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Abstract: Undular bores and shocks generated by dam-break flows or tsunamis are examined considering nonhydrostatic pressure and

dispersive effects in one- and two-horizontal-dimensional space. The fully nonlinear Boussinesq-type equations based on a weakly non-

hydrostatic pressure assumption are chosen as the governing equations. The equation set is solved by a fourth-order accurate finite-volume

method with an approximate Riemann solver. Several typical benchmark problems such as dam-break flows and tsunami wave fission are

tested in one- and two-horizontal-dimensional space. The computed results by the Boussinesq-type model are at least as accurate as the results

by the hydrostatic shallow water equations. This is particularly evident near the steep front of the wave, where frequency dispersion can play

an important role. The magnitude of this nonhydrostatic pressure and dispersive effect near the front is quantified, and the engineering

implications of neglecting these physics, as would be done through the use of a hydrostatic model, are discussed. DOI: 10.1061/
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Introduction

Every year, human lives, public facilities, and private property are

lost to natural hazards related with water flows. Among them, dam-

break flows, levee failures, and tsunamis can cause catastrophic

damage. Thus, to the hydraulic and coastal engineer, the investiga-

tion and prediction of hydraulic bores has been an important issue

for a very long time. To find countermeasures for prevention or

mitigation, many laboratory experiments and mathematical and

numerical studies were performed by numerous research groups

(e.g., Ioualalen et al. 2007).
In a typical study for dam-break flows, the initial condition is

given following Fig. 1(a), in which two stationary water bodies are

separated by a barrier, and the barrier is assumed to be removed

instantaneously. To predict the flows numerically, the shallow water

wave equations (SWE) are the most common choice. The SWE

model assumes that the pressure is dependent only on the total

water depth, and the vertical velocity is small enough to be ignored;

leading of course to a hydrostatic and nondispersive equation

model. With those assumptions, the SWE model can predict a surge

and a rarefaction wave, as shown in Fig. 1(b).
However, the secondary phenomena—the undular bore waves

generated at the wave front—as shown in Fig. 1(c), are frequently

observed in nature. For example, in the Main-Danube navigation

canal, secondary waves with a wavelength of approximately

100 m and amplitudes up to ∓0:5 m produced by the operation

of lock gates have been observed (Treske 1994). Other undular

bores have been reported in coastal areas. Undular tidal bores

are regularly created in many estuaries, such as in the Qiantang

River in China. During large tsunamis, the leading waves can

undergo a undular bore process, and this is sometimes termed wave

fission (e.g., Matsuyama et al. 2007), although the physical process

is the same. Some of the most notable occurrencess are recorded

during the 2004 Indian Ocean tsunami (e.g., Grue et al. 2008). The

undular motions can lead to significant engineering and design

challenges, as the process can lead to a larger leading wave crest.

These water surface undulations cannot be predicted by a SWE

model based on the hydrostatic pressure assumption, because they

are dispersive in nature.
An option for dispersive wave simulation is the Boussinesq-type

model. This model is, in essence, the SWE model with a second-

order correction to account for weakly nonhydrostatic physics. Like

the SWE, Boussinesq-type models are depth-integrated and thus

can be solved efficiently across large spatial domains. Assuming

that both nonlinearity and frequency dispersion are weak and are

in the same order of magnitude, Peregrine (1967) derived the

“standard” Boussinesq equations for variable depth in the depth-

averaged velocity and the free-surface displacement. Numerical

results based on the standard Boussinesq equations or the equivalent

formulations have been shown to give predictions that compared

quite well for a range of physical configurations (e.g., Goring

1978), including undular bore evolution (Soares-Frazao and Zech

2002b). Because it is required that both frequency dispersion and

nonlinear effects are weak, the standard Boussinesq equations are

not applicable to very shallow water depth, in which the nonlinear-

ity becomes more important than the frequency dispersion.
As waves travel upslope, wave height increases because of

shoaling until eventually breaking. The wave height to water-depth

ratios associated with this physical process violates the weakly

nonlinear assumption. This restriction can be readily removed by

eliminating the weak nonlinearity assumption (e.g., Liu 1994; Wei

et al. 1995), yielding the fully nonlinear Boussinesq-type model.
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Although there is no precise nonlinear accuracy limitation of the
weakly nonlinear Boussinesq (WNB) model, as it depends on a
range of physical properties, in general it is assumed that the fully
nonlinear Boussinesq (FNB) model should be used if the wave
height to water-depth ratio exceeds 0.3 (e.g., Wei et al. 1995).
Application of the FNB equations is widespread, including rip and
longshore currents, wave run-up (Lynett et al. 2002), wave-current
interaction (Ryu et al. 2003), among many others.

Conceptually, Soares-Frazao and Zech (2002b) described the
effect of nonhydrostatic pressure on undular bores and modeled
the fluid motions with both a laboratory experiment and a numeri-
cal model based on the WNB equations. Using long wave scaling, a
simple mathematical expression of the pressure in a Boussinesq-
type model is given by (e.g., Wei et al. 1995)

p

ρg
¼ ζ � zþ

1

2
ðz2 � ζ2Þ

∂S

∂t
þ ðz� ζÞ

∂T

∂t
þ
1

2
ðz2 � ζ2ÞU ·∇S

þ ðz� ζÞU ·∇T þ
1

2
ðζ2 � z2ÞS2 þ ðζ � zÞTS ð1Þ

where g = gravitational acceleration; ρ = water density; z = vertical
direction; and the ζ is the water surface elevation; U ¼ ðU;VÞ =
horizontal velocities evaluated at an arbitrary level z ¼ zαðx; yÞ
in the x and y direction, respectively; t = time;∇ ¼ ð∂=∂x; ∂=∂yÞ;
S ¼ ð∂U=∂xþ ∂V=∂yÞ; T ¼ ð∂hU=∂xþ ∂hV=∂yÞ, where h =
local water depth. As can be seen from Eq. (1), the pressure de-
pends not only on the water depth but also on the spatial and time
variations of the fluid velocity and the total water depth. As the
leading portion of dam-break flows, tidal bores, and some tsunamis
are strongly transient and nonuniform, the third and later terms on
the right-hand side of Eq. (1) may be significant.

Recently, Mohapatra and Chaudhry (2004) presented the
effect of nonhydrostatic pressure effects on two dam-break flow
configurations by using a WNB model. They solved the equations
with a fourth-order explicit finite-difference method (FDM).
In their results, the computed water surface profiles had
undulations when the depth ratio εð¼ downstream water depth=
upstream water depthÞ was greater than 0.4. A main conclusion
of their effort was that the SWE provided sufficiently accurate re-
sults for the maximum flow depth and the arrival time of the flood
wave; the differences between the SWE and Boussinesq model
were negligibly minor. Carmo et al. (1993) conducted dam-break
flow experiments with the condition of ε > 0:5 and observed

undular bores downstream of the dam. They compared the exper-
imental data and computed results based on a the weakly dispersive
Serre equations, and achieved good results. Mignot and Cienfuegos
(2009) applied a one-horizontal-dimension (1HD) Boussinesq
model that included wave-breaking energy dissipation. However,
their applications were not specifically for undular bores, and they
did not examine this process.

Undular bores generated by a sudden release of a constant dis-
charge were investigated by Soares-Frazao and Zech (2002b) with
an experiment and a numerical method. They solved the 1HD
WNB equations with a hybrid finite-volume method (FVM) and
FDM (FDM/FDM) numerical scheme. Soares-Frazao and Guinot
(2008) proposed a modified hybrid scheme to solve the WNB
equations in 1HD space on a horizontal bed. More accurate com-
puted results than the results by the previous hybrid model were
obtained. Soares-Frazao and Zech (1998, 2002a) also presented
two-horizontal-dimension (2HD) experimental and numerical
results of a dam-break flow in a channel with a 90° bend. Here,
however, the numerical model was based on the SWE. They
showed that the 1HD results were of limited usefulness, whereas
the 2HDmodel provided additional physical information and rather
satisfactory prediction.

Large tsunamis can cause immense coastal damage. When ap-
proaching a coastline, the steepness of the leading wave becomes
greater because of shoaling. If steepening is significant, vertical ac-
celerations can become large and nonhydrostatic effects correspond-
ingly relevant. Consequently, undular bores (i.e., soliton fission) can
be generated in nearshore areas. For example, fission was observed
during the 1983 Nihonkai-Chubu earthquake tsunami in Japan
(Shuto 1985). These waves can lead to harbor oscillation problems
or can affect run-up height, which is critical to evacuation. To predict
these secondarywavemotions numerically, the nonhydrostatic pres-
sure effects must be accounted for in the governing equations.

In this paper, several benchmark problems of undular bores are
simulated by using a fully nonlinear Boussinesq-type model in
1HD and 2HD space. The governing equations and the numerical
methods are briefly introduced. In the following section, numerical
results are presented and compared with measured data to show the
ability of the present Boussinesq-type equations model for the ap-
plication to the undular bores. Discussion of the results follows, and
the engineering implications are outlined.

Boussinesq-Type Equations

Fully Nonlinear Boussinesq-Type Equations

The fully nonlinear, weakly dispersive, weakly rotational
Boussinesq-type equations of Kim et al. (2009) in conservative
form are given by

∂H

∂t
þ
∂HU

∂x
þ
∂HV

∂y
þ C ¼ 0 ð2Þ

∂HU

∂t
þ
∂HU2

∂x
þ
∂HUV

∂y
þ gH

∂ζ

∂x
þ HMþ UC

¼ H∇ · ðνht∇UÞ � Hνvt∇S�
τbx
ρ

ð3Þ

∂HV

∂t
þ
∂HUV

∂x
þ
∂HV2

∂y
þ gH

∂ζ

∂y
þ HMþ VC

¼ H∇ · ðνht ∇UÞ � Hνvt∇S�
τby

ρ
ð4Þ

Fig. 1. Schematics of water surface profile patterns by a typical

dam-break problem: (a) initial condition; (b) profile by hydrostatic

theory; (c) profile by nonhydrostatic theory
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where H ¼ ζ þ h is the total water depth. The C in the depth-
integrated continuity equation is given by

C ¼ �∇ ·

�

H

��

ðζ2 � ζhþ h2Þ

6
�
z2α

2

�

∇Sþ

�

ðζ � hÞ

2
� zα

�

∇T

��

þ∇ ·

�

ψH

�

z2α

2
� zαζ þ

ð2ζ2 � 2ζh� h2Þ

6

��

ð5Þ

in whichψ ¼ τ
b=fνvt ðζ þ hÞg. In the momentum equations, theM

is given by

M ¼ Dþ Dv þ �ξþ �ξv ð6Þ

in which

D ¼
1

2
∇ðz2αU ·∇SÞ þ ∇ðzαU · ∇TÞ þ ðT∇TÞ �

1

2
∇

�

ζ2
∂S

∂t

�

�∇

�

ζ
∂T

∂t

�

þ

�

1

2
z2α

∂∇S

∂t
þ zα

∂∇T

∂t

�

�
1

2
∇ðζ2U · ∇SÞ

�∇ðζU ·∇TÞ þ ∇

�

1

2
ζ2S2

�

þ ∇ðζTSÞ ð7Þ

Dv ¼
ðζ � hÞ

2

∂ψjζ

∂t
�
ðζ2 � ζhþ h2Þ

6

∂ψ

∂t
þ

∂

∂t

�

ψ

�

z2α

2
� ζzα

��

þ
ðζ � hÞ

2
∇½U · ðψζÞ� �

ðζ2 � ζhþ h2Þ

6
∇ðU ·ψÞ

þ ∇

�

U ·

�

ψ

�

z2α

2
� ζzα

���

� ψ

�

ðζ2 þ ζh� 2h2ÞS

6
þ
ðζ þ hÞT

2

�

ð8Þ

�ξx ¼ �V

�

∂zα

∂x

�

zα
∂S

∂y
þ
∂T

∂y

�

�
∂zα

∂y

�

zα
∂S

∂x
þ
∂T

∂x

��

�

�

∂V

∂x
�
∂U

∂y

���

z2α

2
�
ðζ2 � ζhþ h2Þ

6

�

∂S

∂y

þ

�

zα �
ðζ � hÞ

2

�

∂T

∂y

�

ð9Þ

�ξy ¼ U

�

∂zα

∂x

�

zα
∂S

∂y
þ
∂T

∂y

�

�
∂zα

∂y

�

zα
∂S

∂x
þ
∂T

∂x

��

þ

�

∂V

∂x
�
∂U

∂y

���

z2α

2
�
ðζ2 � ζhþ h2Þ

6

�

∂S

∂x

þ

�

zα �
ðζ � hÞ

2

�

∂T

∂x

�

ð10Þ

�ξν
x

¼ �V

�

∂

∂x

�

ψy

�

1

2
z2α � zαζ

��

�
ðζ2 � ζhþ h2Þ

6

∂ψy

∂x

þ
ðζ � hÞ

2

∂ψyζ

∂x
�

∂

∂y

�

ψx

�

1

2
z2α � zαζ

��

þ
ðζ2 � ζhþ h2Þ

6

∂ψx

∂y
�
ðζ � hÞ

2

∂ψxζ

∂y

�

�

�

∂V

∂x
�
∂U

∂y

�

ψy

�

z2α

2
� zαζ þ

ð2ζ2 � 2ζh� h2Þ

6

�

ð11Þ

�ξν
y

¼ U

�

∂

∂x

�

ψy

�

1

2
z2α � zαζ

��

�
ðζ2 � ζhþ h2Þ

6

∂ψy

∂x

þ
ðζ � hÞ

2

∂ψyζ

∂x
�

∂

∂y

�

ψx

�

1

2
z2α � zαζ

��

þ
ðζ2 � ζhþ h2Þ

6

∂ψx

∂y
�
ðζ � hÞ

2

∂ψxζ

∂y

�

þ

�

∂V

∂x
�
∂U

∂y

�

ψx

�

z2α

2
� zαζ þ

ð2ζ2 � 2ζh� h2Þ

6

�

ð12Þ

where ðψx;ψyÞ ¼ ψ; �ξ ¼ ð �ξx; �ξyÞ; and �ξν ¼ ð �ξν
x

; �ξν
y

Þ. The physical
meanings of the high-order terms are explained in Kim et al. (2009)

To approximate the bottom stress, a quadratic friction equation
is used

τ bx ¼ cf ρ~u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~u2 þ ~v2
p

; τ by ¼ cf ρ~v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~u2 þ ~v2
p

ð13Þ

where the τbx and τby = bottom shear stresses in the x and y direc-
tions, respectively; ~u and ~v = depth-averaged velocities. The rough-
ness coefficient is given by cf ¼ f =4 (Chen and Jirka, 1995), and
the f is estimated by using the Moody diagram, of which is calcu-
lated here by the explicit formula given by Haaland (1983). The
Manning friction formula can be applied with cf ¼ gn2=H1=3,
where n is the Manning coefficient. The horizontal subgrid scale
dissipation is modeled by using the Smagorinsky model (1963)

νht ¼ C2
sΔxΔy

�

2

�

∂U

∂x

�

2

þ 2

�

∂V

∂y

�

2

þ 2S2 þ

�

∂V

∂x
þ
∂U

∂y

�

2
�

1=2

ð14Þ

where, for the Smagorinsky constant, Cs ¼ 0:2 is used in this
paper. The vertical eddy viscosity is given by

νvt ¼ ChHuτ ð15Þ

where Ch ¼ κ=6 is used, following Elder (1959) with the von
Karman constant κ ¼ 0:4; and uτ = friction velocity (uτ ¼

ffiffiffiffiffiffiffiffiffiffi

τb=ρ
p

).

Numerical Scheme

The same numerical method used in Kim et al. (2009) is employed
here, with a single but important exception described subsequently.
The numerical method uses a fourth-order monotone upstream-
centered schemes for conservation laws-total variation diminishing
(MUSCL-TVD) scheme to solve the leading-order (shallow water)
terms. For the high-order terms, a cell averaged finite-volume
method is implemented. For the time integration, the third-order
Adams-Bashforth predictor and the fourth-order Adams-Moulton
corrector scheme are used.

The predictor step is

ζnþ1 ¼ ζn þ
Δt

12
ð23En � 16En�1 þ 5En�2Þ ð16Þ

Pnþ1 ¼ Pn þ
Δt

12
ð23Fn � 16Fn�1 þ 5Fn�2Þ þ 2Fn

1 � 3Fn�1
1

þ Fn�2
1 þ F

p
v ð17Þ

Qnþ1 ¼ Qn þ
Δt

12
ð23Gn � 16Gn�1 þ 5Gn�2Þ þ 2Gn

1 � 3Gn�1
1

þ Gn�2
1 þ G

p
v ð18Þ
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The corrector step is

ζnþ1 ¼ ζn þ
Δt

24
ð9Enþ1 þ 19En � 5En�1 þ En�2Þ ð19Þ

Pnþ1 ¼ Pn þ
Δt

24
ð9Fnþ1 þ 19Fn � 5Fn�1 þ Fn�2Þ

þ Fnþ1
1 � Fn

1 þ Fc
v ð20Þ

Qnþ1 ¼ Qn þ
Δt

24
ð9Gnþ1 þ 19Gn � 5Gn�1 þ Gn�2Þ

þ Gnþ1
1 � Gn

1 þ Gc
v ð21Þ

where the more detail description of each term can be found in Kim
et al. (2009).

The exception noted in the previous paragraph is the Riemann
solver component in MUSCL-TVD scheme, which plays a large
role in shock capturing simulations. For the calculation of lead-
ing-order terms, except for the bottom slope terms gHhx and
gHhy, a fourth-order compact MUSCL-TVD scheme (Yamamoto
and Daiguji, 1993) is used to construct the interface values as
follows:

ϕL
iþ1=2 ¼ ϕi þ

1

6
fΔ��ϕi�1=2 þ 2Δ�~ϕiþ1=2g ð22Þ

ϕR
iþ1=2 ¼ ϕiþ1 �

1

6
f2Δ��ϕiþ1=2 þΔ�~ϕiþ3=2g ð23Þ

where

Δ��ϕi�1=2 ¼ minmodðΔ�ϕi�1=2; bΔ
�ϕiþ1=2Þ ð24Þ

Δ�~ϕiþ1=2 ¼ minmodðΔ�ϕiþ1=2; bΔ
�ϕi�1=2Þ ð25Þ

Δ��ϕiþ1=2 ¼ minmodðΔ�ϕiþ1=2; bΔ
�ϕiþ3=2Þ ð26Þ

Δ�~ϕiþ3=2 ¼ minmodðΔ�ϕiþ3=2; bΔ
�ϕiþ1=2Þ ð27Þ

Δ�ϕiþ1=2 ¼ Δϕiþ1=2 �
1

6
Δ3�ϕiþ1=2 ð28Þ

Δ3�ϕiþ1=2 ¼ Δ�ϕi�1=2 � 2Δ�ϕiþ1=2 þΔ�ϕiþ3=2 ð29Þ

Δ�ϕi�1=2 ¼ minmodðΔϕi�1=2; b1Δϕiþ1=2; b1Δϕiþ3=2Þ ð30Þ

Δ�ϕiþ1=2 ¼ minmodðΔϕiþ1=2; b1Δϕiþ3=2; b1Δϕi�1=2Þ ð31Þ

Δ�ϕiþ3=2 ¼ minmodðΔϕiþ3=2; b1Δϕi�1=2; b1Δϕiþ1=2Þ ð32Þ

minmodði; jÞ ¼ signðiÞmaxf0;min½jij; signðiÞ�g ð33Þ

minmodði; j; kÞ ¼ signðiÞmaxf0;min½jij; signðiÞj; signðiÞk�g

ð34Þ

in which the coefficient b1 ¼ 2; and 1 ≤ b ≤ 4. Additional details
of this numerical scheme are described in Yamamoto and Daiguji
(1993). By using the constructed interface values, the numerical
fluxes are computed by the HLL approximate Riemann solver.
The HLL numerical flux is given by (Toro 2002)

FHLL
iþ1=2 ¼

8

<

:

FL; 0 ≤ SL
F�; SL ≤ 0 ≤ SR
FR; 0 ≥ SR

ð35Þ

where

F� ¼
SRFL � SLFR þ SRSLðUR � ULÞ

SR � SL
ð36Þ

The wave speeds SL and SR are given by

SL ¼ UL � aLqL; SR ¼ UR þ aRqR ð37Þ

where the subscripts L and R = left and right computational cells of
the interface; and aL and aR = long-wave celerities at these inter-
faces. The qL is given by

qL ¼

(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

ðH�þHLÞH�

H2
L

q

; H� > HL

1; H� ≤ HL

ð38Þ

where H� is given by

H� ¼
1

g

�

1

2
ðaL þ aRÞ þ

1

4
ðUL � URÞ

�

2

ð39Þ

The qR can be obtained in the same manner.
This numerical scheme comprised of Riemann solvers with a

MUSCL scheme is highly accurate and stable for shock capturing.
However, if applied on a steep sloped or discontinuous bottom,
nonphysical numerical oscillations are created even when the lim-
iter is used. To eliminate this numerical oscillation, RSGM, a modi-
fied version of the surface gradient method (Kim et al. 2008) that is
applicable on steep slopes or discontinuous bathymetry is used in
this paper. To describe the wet and dry processes, a moving boun-
dary scheme that can be applied to mild sloped and surface-piercing
discontinuous topography is used. The details of the moving boun-
dary scheme is well described in Lynett et al. (2010).

Numerical Simulations and Discussion

In this section, the ability of the numerical model to predict the
dynamics at the front of a dam-break flow and tsunami is tested.
The validations chosen cover a wide range of 1HD to 2HD prob-
lems, from simple bathymetry to complex, and from relatively
minor front transformation to extreme, in which both nonlinearity
and dispersion are very important. These results will provide a basis
on which to compare the presented model with previous studies,
and yield the guidance needed to discuss the engineering signifi-
cance of the phenomena.

Undular Bore Generation by a Sudden Discharge

First, the ability of the developed numerical scheme to predict the
formation of an undular bore generated by a sudden release of water
in 1HD is investigated. For verification, a laboratory experiment
conducted by Soares-Frazao and Zech (2002b) was chosen. In
the experiment, a sluice gate was installed between an upstream
reservoir and the downstream channel, as shown in Fig. 2. In
the downstream channel, six water surface elevation gauges
(C0 � � � C5 ) were installed. The initial downstream water depth
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was h ¼ 0:251 m. The sluice gate was opened partially from the

bottom, thus a sudden discharge was pushed into the downstream

channel instantaneously and constantly. For the numerical simula-

tion, this sudden release from the gate was modeled as a unit dis-

charge 0:059 m2=s at the upstream boundary condition as done by

Soares-Frazao and Guinot (2008). The grid size Δx ¼ 0:05 m, the

Cr ¼ 0:5, and the roughness height ks ¼ 0:0003 m were used for

the numerical simulation.
The time series of the water surface elevations at each gauge

are plotted in Fig. 3, showing the experimental results, the numeri-

cal WNB results of Soares-Frazao and Guinot (2008), and the

FNB results of the model presented here. As can be seen from

the images, the physical characteristics of the undular bore are

captured very reasonably by both numerical models. In addition,
the amplitudes and the periods of the waves agree very well with
the experimental data quantitatively. The small difference between
the two numerical models is not likely because of the fully non-
linear accuracy of the presented model, which should provide only
minor benefits for this wave with height-to-depth ratio of approx-
imately 0.2. It is more likely because of the linear dispersion
accuracy of the extended-Boussinesq derivation (Nwogu 1993) that
is used in Kim et al. (2009) model.

To test the importance of dispersion effects, the SWE model was
applied to solve the same flow. However, as expected, the SWE
failed to generate the secondary waves. As can be seen in Fig. 4,
the SWE model can generate only the step wave (in the absence of
numerical dispersion). The SWE model used in this paper is solved
by the same numerical method as used with the Boussinesq-type
equation, that is, a fourth-order MUSCL scheme with the Harten,
Lax, Van Leer (HLL) approximate Riemann solver. Thus it is able
to capture the near-vertical face of the shock, without dispersion
errors. Lastly, it is remarked that the height of the leading undular
bore wave is 1.7 times that of the upstream water level (also the
height of the SWE bore), as measured from the downstream water
level.

Dam-Break Flow Simulations

In this test, a gate is fully opened instantaneously so that a rarefac-
tion wave is generated and propagates toward the upstream reser-
voir. This is different from the previous test case, in which a
constant discharge is released from a partially opened gate into
a finite downstream depth. For the verification, an experimental
case exhibiting undular bores (Carmo et al. 1993) was chosen.
The experiment was conducted in a 7.50 m long and flat channel.
One water-surface level gauge (G1) was installed in the upstream
reservoir at x ¼ 2:65 m from the upstream end. The other three
gauges (G2–G4) were located at x ¼ 5:25 m, 6.25 m, and
7.25 m, respectively, in the downstream channel. The initial up-
stream reservoir water depth was 0.099 m and the downstream
channel water depth was 0.051 m. For the numerical simulations,
Δx ¼ 0:01 m, Cr ¼ 0:5, and ks ¼ 0:0001 m were used.

The time series of the water surface elevation are shown in
Fig. 5. For the measured data, the values of ζ are not given because
they were not reported in Carmo et al. (1993). However, it seems
that the FNB model predicts the oscillatory patterns and the periods
of the secondary waves very well. As expected, the SWE model
provides physics that are incorrect near the bore front because
of the hydrostatic pressure assumption.

The small difference of the arrival timing between the experi-
ment and simulation mainly results from the gate opening time
(top). To be regarded as an instantaneous opening, the top should
satisfy (Vischer and Hager 1998)

top ≤ 1:25

ffiffiffiffiffiffi

Hu

g

s

≈ 0:13 ð40Þ

where the Hu = initial upstream water depth, and should be in the
range (Lauber and Hager 1998)

top ≤

ffiffiffiffiffiffiffiffiffi

2Hu

g

s

≈ 0:14 ð41Þ

In the numerical simulations, top was assumed to be 0.0 s, but
it took approximately top ¼ 0:5 s in the laboratory experiments.
Prescribing a “slowly” moving vertical wall is difficult in a
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Fig. 3. Time series of water surface at each gauge; thick solid line:

present study; thick dash-dotted line: experiment; thin dashed line:

by Soares-Frazao and Guinot (2008)

Fig. 2. Experimental setup for undular bore propagation (Soares-

Frazao and Guinot 2008, reprinted with permission from Wiley) (all

units in meters)
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depth-integrated model, requiring a modified lateral boundary con-

dition to be integrated into the model, and is not attempted here.
Fig. 6 shows spatial snapshots from both the FNB and SWE

simulations. The arrival times predicted by the FNB model and

by the SWE model show very good agreement with the measured

data. Although the arrival time computed by SWE is closer to the

measurement, these results should not be used to conclude that

SWE is better than FNB for the prediction of arrival time of surge

fronts. As previously mentioned, the reason is that there is nonne-

gligible difference of top between the experiment and numerical

simulations. In turn, some a difference should be reflected on

the results of the arrival times. The computed water-surface eleva-

tions by FNB and SWE show nonnegligible differences around the

fronts. The height of the leading undular bore wave is 2 times that

of the SWE bore result. One more different pattern is detected

around the end of the rarefaction wave. As explained with

Eq. (1), the unsteady and nonuniform curvature shown in Fig. 6

can cause nonhydrostatic pressure effects. However, these rarefac-

tion dispersion effects are minor compared with those near

the front.
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Fig. 4. Time series of water surface at gauges; SWE: by shallow water equations model; experiment: measured data
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Fig. 5. Time series of water surface elevation: (a) computed results

(solid line: by FNB model; dotted line: by SWE model); (b) measured

data (Carmo et al. 1993) (G1, G2, G3, and G4 are the gauge numbers)
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Fig. 6. Computed water surface profiles; solid line: by FNB model;

dotted line: by SWE model
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Fig. 7. Experimental setup for tsunami wave fission
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Fig. 9. Experimental setup of the L-shaped channel, upper: side view, lower: plan view (all units in meters)
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Fig. 10. Time series of water surface elevations in the L-shaped channel; left: wet bed case; right: dry bed case; solid line: numerical results, dotted

line: measured data

Fig. 11. Snapshots of the computed water surfaces of dam-break flows (wet bed case) (all units in meters)
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Undular Bores Generated by Tsunami Wave Fission

With the model demonstrated to provide an accurate picture of the
physics for the relatively simple, constant-bathymetry, impulsive
discharge problems in the previous two sections, a more complex
1HD setup is approached. Here, the model’s ability to capture
tsunami fission is tested. The general physical background of
this process is given in the following. Long wave fission is
most commonly discussed in the literature through a solitary wave
propagating over an abrupt change in depth, such as a step
(e.g., Madsen and Mei 1969; Goring and Raichlen 1992;
Seabra-Santos et al. 1987). In these cases, there is a deep-water
segment of the seafloor profile, where a solitary wave initially ex-
ists. In this depth, the solitary wave is of permanent form. As the
solitary wave passes over the change in depth into shallower water,
the leading wave energy will try to rediscover a balance between
nonlinearity and dispersion; the solitary wave. Since this new soli-
tary wave will be a different shape and contain a lower level of
mass, by conservation there must be some trailing disturbance
to account for the deficient. This trailing disturbance will take
the form of a rank-ordered train of solitons. However, that discus-
sion of fission in this sense is not particularly relevant to “real”
tsunami modeling, in which the offshore wave approaching the
shelf break rarely resembles a solitary wave solution (Tadepalli
and Synolakis 1996). However, the offshore wave does not need
to specifically be a solitary wave for this process to occur.

In numerous eyewitness accounts and videos recorded of the
2004 Indian Ocean tsunami, there is evidence of the tsunami
approaching the coastline as a series of short period (on the order
of 1 min or less) breaking fronts, or strong bores (e.g., Ioualalen
et al. 2007). These short-period waves may be the result of fission
processes of a steep tsunami front propagating across a wide shelf
of shallow depth. This situation is akin to an undular bore, and is
identical to that described in the preceding paragraph; it simply
takes place over a much longer distance. Each of the leading waves
(the translating undular bore), in the nonlinear and shallow
environment, will attempt to reach an equilibrium state by which
frequency dispersion and nonlinearity are balanced. Thus, the fis-
sion waves will appear as solitary waves, or more generally, cnoidal
waves. With the large offshore tsunami wave heights possible in
extreme events, coupled with a wide, shallow continental shelf,
there exists the possibility that this undular bore-fission process
may play a much more pronounced role in tsunamis than in flood
routing and dam-break situations.

An undistorted experimental study on tsunami soliton fission
was carried out in the Large Wave Flume located at Central
Research Institute of Electric Power Industry in Japan (Matsuyama
et al. 2007). The dimensions of the channel were 205 m long, 3.4 m
wide and 6.0 m deep. The bottom geometry and the wave gauges of
the experiment are depicted in Fig. 7.

For the numerical simulation, Δx ¼ 0:075 m, ks ¼ 0:0003 m
and Cr ¼ 0:5 were used. Additionally, for the consideration of
breaking waves, the dissipation model proposed by Kennedy et al.
(2000) was employed. The tsunami was generated with a sinusoidal
wave form at the left boundary following:

ζ ¼

8

<

:

Asin

�

2πt=T

�

; 0 ≤ t ≤ T

0; T > t

ð42Þ

where A ¼ 0:03 m and T ¼ 20 s. This initial condition is unique in
that it is an attempt to recreate the proper length scales of the tsu-
nami studied. Again, this experiment is undistorted. As mentioned
previously in this section, most experimental studies use a solitary
wave as a tsunami proxy; the aspect ratio of a solitary wave is

different by approximately two orders of magnitude as compared

to a tsunami in the nearshore. This experiment provides both

excellent insight into the nearshore transformation of a nonlinear

long wave as well as a benchmark to test numerical codes.
As the long wave is approaching the shore, the transformation

processes—the soliton fission—is captured reasonably by the FNB

model, as shown in Fig. 8, where the origin (x ¼ 0) of the distance

is the initial shoreline. Reasonable agreement with the measured

data were obtained. The error appears to result mainly the discrep-

ancy of the wave source between the numerical simulation and the

laboratory experiment; there is an initial disagreement between the

numerical simulation and the data, and this error propagates

through the comparisons. As the initial condition, given by

Eq. (28), was clearly given by the researchers, no attempt is made

to tune this condition to achieve better numerical-experimental

comparisons. However, it can be clearly seen that (1) the process

of fission at the fronts of the waves is extremely relevant, transform-

ing the wave shape drastically; and (2) the FNB model does a very

good job at capturing the general behavior of this process, includ-

ing wave heights, periods, and number of waves created.

Fig. 12. Secondary shock captured in the experiment (Soares-Frazao

and Zech, 2002a, ASCE)

Fig. 13. Plan view contour plot shows the topography data

(Matsuyama and Tanaka 2001) (all units in meters)
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Fig. 14. Time series of the incident wave, located at the left boundary
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Dam-Break Flows in an L-Shaped Channel

With model tests for a range of 1HD conditions, including irregular

bathymetry and complex incident wave conditions, validation will

proceed to 2HD problems. The dam-break flow experiments in an

L-shaped channel conducted by Soares-Frazao and Zech (1998,

2002a) have been used as a typical benchmark data set for 2HD

dam-break flow studies in many publications. The experimental

channel shown in Fig. 9 was made up of a 2:44 × 2:37 m upstream

reservoir and a downstream channel with a 90° bend. The bottom of

the reservoir and the channel were flat, but the bottom level of the

downstream channel was 0.33 m higher than the reservoir bottom.

The initial water surface elevation of the reservoir was 0.2 m

higher than the channel bottom. For the wet bed case, the total

water depth at the downstream channel was 0.01 m. For the dry

bed case, it was, naturally, 0.0 m. For the numerical simulation,

the Δx ¼ Δy ¼ 0:0495 m and a uniform value of Manning

coefficient n ¼ 0:011 were used for the entire computational

domain, as proposed by Soares-Frazao and Zech (2002a).
The time series of water surface elevation at the gauges are plot-

ted in Fig. 10. Reasonable agreement was obtained, as shown in the

figures, although there are small differences between the measured

data and the computed results. There are various reasons that can

cause the errors. First, Manning’s friction factor was used in the

numerical simulations, which may introduce some error when

the flow is unsteady. As noted by Soares-Frazao and Zech

(1998), the computed results were sensitive to the Manning n value.

The use of the frictionless side wall condition might contribute to

the discrepancy as well. With these deficiencies in mind, the agree-

ment is quite good.
The secondary peaks at the gauges G2, G3, and G4 in the time

series can be explained through Fig. 11: the suddenly released

Fig. 15. 3D view of the computed water surface elevations by FNB model (all units in meters)
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water flows unidirectionally at the beginning and then is blocked by
the wall in the bend. The water is temporary stored, and the water
surface is increased in the bend. Soon after, the stored water in the
bend reverses and propagates to the upstream reservoir, indicating
that locally, the flow is subcritical.

After the leading front passes the 90° bend, 2D secondary
shocks generated by the reflections between the side walls were
captured as shown in Fig. 11. These patterns are similar to the
2D secondary shock captured in the experiments, given here as
Fig. 12. Thus, the model developed here is able to predict the non-
hydrostatic dynamics that occur at a bore front, as well as 2HD
effects.

Okushiri Tsunami Simulation

For a final model test, nonlinear long wave evolution across
2HD-variable bathymetry is examined. On July 12, 1993, a tsunami
was generated and struck the southwest coast of Hokkaido, includ-
ing Okushiri Island. Matsuyama and Tanaka (2001) reproduced the
tsunami in a laboratory for the understanding of the maximum run-
up height mechanism. This experimental data set is a challenging
benchmark problem in the view of both theory and application, as
both the wave condition and the topography are irregular and
complex. Thus, the data (time series of water surface, animation
of run-up process, boundary conditions and bathymetry) were
widely spread and used as a benchmark problem (Liu et al. 2008).

The topography given by the laboratory data is plotted in the top
plot of Fig. 13. In the domain, there are both a submerged island
(Hira Island) and a surface-piercing island (Muen Island). A locally
complex topography comprised of two small valleys (Monai
Valley) is located on the shore, where the maximum run-up was
observed. As shown in the figure, the shoreline is not uniform
and so the run-up and the run-down processes should be affected
by the particular topography. More details about the experiment are
in Matsuyama and Tanaka (2001).

For the numerical simulations, the topography data were used
without any modifications or smoothing, and the breaking dissipa-
tion was considered. The boundary condition given by the exper-
imental data shown in Fig. 14 was generated by using an internal
source wavemaker coupled with an offshore sponge layer at left
boundary. At the other boundaries, perfectly reflecting vertical
walls were in place. The grid size Δx ¼ Δy ¼ 0:014 m, ks ¼
0:001 m, and Cr ¼ 0:5 were used.

The computed water-surface elevations for the FNB simulations
are shown in Fig. 15. At the beginning, withdrawal seaward direc-
tion is observed because the wave has a leading depression, or
trough. Thus, the water surface elevation decreases and Muen
Island is bridged to the shoreline as shown at t ¼ 12:9 s. Next,
the positive wave from the offshore boundary is propagating toward
the shoreline, with Muen Island creating longshore interference. At
this time, the dried pathway between Muen Island and the shoreline
becomes submerged again. After the wave reaches the shoreline, it
is reflected and scattered. As shown at t ¼ 16:2 s, the secondary
wave that can be captured by dispersive wave model, is propagated
into the entire domain. However, from the reflection, the SWE
model begins to generate very different secondary wave patterns
in the entire domain, as shown in Fig. 16. The SWE model can
show only the nondispersive property. Considering the scale of
the laboratory experiment is 1∶400 (Matsuyama and Tanaka
2001), then the maximum difference of the water surfaces in the
domain is approximately 5 m, which number can cause significant
engineering problems. In Fig. 15, the wiggle that is parallel to the
longshore axis is generated by the submerged vertical cliff located
2 m off the left boundary.

Finally, and not as a formality, the experimentally measured

time series are compared with the FNB results in Fig. 17, where

the secondary wave can be seen clearly. As shown in the figures,

the numerical results and the measured data are within good agree-

ment including the dispersive wave patterns. The discrepancy was

mainly caused by the nonzero initial conditions in the laboratory

tank. Delis et al. (2008) and Murillo et al. (2009) also solved
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Fig. 17. Time series of water surface levels; solid line: numerical re-

sults, dotted: experimental data (Matsuyama and Tanaka 2001); upper:

at gauge No. 5 (4.521 m, 1.196 m); middle: at gauge No. 7 (4.521 m,

1.696 m); bottom: at gauge No. 9 (4.521 m, 2.196 m)

Fig. 16. 3D view of the computed water surface elevations by SWE

model (all units in meters)
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the same benchmark problem with SWE models and reported
reasonable agreements, but no dispersive properties were observed
in the results.

Summary

As mentioned in previous sections, the undular motions can lead to
significant engineering problems, as the process can increase lead-
ing wave crest and flow velocity. To challenge these, a FNB model
based on a fourth-order FVM employing the HLL approximate
Riemann solver was tested and applied to various typical bench-
mark problems, including the dispersive and nonhydrostatic effects,
in this paper.

In an overall sense, physically reasonable, accurate, and stable
computational results were obtained when the FNB that can con-
sider the dispersive and nonhydrostatic pressure effects was used.
Some nonnegligible differences were observed from the computed
results by the SWE model that are based on hydrostatic pressure
assumption. Naturally, the differences can lead to important engi-
neering and design problems. Consequently, the importance of the
nonhydrostatic pressure and dispersive effects should be recog-
nized and checked for important hydraulic engineering projects.
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