purpose let

<K0 = («*»(p) exp (-ipO)r , = 0®"(p) exp (-ipt))r (41)
where p = to + ia and a > 0.

At f = — 00 there is no stored energy since the fields are zero there. Thus u(t), the
stored energy at time t, is obtained by an integration of the equation preceding (24) to
be

u(t) = (42)

The average stored energy U is then

U = lim ~ [ u(t) dt. (43)
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Any term which is of double frequency, 2m, will not contribute to the average indicated
in (43). Hence,

U = lim 5(1»+(pM(—ipy(p))/2°)Q>(p)e°')r • (44)
o »0

But since, from (18), ary(co) is an analytic function of co for co in A,

Py(.P) ~ «7(co) + (icr d(coY(co))/dco -f- 0(cr2)) (45)

where 0(a2) denotes terms of the order of a2 as <j —* 0. When (45) is substituted into
(44) one obtains (40).

From (40) it is clear that one can describe the inequality (38) as stating that the
stored energy density for a given E(co) and H(co) is always greater than in free space.

In practice it is important to verify (38) as a check on the passivity of the medium.
For a gyrotropic non-Tellegen medium with the z-axis taken in the direction of the DC
magnetic field

ti —it2 0

« = e0 it2 ci 0

0 0 e3.

Equation (38) is then equivalent to

H = M o

Mi —if-2 0

in2 Mi 0

0 0 M3

(46)

£(».,)>i, £<-.)>i jwii, <«>

[£- 0 - [£ M] - °' [£ M - *]~ [£ ("",)] -0
where at least one of these relations is a strict inequality. A typical example is the case
of a ferrite. Here, [6], «i = «3 = 1, e2 = 0 and

Hi = 1 — a/3/(to2 — /32), or/3 > 0 — coar/(co2 — /32). (48)

One readily verifies from (4S) that

r?(«Mi)/du = 1 + aj3((co2 + /3a)/(co2 — /32)2) > 1

and
[dioifi^/dco — l]2 — [d(wfj.2)/doi\2 = (a/?)2/(co" — /32)2 > 0.

Hence (38) is valid. A second example is the case of a plasma. Here, [7], Mi = M3 = '.
M2 = 0 and

«1 = 1 — u>l/(co2 — CO2),

«2 = (wc/^)(w2/(w2 — CO2)), (49)

1 2 / 2
€3 = 1 — CO„/CO

where co„ is the plasma frequency and coc is the cyclotron or gyro-frequency. One readily
verifies from (49) that

d(coe,)/(/co = 1 + co2((co2 + co2)/(co2 — co2)2) > 1

d(ue3)/dio = 1 + co2/co2 > 1
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and

L(dfaO/dco) - l]2 - [(d(ue2)/dw)]2 = - co2)2 > 0.

Hence (38) is again valid.
VI. Group velocity. A mode or eigenwave of a structure is a wave which can exist

in the absence of any excitation. For a structure with translational symmetry vectors
a, a typical mode can be characterized by phase-shift boundary conditions [13]

E(r + a.) = exp (ik-a.)E(r) and H(r + a;) = exp (zk-a.)H(r), (50)

where the real "propagation" vector k is in the space £, spanned by the a,- . If one defines
E0(r) and H0(r) by

E(r) = exp (ik-r)Eo(r) and H(r) = exp (ik-r)H0(r) (51)

then (50) is equivalent to the statement that E0(r) and H0(r) have the same periodicity
as the structure, i.e.,

E0(r + a,) = E0(r); H0(r + a,) = H0(r). (52)

When a structure is uniform in a direction a then ax = aa. will be a translational
symmetry vector for a arbitrarily small. Hence, from (52), E0(r) and H0(r) will not vary
in that direction. Thus for a structure uniform in all directions the modes in (51) are
plane waves. In the general case the mode in (51), often described as a Bloch wave with
propagation vector k, appears to be a plane wave when sampled at points separated
from each other by multiples of a, .

The variation of k with frequency, i.e., the dispersiveness of the medium, is con-
strained by an equation which can be symbolized as

/(k, w) = 0. (53)

One refers to (53) as a dispersion equation (not to be confused with the dispersion rela-
tions (18)). From (53) one defines the group velocity, v„ , by

v„ = doi/dk. (54)

(Some authors employ the notation Vk or gradk instead of d/dk.) Thus v„ is a vector
in £.

In order to identify v„ as being an average rate of energy flow we use a basic identity,
often referred to as a variational theorem [10]:

V-(E X 5H — H X 5E) = i<i>+ S(wy)<P (55)

where 5A denotes a variation in A. This result is well known for the case of a non-
Tellegen medium. The proof for a Tellegen medium is given in the Appendix. In general

SA = (dA/da) 5u> + {dA/Sk)-Sk. (56)

Equation (55) can then be written as

V • (E X 5H - H X 5E) = 4iU 5w (57)

where U is defined in (40). When (51) is substituted into (57) one obtains, after a straight-
forward calculation,

R + 5k-rV-P + <5k*P = V So> (58)
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where

R = (l/4z) V • (E0 X 6H0 - H0 X «E0). (59)

In particular, when the medium is lossless, i.e., when y(«) is Hermitian, then, from (25),
V • P = 0 ancl (5S) reduces to

R + Sk-P = U Su. (60)

One now seeks to eliminate the term R from (60). For simplicity we first discuss the plane
wave modes of a uniform medium. In this case, E0 and H0 are independent of r and
hence, from (59)

R = 0. (61)

Equation (60) is then equivalent to

v. = P ,/U (62)

where P( denotes the component of P in the space £ and P is defined in (22).
We now show from (62) that in a transparency interval of a passive dispersive

medium the magnitude of va is less than c, i.e.,

|v„j < c (63)

where c is the velocity of light in free space.
For this purpose one notes the upper estimate of |P,|,

|P«| < |P| < i |E| |H[ (64)
and, from (38), the lower estimate of U,

U > = i(«o |E|2 + |H|2). (65)

But if a and b are any positive real numbers then

0Ob)1'2 < Ha + b) (66)

i.e., the geometric mean is less than or equal to the arithmetic mean. In particular, if

a = *60 |E|2 and b = \n0 |H|2 (67)

then (66) becomes

K/W1/2 |E| |H| < j(e0 |E|2 + Mo |H[2)

or, in view of (64), (65) and (6)

|Pi|/c < U. (68)
In view of (62), this is clearly equivalent to (63).

For modes of more general structures one first defines a unit cell as follows: Two
points in space are said to be equivalent if their difference is a translational symmetry
vector. A (closed) unit cell is then a smallest (closed) connected set of points with the
property that every point in the structure has an equivalent point in the unit cell.
More specifically, let a! , • • • , am be in linearly independent translational symmetry
vectors where to is 1, 2 or 3. Let £ be the TO-dimensional space containing the a, . The
vector r can then be represented as
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r = (r, , r.) (69)

where r, is the component of r in £ and r, is the component out of £. One refers to r(
as the longitudinal or lattice component and to r, as the transverse or cross-sectional
component of r. When r; is kept constant, the range of values of r, define a cross-section
of the structure.

A general representation for r2 is

I, = + ■ ■ ■ + am&„ (70)

where each a,- ranges over all real numbers from — <» to + °°. One obtains the points
of a closed unit cell by restricting the a( by, say,

M < 1/2. (71)
A unit cell of the structure is then characterized by r, ranging over a unit cell of £ and,
for each such r( , rt ranging over the entire cross section.

As an example, consider a structure modulated periodically in directions at and a2
perpendicular to the 2-axis. In this case r, is simply the z-component of r and a typical
cross-section is a line parallel to the z-axis between the boundaries of the structure.
A unit cell in £ is then, for example, a parallelepiped with sides at and a2 . In particular,
if a, and a2 can be taken arbitrarily small in magnitude, i.e., if the structure is plane
stratified, then a unit cell in £ is a single point and a unit cell of the structure is any
cross-section (cf. [14]).

When (.59) is integrated over a unit cell one obtains from the divergence theorem

J R dv = (E„ X c>H0 — H0 X <5H0) ds/4i (72)

where b is the boundary of the unit cell and n is the unit exterior normal. Instead of (61)
one then often has

/ Rdv = 0 (73)

where the integration in (73) is over a unit cell. The reason for (73) can be seen as follows:
At equivalent points of b, n, being an outward normal, is reversed in direction. Further-
more, from (52)

<5E0 (r + a;) = 5E0(r); 5H„(r + a,) = 5H0(r). (74)

Hence, the contribution from the integral in (72) from equivalent portions of b will
cancel. This argument fails for portions of b which have no equivalent points in b. But
then they must be on the boundary of the structure and the boundary conditions will
often be such that the integrand in (72) vanishes. Such boundary conditions are, for
example, that portions of b should consist of electric walls, where

n X E = 0 (75)
or magnetic walls, where

n X H = 0 (76)
or infinitely distant walls, where

E —> 0 and H -» 0 (77)
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"sufficiently" rapidly. When (60) is then integrated over a unit cell one obtains, in
view of (73),

5k./p *-/ U dv 5u, (78)

■which is equivalent to

But clearly

v3 = J P, dvj J U dv. (79)

and from (OS)

( Pidv < J |P,| dv (80)

J |P,| dv < c J U dv. (81)

Hence, from (79), (80) and (81) the inequality (63) is again valid.
When the unit cell has a finite volume, V, then one can divide both the numerator

and denominator in (79) by this volume to obtain

v8 = average P;/average U (82)

where

average A = J A dv/V. (83)

Actually, (82) includes (62) as a special case since, as discussed above, a unit cell for a
structure uniform in all directions is simply a point in space and

average A —* A as V —* 0 (84)

at points where A is continuous.
A boundary condition more general than (75) or (76) is [1]

n X E, = ZH, (85)

or, equivalently,

E, = ZH, X n

where A, denotes the component of A tangential to the surface and Z is a surface im-
pedance dyad. (In any particular coordinate system Z is represented by a matrix.)

One can analyze Z in a manner analagous to the discussion of y in the preceding
sections. Thus a surface impedance is passive at frequency w if

Zk> 0 (86)

and is lossless if

= 0. (37)

This follows since P n is the average power dissipated in the surface and 2P-n =
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(E X H)r• n = (H, n X E,), = Ht ZH); i.e.,

2P n = H, ZhH, . (88)

Equations (86) and (87) are an immediate corollary of (88). One can rewrite the lossless
case (87) as

Z = - iX with X = A". (89)

The average stored energy density, Ub , in the surface is

Ub = fHr^- H, . (90)do>

This is readily seen from the complex frequency approach employed in Sec. V.
From (51) and (85) one obtains, after a straightforward calculation,

n-(E„ X 5H0 - Ho X 5E0) = H„<-(Z + Z+)H„, + H„t -5 ZH0I . (91)

In particular, when the surface impedance is lossless, i.e., when Z + Z* = 0, and for
the moment neglecting any dependence of Z on k, one obtains from (90) and (91)

n-(E0 X 5H0 — H„ X 5E0) = —4i(Jb 8u. (92)

In view of (92), (78) is modified to

8k-j P dv = J Udv+ J Ub da (93)
which is equivalent to

v0 = / P; cfo/(/ Udv + J Ub c/s). (94)

Since both U and Ub are nonnegative, one obtains an upper bound for |v0| by neglecting
the boundary integral in the denominator of (94). Thus (63) is also valid in this case.

Finally, when one allows a dependence upon k in 7 (as occurs in a hot plasma [9],
[10]) and in Z (as in [14]) then (55) is still valid, (60) is modified to

R + 5k- (P + Py) = U 8u (95)
where

PT = -i«l>+-co(d7/dk)<l». (96)

and (92) is modified to

n-(E0 X 5H0 — H0 X 5En) = —4iUb 5a1 -(- 4iPi, ■ 5k (97)

where

P6 = -lH0l.(3X/ak)H0l . (98)

The formula for v„ then turns out to be

v„ = (/ (P + PT), dv+ f (Pt), ds)/J Udv+ ^Ub dS. (99)

In this case the proof of (63) requires that dispersion relations with respect to both co
and k [20] be employed.
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Appendix

PROOF OF THE VARIATION THEOREM FOR A TELLEGEN MEDIUM

Let
" 0 I

<j — x
L-/ oj

Then

a = <r +

and

<I> = and V X = V X E

Lv X Hj

V-(4»+ X <T 5®) = iV-(E, H) x

(A-l)

(A-2)

(A-3)a — a

The Maxwell equations are

V X = ol07<I> (A-4)

where

(A-5)

In view of (A-l) and (A-3) one can rewrite (A-4) as

V X = co7<&. (A-6)

Taking the variation of (A-6) one obtains

V X c 54> = S(co7)<l> + ory 5<1»

and hence

4>+-(V X a 54') = <1>+ • d(uiy)4> + <S+-«7 5<J>. (A-7)

Taking the adjoint of the Maxwell equations (A-4) one obtains

V X <I>+ = 4>+o>7+o"+

and hence, in view of (A-2) and (A-3),

V X = <I>l"co7+ • 5<I>. (A-8)

But
V • (<1>+ X a 54») = V X <l>f-cr 5«I» — 4>+-V X a 6<l> (A-9)

is a vector identity. Hence the result of subtracting (A-7) from (A-8) is

V-(4>+ X <t 5 <1>) = «l>+-cc(7+ — 7) 54> — <I>+ • 6(017)<l». (A-10)

But by definitions (A-l) and (A-5)

5H
-5E

= tV-(EX ffl-HX 8E). (A-ll)
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Hence if y = y* one can rewrite (A-10) with the aid of (A-ll) as

V-(E X iH - H X 5E) = i<P+ ■ 5(wy)l>. (A-12)

Q.E.D.
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