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Abstract: We give a unified treatment of dispersive sum rules for four-point correlators in

conformal field theory. We call a sum rule “dispersive” if it has double zeros at all double-

twist operators above a fixed twist gap. Dispersive sum rules have their conceptual origin

in Lorentzian kinematics and absorptive physics (the notion of double discontinuity). They

have been discussed using three seemingly different methods: analytic functionals dual to

double-twist operators, dispersion relations in position space, and dispersion relations in

Mellin space. We show that these three approaches can be mapped into one another and

lead to completely equivalent sum rules. A central idea of our discussion is a fully nonper-

turbative expansion of the correlator as a sum over Polyakov-Regge blocks. Unlike the usual

OPE sum, the Polyakov-Regge expansion utilizes the data of two separate channels, while

having (term by term) good Regge behavior in the third channel. We construct sum rules

which are non-negative above the double-twist gap; they have the physical interpretation

of a subtracted version of “superconvergence” sum rules. We expect dispersive sum rules

to be a very useful tool to study expansions around mean-field theory, and to constrain the

low-energy description of holographic CFTs with a large gap. We give examples of the first

kind of applications, notably we exhibit a candidate extremal functional for the spin-two

gap problem.
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1 Introduction

The modern conformal bootstrap program was kindled by the observation [1] that the

constraints of unitarity and crossing, even when applied to a small number of correlators,

are surprisingly effective in carving out the space of consistent CFTs. Unitarity allows to

replace the infinite set of bootstrap equalities with a finite set of rigorous inequalities, which

can be studied numerically. The numerical bootstrap has matured into a very powerful

and flexible toolkit, which can both put general constraints on theory space and determine

the low-lying data of specific models with unprecedented accuracy. See [2–4] for reviews

and e.g. [5–16] for a partial list of recent results.

In the past several years we have also gained a much better analytic understanding of

the bootstrap constraints. An important circle of ideas revolve around Lorentzian kinemat-

ics and in particular the study of commutators, which are nonvanishing only at timelike

separation. Commutators suppress many contributions to the OPE and allow to focus on

the irreducible physics. A particularly fruitful construct has been the expectation value

of a commutator squared. This expectation value enjoys especially useful properties: it is

positive, and bounded, even in extreme kinematics such as the Regge limit (large boost).

Schematically:

0 ≤ −1

4
〈[X, Y ]2〉 ≤ 〈XY Y X〉 . (1.1)

– 1 –
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These twin properties have been the key to a number of analytic results, such as the bound

on chaos [17] and a proof of the average null energy condition (ANEC) [18]. The proof

exploits that the ANEC operator is a universal contribution in the lightcone OPE of two

scalars, whose contribution satisfies a sum rule expressing it in terms of the commuta-

tors squared, establishing its positivity. The sum rule converges precisely thanks to the

upper bound. Physically, the commutator squared has been interpreted as an absorption

probability and the upper bound is simply the conservation of probability.

Another prominent example is large-spin perturbation theory [19–27]. Any CFT at

large spin contains multi-twist families which behave approximately like non-interacting

products of simpler operators. Their properties can be predicted quantitatively by studying

lightcone singularities [20, 21]. It turns out that carefully chosen double commutators

precisely capture those singularities while discarding regular terms; in turn, the vacuum

expectation values of those double commutators are easily computed by extracting “double

discontinuities” (dDisc) of the four-point function. Remarkably, no actual information is

lost: the position-space dispersion relation derived in [28] reconstructs the full correlator

as an integral transform of two independent double discontinuities (around the cuts of two

of its three OPE channels).1 Schematically,

G(z, z̄) =

ˆ

w,w̄
Ks(z, z̄; w, w̄) dDiscs[G(w, w̄)] +

ˆ

w,w̄
Kt(z, z̄; w, w̄) dDisct[G(w, w̄)] , (1.2)

where Ks,t are certain explicit kinematic kernels in cross-ratio space. A closely related

result is the Lorentzian inversion formula (LIF) [29–31], which reconstructs the coefficient

function c(∆, J) of the conformal partial wave expansion in a given OPE channel from the

double discontinuities around the other two channels. What is more, the LIF reveals a

powerful organizing principle for the spectrum a unitary CFT: all operators lie in a set of

Regge trajectories, analytic in spin (see e.g. [27, 32–34] for several concrete illustrations

of this idea). The LIF has been given a physical interpretation and extended to spinning

operators through the novel concept of light-ray operators [31], a vast generalization of the

average null energy operator.2

A second, parallel line of work has been the development of exact “double-twist func-

tionals”. A complete basis of double-twist functionals was constructed recently for CFTs in

general spacetime dimension [37], building on previous foundational work [38–41] in d = 1

CFTs. In [42], it was shown that these functionals can also be used for modular bootstrap,

and to solve the sphere-packing problem in 8 and 24 dimensions.3 The defining property

of these functionals is that they exhibit double zeros on double-twist operators of mean

field theory. The action of each of these functionals can be represented in terms of double-

contour integral (in the space of complexified cross ratios z, z̄) with a suitable kernel, with

1This is true as stated only for correlators that are “Regge superbounded”. Dispersion relations for

physical correlators, which in general are “just bounded” in the Regge limit, require subtractions. We will

briefly come back to this important technical point below in the Introduction, and discuss it at full length

in section 4 of the paper.
2A variety of other results can be interpreted as sum rules arising from similar Lorentzian kinematics,

e.g. [35, 36].
3See also [43, 44] for the boundary CFT case.
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a contour prescription that mimics the double discontinuity.4 As already noted in [37],

there appears to be a close relationship of this approach with the position space dispersion

relation reviewed above.

A third track of the analytic bootstrap takes place in Mellin space [46–48]. The Mellin

amplitude M(s, t) is a rather close CFT analog of the flat space S-matrix. This anal-

ogy is particularly sharp for holographic CFTs but holds more generally. The authors

of [49] have studied the validity of the Mellin representation for general CFTs and derived

non-perturbative dispersion relations in Mellin space, analogous to the familiar dispersion

relations obeyed by the S-matrix. They have obtained interesting sum rules for CFT data

by insisting (as befits a generic interacting theory) that the spectrum does not contain

operators with exact double-twist quantum numbers. This spectral assumption translates

in what they dub the “non-perturbative Polyakov conditions” for the Mellin amplitude.

In summary, three analytic approaches to non-perturbative bootstrap sum rules have

been developed recently. They are formulated in three different spaces (figure 1):

(i) Position space (z, z̄). Sum rules are obtained by requiring compatibility of the posi-

tion space dispersion relation [28] with crossing symmetry.

(ii) Double-twist “space” (n, ℓ), where n and ℓ are the non-negative integers that label

double-twist operators [O1�
n∂ℓO2]. Sum rules are obtained by applying the dual

double-twist functionals [37] to the crossing equation.

(iii) Mellin space (s, t). Sum rules follow from the Mellin dispersion relations [49] by

imposing crossing and the “non-perturbative Polyakov conditions”.

These three methods have a clear family resemblance. They all rely (more or less directly)

on Lorentzian kinematics and the notion of dDisc. Consequently, they all lead to sum rules

with double-zeros on all mean field theory double-twist operators above a certain minimal

twist, n ≥ n0. We will refer to sum rules of this kind (in the precise sense just stated) as

“dispersive”. The goal of this paper is to systematically classify and study dispersive sum

rules. We will show that the three approaches outlined above can be precisely mapped

into one another and lead to completely equivalent sum rules. In particular, the Mellin

space sum rules of [49] can all be understood in the conventional language of analytic

functionals, and follow from nothing more than the usual requirements of unitarity and

crossing — there is no need to make the additional spectral assumptions encoded in the

non-perturbative Polyakov conditions.

A common thread of our discussion will be an alternative, fully nonperturbative ex-

pansion of the correlator, as a sum over Polyakov-Regge blocks [37, 50].5 Unlike the usual

4The idea to define d > 1 functionals as double contour integrals appeared independently in [45] and

examples of genuine extremal functionals were also constructed there. Another intersting example of an

extremal functional in the two-variable situation appeared in the context of the modular bootstrap [15].
5The term “Polyakov-Regge block” was introduced in [37]. Polyakov-Regge blocks have good Regge

behavior in one channel (in the conventions of the present paper, the u-channel). Essentially the same

notion appeared independently in [50], where it was called “cyclic Polyakov block”. More precisely, the

cyclic Polyakov block of [50] is the sum of the s-channel and the t-channel Polyakov-Regge blocks of [37].

– 3 –
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Position space

Double twists Mellin space

(z, z̄)

(n, ℓ) (s, t)

Figure 1. Three natural spaces in which we consider conformal bootstrap constraints: position

space (z, z̄), the set of double-twist labels (n, ℓ) and Mellin space (s, t). Dispersion relations in posi-

tion space and Mellin space will turn out to be equivalent to each other, and to provide generating

functions for functionals dual to double-twist operators.

OPE sum, the Polyakov-Regge expansion utilizes the data of two separate channels, while

having (term by term) good Regge behavior in the third channel.6 We will explain that

the Polyakov-Regge expansion follows by expanding the dispersion relation using the OPE,

and is thus rigorously established.

We expect dispersive sum rules to be very useful for at least two broad classes of phys-

ical problems. First, in mean field theory all the operators contributing to the OPE of a

four-point correlator are double-twists. Sum rules with zeros on all double-twists are then

trivially satisfied, making them a natural starting point to construct extremal functionals

that implement expansions around mean-field theory. A very natural conjecture is that

mean field theory maximizes the twist gap for every even spin ℓ ≥ 2, and it is of great inter-

est to construct the corresponding extremal functionals. Second, in holographic theories,

a large gap separates the first higher-spin single-trace operator from the light spectrum.

Double-trace operators below the gap dominate the OPE, and projecting them out is a

prerequisite to access physics above the gap and study the implications of UV unitarity

to low-energy physics. This projection is automatically carried out by the commutator

squared. In this paper we develop the general formalism and give examples of the first

class of applications. The application of dispersive sum rules to AdS effective field theory

and the holographic bootstrap is the subject of a forthcoming article [57].

In order to discuss physical applications, we need to overcome an additional technical

hurdle. Physical correlators are bounded in the Regge limit [29], but the simplest versions

of the dispersive sum rules discussed above only apply to “superbounded” functions with a

slightly improved Regge behavior, see (2.8). Indeed, the position space dispersion relation

uniquely reconstructs superbounded correlators from their double discontinuities; equiva-

lently, the LIF applies all the way down to J = 0. In Mellin space, superboundedness allows

This is to be contrasted with the “Polyakov blocks” of [51–55], which are fully crossing symmetric but are

not superbounded in Regge limit if the exchanged spin is greater than zero.
6Drawing on a suggestion in Polyakov’s classic paper [56], a fully crossing symmetric version of the

Polyakov expansion has been proposed and developed in [51–55]. It has been very inspirational for our

work. We will comment on it in section 5.3

– 4 –
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to drop the arc at infinity in the standard contour manipulation of the Cauchy formula that

yields a dispersion relation. Finally, when acting on superbounded functions the function-

als dual to double-twists are valid functionals which can be “swapped” with the conformal

block expansion. To derive valid sum rules for a physical correlator, we need “subtracted”

dispersion relations, i.e. dispersion relations for a rescaled correlator with improved Regge

behavior. Subtractions can be implemented in each of the three spaces, see figure 7. In

practice, we have found that Mellin space is a good starting point to motivate subtraction

schemes that can then be translated into explicit functionals defined by position-space ker-

nels. While the nonpertubative validity of the Mellin representation is very subtle [49], it is

generally easy to demonstrate rigorously the “swappability” of position-space functionals

and to analyze other properties such as positivity.

For many applications, it is essential consider functionals whose action is non-negative

above a fixed twist gap. It turns out that the individual functionals dual to double-

twists do not enjoy this property, but we have found infinite linear combinations that do.

One of our main concrete results is the explicit construction of a one-parameter family of

swappable functionals,7 called B2,v, that are non-negative above the double-twist gap, i.e.

for ∆ ≥ 2∆φ +J , where ∆φ is the external dimension. The B2,v sum rule can be motivated

by a simple subtraction in Mellin space, and it has a neat physical interpretation as a

subtracted version of the “superconvergence” sum rule of [58].

Using the B2,v family as a basic toolkit, we can start looking for functionals that

answer interesting physical questions. First, and most straightforwardly, we exhibit a

swappable functional that is (experimentally) non-negative on all scalar primaries and on

all spinning primaries above the double-twist gap, with zeros at the double-twists. The

corresponding sum rule is automatically satisfied by mean field theory, and shows that any

other CFT must contain a spinning primary below the double-twist gap — an eminently

plausible (if somewhat weak) result. A more challenging task is to disentangle the spin

dependence. We should construct, for every even spin ℓ ≥ 2, an extremal functional for

the spin-ℓ gap problem, which as we have mentioned is expected to be maximized by

mean-field theory. Such an extremal functional is required to have zeros at all mean-field

operators and be non-negative everywhere above the unitarity bound, except in the spin

ℓ sector below the lowest double twist. For ℓ = 2, we exhibit a candidate functional Φ2

that appears to do the job in some range of ∆φ and d. We strongly believe (but have

not rigorously shown) that it is a swappable functional, and have checked numerically that

it has the requisite positivity properties. We have also compared the analytic functional

Φ2 with an approximate extremal functional for the spin-two gap problem obtained by

numerical bootstrap methods, and found spectacular agreement.8 When applied to the

〈σσσσ〉 correlator of the 3D Ising model, whose low-lying data are very precisely known

from the numerical bootstrap, the Φ2 sum rule converges rapidly, being saturated at the

7The subscript “2” indicates that these are “twice-subtracted” functionals; v is the parameter. Non-

negativity above the double-twist gap holds for v ≥ 1.
8As we will explain in detail, agreement is expected (and found) only for the action on scalar blocks —

there are several distinct extremal functionals for the spin-two gap problem, which differ in their action on

spinning operators but must agree on scalars.
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95% level just by the stress tensor and ǫ exchanges. We will comment how Φ2 and other

dispersive functionals can be used to set up a version of the lightcone bootstrap with

rigorously controlled errors.

The organization of the paper is most accurately gleaned from the table of Contents.

In section 2 we review three analytic bootstrap methods (figure 1) and show their complete

equivalence, emphasizing the unifying theme of the Polyakov-Regge bootstrap. In section 3

we discuss sum rules in the simplified setting of superbounded correlators. In section 4

we discuss subtracted dispersion relations and sum rules valid for physical correlators; in

particular, we construct and study the B2,v family of sum rules. In section 5 we tie a few

conceptual loose ends, related to the tension between Regge boundedness and full crossing

symmetry: we show how to classify contact diagrams using functionals; we relate our

formalism to the lightcone bootstrap; and we comment on the s-t-u symmetric Polyakov

bootstrap. In section 6 we apply our new tools to the construction of extremal functionals

that show optimality of mean field theory for various maximization problems, notably we

propose an extremal functional Φ2 for the spin-two gap problem. We conclude in section 7

with a discussion and open questions.

Several technical appendices complement the main text. Appendix A contains compu-

tations demonstrating the validity of the position space dispersion relation. In appendix B,

we illustrate the position space dispersion relation on simple example correlators. In ap-

pendix C, the position space kernel of the Mellin space dispersion relation is computed. In

appendix D, we explain a method to efficiently evaluate the action of dispersive function-

als on conformal blocks. Another general method, based on weight-shifting operators, is

explained in appendix E. Finally, appendix F includes the details of our numerical imple-

mentation of the twist gap maximization problem.

2 Three approaches to dispersive CFT sum rules

In this section we review three analytic methods to study CFT correlators: the position

space dispersion relation [28], the basis of analytic functionals [37], and the Mellin space

dispersion relation [49]. We argue that these three approaches are just different ways to en-

code the constraints of unitarity and crossing into dispersive functionals, and are completely

equivalent to one other. A unifying idea is that of the Polyakov-Regge bootstrap: all three

formalisms lead naturally to an expansion of the correlator as a sum over “Polyakov-Regge

blocks”. Unlike the familiar conformal block expansion, the Polyakov-Regge expansion

utilizes the data of two separate OPE channels and manifests good Regge behavior in a

third channel.

The aim of this section is to present the three different formalisms and describe their

relations. In the next section we use this machinery to derive non-perturbative sum rules

for CFT data. For simplicity, both in this section and the next we restrict attention

to correlators that are “superbounded” in the u-channel Regge limit. The extension to

the physically relevant case of correlators that are “just” Regge bounded involves a few

additional technicalities, and is postponed to section 4.

– 6 –
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2.1 Preliminaries

We focus on four-point functions of (non-necessarily identical) scalar operators of equal

conformal dimension ∆φ. We write it as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
G(z, z̄)

(x2
13x2

24)∆φ
, (2.1)

with z and z̄ the usual cross ratios

u =
x2

12x2
34

x2
13x2

24

= zz̄ , v =
x2

14x2
23

x2
13x2

24

= (1 − z)(1 − z̄) . (2.2)

The correlator G(z, z̄) admits conformal block expansions in three (a priori inequivalent)

channels,

G(z, z̄) =
∑

O
aO Gs

∆O,JO
(z, z̄) =

∑

P
aP Gt

∆P ,JP
(z, z̄) =

∑

Q
aQ Gu

∆Q,JQ
(z, z̄) . (2.3)

We will use the following normalization,

Gs
∆,J(z, z̄) ∼ (zz̄)−∆φ × z

∆−J
2 z̄

∆+J
2 for 0 < z ≪ z̄ ≪ 1 . (2.4)

Our analysis will treat the three OPE channels asymmetrically, singling out a pair.

With no loss of generality, we choose to study the s = t crossing equation, i.e. the equality

of the s- and t-channel expansions above in their common region of convergence. The

s-channel OPE converges when both z and z̄ are away from the interval [1, ∞), and the

t-channel OPE converges away from the interval (−∞, 0] [59]. The two OPEs thus simul-

taneously converge in the cut plane shown in figure 2. It is important that in unitary

theories one can analytically continue z and z̄ to independent complex variables. We will

keep both within this cut plane.

Physical four-point functions are single-valued in Euclidean signature, where z and z̄

are complex conjugate of each other. Within the cut plane, this amounts to a constraint

on the boundary values on both sides of the cut. Specifically, in Euclidean signature we

can reach z, z̄ > 1 in two ways: either taking z above the axis and z̄ below, or the other

way round. We say that a correlator single-valued around (z, z̄) = (1, 1) if these agree:

G(z+i0, z̄−i0) = G(z−i0, z̄+i0) for z, z̄ > 1. Similarly, we say that it is single-valued

around (0, 0) if these agree for z, z̄ < 0. Individual blocks do not satisfy this property: an

s-channel block is not single valued around (1, 1).

When both z and z̄ variables are on the same cut in figure 2, we define the double

discontinuity by taking independent discontinuities in z and z̄:

dDiscs[G(z, z̄)] =
1

2

(G(z+, z̄−) + G(z−, z̄+) − G(z+, z̄+) − G(z−, z̄−)
)

(z, z̄ < 0) ,

dDisct[G(z, z̄)] =
1

2

(G(z+, z̄−) + G(z−, z̄+) − G(z+, z̄+) − G(z−, z̄−)
)

(z, z̄ > 1) ,

(2.5)

where we use z± = z ± i0 to denote which side of the cut we evaluate the correlator. When

G is a single-valued function, the first two terms both reduce to the Euclidean correlator

– 7 –
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Figure 2. The region of the complex plane (for the independent complex variables z and z̄) in

which the s- and t- channel OPEs converge simultaneously.

GE , and the others two give its analytic continuation. The definition is then equivalent to

the one in [29]:

dDiscs[G(z, z̄)] = GE(z, z̄) − 1

2
GE(z, z̄ � 0) − 1

2
GE(z, z̄ 	 0) (G single-valued) . (2.6)

The double discontinuity will be significant in this paper since it multiplies a block by a

simple factor with double zeros on double-twist dimensions:

dDiscs[Gs
∆,J(z, z̄)] = 2 sin2

(
∆ − J − 2∆φ

2
π

)
Gs

∆,J(z, z̄) . (2.7)

As reviewed in Introduction, these double zeros play an in important role in analytic

bootstrap applications.

2.2 Position-space dispersion relation

In physics, dispersion relations are formulas expressing dynamics in terms of absorptive

physics. Paradigmatic examples are the Kramers-Kronig dispersion relation in optics,

which expresses the index of refraction in terms of its imaginary (absorptive) part, and

dispersion relations for the relativistic S-matrix. Both cases exploit analyticity properties

that encode causality. Dispersion relations are useful because the absorptive part is often

both simpler and more directly accessible than the full quantity, while maintaining desirable

properties such as positivity.

In the context of CFTs, the operation which correctly implements the notion of ab-

sorptive part is the double discontinuity just described. A natural question is whether a

(superbounded) correlator is uniquely determined by its absorptive part. This was an-

swered positively by the Lorentzian inversion formula, which reconstructs OPE data from

the double discontinuity [29–31]. Resumming this formula gives the conformal dispersion

relation of [28], which we now briefly review.

The conformal dispersion relation derived in [28] expresses the four-point function

as an integral transform of its double discontinuities in two channels. To write down the

relation, we start by choosing one of the three channels s,t,u. For the purposes of this paper,

we will focus on the fixed-u dispersion relation, which builds on discontinuities in the s-

and t- channels.9 For the relation to be valid, the correlator must satisfy a boundedness

9We will see that this dispersion relation is indeed equivalent to a standard one in Mellin space with

fixed Mellin variable u. Reference [28] worked with the fixed-s dispersion relation.
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condition in the u-channel Regge limit. In this section we focus on the unsubtracted

dispersion relation, which requires that G(z, z̄) is superbounded in the u-channel, i.e.

|G(z, z̄)| < C|zz̄|− 1
2

−ǫ (superboundedness) (2.8)

for some C, ǫ > 0 and all |z|, |z̄| > R > 1. Superboundedness ensures that the Lorentzian

inversion formula [29] for the u-channel OPE data holds for all spins. Since the u-channel

Lorentzian inversion formula depends only on the s- and t-channel dDisc, we conclude

that a u-channel superbounded correlator G(z, z̄) is uniquely fixed by dDiscs[G(z, z̄)] and

dDisct[G(z, z̄)]. The dispersion relation makes this explicit and takes the form

G(z, z̄) = Gs(z, z̄) + Gt(z, z̄) , where

Gs(z, z̄) =

¨

du′dv′K(u, v; u′, v′)dDiscs[G(w, w̄)] ,

Gt(z, z̄) =

¨

du′dv′K(v, u; v′, u′)dDisct[G(w, w̄)] .

(2.9)

Here we used the notation z, z̄ (or u, v) for the free variables, and w, w̄ (or u′, v′) the

integrated variables:
u = zz̄ , v = (1 − z)(1 − z̄) ,

u′ = ww̄ , v′ = (1 − w)(1 − w̄) .
(2.10)

We wrote (2.9) using u, v, u′, v′ since, as we will see soon, the dispersion kernel K(u, v; u′, v′)
looks particularly simple in these variables. What are the integration regions in (2.9)?

Gs(z, z̄) is an integral over u′, v′ > 0 such that
√

v′ ≥
√

u′ +
√

u +
√

v. The integration

region is shown in figure 3. Gt(z, z̄) is an integral over the region obtained by s ↔ t crossing-

symmetry, i.e.
√

u′ ≥
√

v′ +
√

u +
√

v. Note that when
√

u +
√

v ≥ 1, the integrations lie

inside the Lorentzian lightcones Lus, Ltu.

Let us describe the dispersion kernel K(u, v; u′, v′). As explained in [28], it is a sum of

a bulk term and a contact term

K(u, v; u′, v′) = KB(u, v; u′, v′) θ(
√

v′ >
√

u′ +
√

u +
√

v)

+ KC(u, v; u′) δ(
√

v′ −
√

u′ − √
u − √

v) .
(2.11)

The contact term is localized at the boundary of the bulk region. The kernels are

respectively

KB(u, v; u′, v′) =
u − v + u′ − v′

64π(uvu′v′)
3
4

x
3
2 2F1

(
1

2
,
3

2
; 2; 1 − x

)
,

KC(u, v; u′) =
1

4π(uvu′v′)
1
4 (

√
u +

√
u′)

,

(2.12)

where x is the following combination of the four cross-ratios

x =
16

√
uvu′v′

[(
√

u +
√

v)2 − (
√

u′ +
√

v′)2][(
√

u − √
v)2 − (

√
u′ −

√
v′)2]

. (2.13)

A few comments are in order. First, the dispersion kernel defining Gt(z, z̄) in (2.9) is related

to the one defining Gs(z, z̄) by crossing symmetry u ↔ v, u′ ↔ v′. Therefore, if G(z, z̄) is s-t
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E
<latexit sha1_base64="JPc1svnFAYCW8WiQ0777U0MhhLE=">AAACBnicbVDLSgNBEJyNrxhfUY9eFoPgKeyKoMegCB4jmAcmS5id9CZDZmaXmV4xLLn7AV71E7yJV3/DL/A3nCR70GhBQ1HVTXdXmAhu0PM+ncLS8srqWnG9tLG5tb1T3t1rmjjVDBosFrFuh9SA4AoayFFAO9FAZSigFY4up37rHrThsbrFcQKBpAPFI84oWumui/CAWmZXk1654lW9Gdy/xM9JheSo98pf3X7MUgkKmaDGdHwvwSCjGjkTMCl1UwMJZSM6gI6likowQTa7eOIeWaXvRrG2pdCdqT8nMiqNGcvQdkqKQ7PoTcV/PWNPGUJ/YT1G50HGVZIiKDbfHqXCxdidZuL2uQaGYmwJZZrbB1w2pJoytMmVbDL+Yg5/SfOk6ntV/+a0UrvIMyqSA3JIjolPzkiNXJM6aRBGFHkiz+TFeXRenTfnfd5acPKZffILzsc3NP+Z9A==</latexit><latexit sha1_base64="JPc1svnFAYCW8WiQ0777U0MhhLE=">AAACBnicbVDLSgNBEJyNrxhfUY9eFoPgKeyKoMegCB4jmAcmS5id9CZDZmaXmV4xLLn7AV71E7yJV3/DL/A3nCR70GhBQ1HVTXdXmAhu0PM+ncLS8srqWnG9tLG5tb1T3t1rmjjVDBosFrFuh9SA4AoayFFAO9FAZSigFY4up37rHrThsbrFcQKBpAPFI84oWumui/CAWmZXk1654lW9Gdy/xM9JheSo98pf3X7MUgkKmaDGdHwvwSCjGjkTMCl1UwMJZSM6gI6likowQTa7eOIeWaXvRrG2pdCdqT8nMiqNGcvQdkqKQ7PoTcV/PWNPGUJ/YT1G50HGVZIiKDbfHqXCxdidZuL2uQaGYmwJZZrbB1w2pJoytMmVbDL+Yg5/SfOk6ntV/+a0UrvIMyqSA3JIjolPzkiNXJM6aRBGFHkiz+TFeXRenTfnfd5acPKZffILzsc3NP+Z9A==</latexit><latexit sha1_base64="JPc1svnFAYCW8WiQ0777U0MhhLE=">AAACBnicbVDLSgNBEJyNrxhfUY9eFoPgKeyKoMegCB4jmAcmS5id9CZDZmaXmV4xLLn7AV71E7yJV3/DL/A3nCR70GhBQ1HVTXdXmAhu0PM+ncLS8srqWnG9tLG5tb1T3t1rmjjVDBosFrFuh9SA4AoayFFAO9FAZSigFY4up37rHrThsbrFcQKBpAPFI84oWumui/CAWmZXk1654lW9Gdy/xM9JheSo98pf3X7MUgkKmaDGdHwvwSCjGjkTMCl1UwMJZSM6gI6likowQTa7eOIeWaXvRrG2pdCdqT8nMiqNGcvQdkqKQ7PoTcV/PWNPGUJ/YT1G50HGVZIiKDbfHqXCxdidZuL2uQaGYmwJZZrbB1w2pJoytMmVbDL+Yg5/SfOk6ntV/+a0UrvIMyqSA3JIjolPzkiNXJM6aRBGFHkiz+TFeXRenTfnfd5acPKZffILzsc3NP+Z9A==</latexit><latexit sha1_base64="JPc1svnFAYCW8WiQ0777U0MhhLE=">AAACBnicbVDLSgNBEJyNrxhfUY9eFoPgKeyKoMegCB4jmAcmS5id9CZDZmaXmV4xLLn7AV71E7yJV3/DL/A3nCR70GhBQ1HVTXdXmAhu0PM+ncLS8srqWnG9tLG5tb1T3t1rmjjVDBosFrFuh9SA4AoayFFAO9FAZSigFY4up37rHrThsbrFcQKBpAPFI84oWumui/CAWmZXk1654lW9Gdy/xM9JheSo98pf3X7MUgkKmaDGdHwvwSCjGjkTMCl1UwMJZSM6gI6likowQTa7eOIeWaXvRrG2pdCdqT8nMiqNGcvQdkqKQ7PoTcV/PWNPGUJ/YT1G50HGVZIiKDbfHqXCxdidZuL2uQaGYmwJZZrbB1w2pJoytMmVbDL+Yg5/SfOk6ntV/+a0UrvIMyqSA3JIjolPzkiNXJM6aRBGFHkiz+TFeXRenTfnfd5acPKZffILzsc3NP+Z9A==</latexit>

Lus
<latexit sha1_base64="boWx06Vo+ZLYI9U/Cp3RG4kOF/A=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeaJyjLPrNo1ewprkTgFqZICDc/87vUjlgQQIhNUqa5jx+imVCJnArJKL1EQUzamQ+hqGtIAlJtOP8isY630rUEkdYVoTdXfEykNlJoEvu7Mb1TzXi7+6yl9ygj6c+txcOGmPIwThJDNtg8SYWFk5RlZfS6BoZhoQpnk+gGLjaikDHWSFZ2MM5/DImmd1hy75tyeVeuXRUZlckiOyAlxyDmpk2vSIE3CyCN5Ji/k1Xgy3ox342PWWjKKmX3yB8bnD+gtoNQ=</latexit><latexit sha1_base64="boWx06Vo+ZLYI9U/Cp3RG4kOF/A=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeaJyjLPrNo1ewprkTgFqZICDc/87vUjlgQQIhNUqa5jx+imVCJnArJKL1EQUzamQ+hqGtIAlJtOP8isY630rUEkdYVoTdXfEykNlJoEvu7Mb1TzXi7+6yl9ygj6c+txcOGmPIwThJDNtg8SYWFk5RlZfS6BoZhoQpnk+gGLjaikDHWSFZ2MM5/DImmd1hy75tyeVeuXRUZlckiOyAlxyDmpk2vSIE3CyCN5Ji/k1Xgy3ox342PWWjKKmX3yB8bnD+gtoNQ=</latexit><latexit sha1_base64="boWx06Vo+ZLYI9U/Cp3RG4kOF/A=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeaJyjLPrNo1ewprkTgFqZICDc/87vUjlgQQIhNUqa5jx+imVCJnArJKL1EQUzamQ+hqGtIAlJtOP8isY630rUEkdYVoTdXfEykNlJoEvu7Mb1TzXi7+6yl9ygj6c+txcOGmPIwThJDNtg8SYWFk5RlZfS6BoZhoQpnk+gGLjaikDHWSFZ2MM5/DImmd1hy75tyeVeuXRUZlckiOyAlxyDmpk2vSIE3CyCN5Ji/k1Xgy3ox342PWWjKKmX3yB8bnD+gtoNQ=</latexit><latexit sha1_base64="boWx06Vo+ZLYI9U/Cp3RG4kOF/A=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeaJyjLPrNo1ewprkTgFqZICDc/87vUjlgQQIhNUqa5jx+imVCJnArJKL1EQUzamQ+hqGtIAlJtOP8isY630rUEkdYVoTdXfEykNlJoEvu7Mb1TzXi7+6yl9ygj6c+txcOGmPIwThJDNtg8SYWFk5RlZfS6BoZhoQpnk+gGLjaikDHWSFZ2MM5/DImmd1hy75tyeVeuXRUZlckiOyAlxyDmpk2vSIE3CyCN5Ji/k1Xgy3ox342PWWjKKmX3yB8bnD+gtoNQ=</latexit>

Lst
<latexit sha1_base64="SJGCDE/0rOTmKKM3eObyLqT6+ac=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeYKs8wzq3bNnsJaJE5BqqRAwzO/e/2IJQGEyARVquvYMboplciZgKzSSxTElI3pELqahjQA5abTDzLrWCt9axBJXSFaU/X3REoDpSaBrzvzG9W8l4v/ekqfMoL+3HocXLgpD+MEIWSz7YNEWBhZeUZWn0tgKCaaUCa5fsBiIyopQ51kRSfjzOewSFqnNceuObdn1fplkVGZHJIjckIcck7q5Jo0SJMw8kieyQt5NZ6MN+Pd+Ji1loxiZp/8gfH5A+aQoNM=</latexit><latexit sha1_base64="SJGCDE/0rOTmKKM3eObyLqT6+ac=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeYKs8wzq3bNnsJaJE5BqqRAwzO/e/2IJQGEyARVquvYMboplciZgKzSSxTElI3pELqahjQA5abTDzLrWCt9axBJXSFaU/X3REoDpSaBrzvzG9W8l4v/ekqfMoL+3HocXLgpD+MEIWSz7YNEWBhZeUZWn0tgKCaaUCa5fsBiIyopQ51kRSfjzOewSFqnNceuObdn1fplkVGZHJIjckIcck7q5Jo0SJMw8kieyQt5NZ6MN+Pd+Ji1loxiZp/8gfH5A+aQoNM=</latexit><latexit sha1_base64="SJGCDE/0rOTmKKM3eObyLqT6+ac=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeYKs8wzq3bNnsJaJE5BqqRAwzO/e/2IJQGEyARVquvYMboplciZgKzSSxTElI3pELqahjQA5abTDzLrWCt9axBJXSFaU/X3REoDpSaBrzvzG9W8l4v/ekqfMoL+3HocXLgpD+MEIWSz7YNEWBhZeUZWn0tgKCaaUCa5fsBiIyopQ51kRSfjzOewSFqnNceuObdn1fplkVGZHJIjckIcck7q5Jo0SJMw8kieyQt5NZ6MN+Pd+Ji1loxiZp/8gfH5A+aQoNM=</latexit><latexit sha1_base64="SJGCDE/0rOTmKKM3eObyLqT6+ac=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeYKs8wzq3bNnsJaJE5BqqRAwzO/e/2IJQGEyARVquvYMboplciZgKzSSxTElI3pELqahjQA5abTDzLrWCt9axBJXSFaU/X3REoDpSaBrzvzG9W8l4v/ekqfMoL+3HocXLgpD+MEIWSz7YNEWBhZeUZWn0tgKCaaUCa5fsBiIyopQ51kRSfjzOewSFqnNceuObdn1fplkVGZHJIjckIcck7q5Jo0SJMw8kieyQt5NZ6MN+Pd+Ji1loxiZp/8gfH5A+aQoNM=</latexit>

Ltu
<latexit sha1_base64="nIg2HcHnHdp+WwbWR4kmLNeYqGA=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeaYZJlnVu2aPYW1SJyCVEmBhmd+9/oRSwIIkQmqVNexY3RTKpEzAVmllyiIKRvTIXQ1DWkAyk2nH2TWsVb61iCSukK0purviZQGSk0CX3fmN6p5Lxf/9ZQ+ZQT9ufU4uHBTHsYJQshm2weJsDCy8oysPpfAUEw0oUxy/YDFRlRShjrJik7Gmc9hkbROa45dc27PqvXLIqMyOSRH5IQ45JzUyTVpkCZh5JE8kxfyajwZb8a78TFrLRnFzD75A+PzB+nHoNU=</latexit><latexit sha1_base64="nIg2HcHnHdp+WwbWR4kmLNeYqGA=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeaYZJlnVu2aPYW1SJyCVEmBhmd+9/oRSwIIkQmqVNexY3RTKpEzAVmllyiIKRvTIXQ1DWkAyk2nH2TWsVb61iCSukK0purviZQGSk0CX3fmN6p5Lxf/9ZQ+ZQT9ufU4uHBTHsYJQshm2weJsDCy8oysPpfAUEw0oUxy/YDFRlRShjrJik7Gmc9hkbROa45dc27PqvXLIqMyOSRH5IQ45JzUyTVpkCZh5JE8kxfyajwZb8a78TFrLRnFzD75A+PzB+nHoNU=</latexit><latexit sha1_base64="nIg2HcHnHdp+WwbWR4kmLNeYqGA=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeaYZJlnVu2aPYW1SJyCVEmBhmd+9/oRSwIIkQmqVNexY3RTKpEzAVmllyiIKRvTIXQ1DWkAyk2nH2TWsVb61iCSukK0purviZQGSk0CX3fmN6p5Lxf/9ZQ+ZQT9ufU4uHBTHsYJQshm2weJsDCy8oysPpfAUEw0oUxy/YDFRlRShjrJik7Gmc9hkbROa45dc27PqvXLIqMyOSRH5IQ45JzUyTVpkCZh5JE8kxfyajwZb8a78TFrLRnFzD75A+PzB+nHoNU=</latexit><latexit sha1_base64="nIg2HcHnHdp+WwbWR4kmLNeYqGA=">AAACFnicbVDLSsNAFJ3UV62vqBvBTbAIrkoigi6Lbly4qGAf0IYwmd62QycPZm7EEuJ3+AFu9RPciVu3foG/4aTNQlsPXDiccy/33uPHgiu07S+jtLS8srpWXq9sbG5t75i7ey0VJZJBk0Uikh2fKhA8hCZyFNCJJdDAF9D2x1e5374HqXgU3uEkBjegw5APOKOoJc886CE8oAzSm8xLewHFkeaYZJlnVu2aPYW1SJyCVEmBhmd+9/oRSwIIkQmqVNexY3RTKpEzAVmllyiIKRvTIXQ1DWkAyk2nH2TWsVb61iCSukK0purviZQGSk0CX3fmN6p5Lxf/9ZQ+ZQT9ufU4uHBTHsYJQshm2weJsDCy8oysPpfAUEw0oUxy/YDFRlRShjrJik7Gmc9hkbROa45dc27PqvXLIqMyOSRH5IQ45JzUyTVpkCZh5JE8kxfyajwZb8a78TFrLRnFzD75A+PzB+nHoNU=</latexit>

Figure 3. Relevant regions in the u′, v′ variables. The black curve is the image of w = w̄ and

separates the Euclidean region E, where w and w̄ are complex conjugate, from the three Lorentzian

lightcones Lus: w, w̄ < 0, Lst: 0 < w, w̄ < 1 and Ltu: w, w̄ > 1. The s-channel contribution to

the dispersion relation (2.9) is an integral over the shaded region
√

v′ ≥
√

u′ +
√

u +
√

v. When√
u +

√
v ≥ 1, the integration region lies inside Lus. When

√
u +

√
v < 1, it covers all of Lus and

parts of Lst and E.

symmetric, i.e. G(z, z̄) = G(1−z, 1− z̄), then we have manifestly Gt(z, z̄) = Gs(1−z, 1− z̄).

Second, in the above formulas we have assumed u, v are real and nonnegative. This is always

true in Euclidean kinematics. In Lorentzian kinematics, it is true if the four operators are

spacelike separated. In more general situations, (2.9) needs to be analytically continued in

u and v. Third, although the bulk and contact term in (2.12) look rather different at first

sight, they can be combined

K(u, v; u′, v′) = KB(u, v; u′, v′) [θ(x < 1) − 4δ(x − 1)] , (2.14)

revealing their common origin.10

Finally, a remarkable feature of (2.12) (unnoticed in [28]!) is that K(u, v; u′, v′) is a

homogenous function of u, v, u′, v′ of weight minus two, which implies that the dispersion

relation commutes with u∂u + v∂v. This foreshadows a connection with a fixed-u Mellin

dispersion relation, which we will confirm below.

2.3 A basis of analytic functionals

A claim closely related to (2.9) was made in [37]. The authors proposed that any function

G(z, z̄) which is holomorphic in the cut plane and superbounded,11 can be written as a sum

10A little care is needed in interpreting (2.14) since besides
√

v′ =
√

u′ +
√

u +
√

v the equation x = 1

can have another solution inside Lus, where (
√

u′ +
√

v′)2 = (
√

u − √
v)2. In writing (2.14), we implicitly

assume that we only keep the part of the theta-function term where
√

v′ >
√

u′ +
√

u +
√

v, and the part

of the delta-function term where
√

v′ =
√

u′ +
√

u +
√

v.
11To avoid long sentences, we use “superbounded” as shortcut for “superbounded in the u-channel”. Also,

by holomorphic, we will mean holomorphic in the cut plane from now on.
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of two pieces

G(z, z̄) = Gs(z, z̄) + Gt(z, z̄) , (2.15)

where Gs(z, z̄) and Gt(z, z̄) are both holomorphic and superbounded, and furthermore

1. Gs(z, z̄) is single-valued around (z, z̄) = (1, 1) and satisfies dDisct[Gs(z, z̄)] = 0 ,

2. Gt(z, z̄) is single-valued around (z, z̄) = (0, 0) and satisfies dDiscs[Gt(z, z̄)] = 0 .

Unlike for the dispersion relation of the previous subsection, here we do not assume that

G(z, z̄) is single-valued around either channel. Correspondingly, Gs(z, z̄) need not be single-

valued around (z, z̄) = (0, 0) and Gt(z, z̄) need not be single-valued around (z, z̄) = (1, 1).

An important example of non-single-valued functions are the conformal blocks, and we

would like to stress that the decomposition (2.15) applies even when G(z, z̄) is a conformal

block, which will soon play an important role. It turns out that when G(z, z̄) is single-

valued around both s- and t-channel, the decomposition (2.15) agrees with the dispersion

relation (2.9). This is by no means obvious and we will provide a proof later in this

subsection.

We will give a constructive proof of (2.15) below. It is easy to see that if such a

decomposition exists, it is unique. Suppose there is an alternative decomposition G =

G̃s+G̃t, with G̃s and G̃t obeying Properties 1 and 2. By our assumptions, the difference H ≡
G̃s −Gs = −G̃t +Gt is superbounded, singled-valued around both (0, 0) and (1, 1), and with

vanishing dDisc around both channels, dDiscs[H] = dDisct[H] = 0. It immediately follows

from the dispersion relation (2.9) that H is identically zero, and hence the decomposition

is unique.

Before justifying (2.15), let us review some of its consequences, following [37]. Since

Gt(z, z̄) in (2.15) is single-valued around (z, z̄) = (0, 0) and satisfies dDiscs[Gt(z, z̄)] = 0, it

can be decomposed into a basis of functions with these properties. A natural such basis

is the set of all s-channel double-trace conformal blocks and their derivatives with respect

to the exchanged dimension ∆: Gs
∆n,ℓ,ℓ(z, z̄), ∂∆Gs

∆n,ℓ,ℓ(z, z̄) where ∆n,ℓ = 2∆φ + 2n + ℓ.

We have

Gt(z, z̄) =
∑

n,ℓ

{
αs

n,ℓ[G] Gs
∆n,ℓ,ℓ(z, z̄) + βs

n,ℓ[G] ∂∆Gs
∆n,ℓ,ℓ(z, z̄)

}
, (2.16)

where the sum over n, ℓ runs over all nonnegative integers, including both even and odd ℓ.

Similarly, we can decompose Gs(z, z̄) in t-channel double-traces

Gs(z, z̄) =
∑

n,ℓ

{
αt

n,ℓ[G] Gt
∆n,ℓ,ℓ(z, z̄) + βt

n,ℓ[G] ∂∆Gt
∆n,ℓ,ℓ(z, z̄)

}
. (2.17)

Here αs
n,ℓ, βs

n,ℓ, αt
n,ℓ and βt

n,ℓ are linear functionals acting on the space of holomorphic,

superbounded functions, which extract the coefficient of the double-trace conformal blocks

in the decomposition of G(z, z̄). An equivalent way to state the proposal is that Gs
∆n,ℓ,ℓ(z, z̄),

∂∆Gs
∆n,ℓ,ℓ(z, z̄), Gt

∆n,ℓ,ℓ(z, z̄) and ∂∆Gt
∆n,ℓ,ℓ(z, z̄) form a basis for the space of holomorphic

superbounded functions, and αs
n,ℓ, βs

n,ℓ, αt
n,ℓ and βt

n,ℓ is the corresponding dual basis. The
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decomposition (2.15) is simply the completeness relation

G(z, z̄) =
∞∑

n,ℓ=0

{
αt

n,ℓ[G] Gt
∆n,ℓ,ℓ(z, z̄) + βt

n,ℓ[G] ∂∆Gt
∆n,ℓ,ℓ(z, z̄)

}

+
∞∑

n,ℓ=0

{
αs

n,ℓ[G] Gs
∆n,ℓ,ℓ(z, z̄) + βs

n,ℓ[G] ∂∆Gs
∆n,ℓ,ℓ(z, z̄)

}
.

(2.18)

The statement that functionals αs,t
n,ℓ, βs,t

n,ℓ are dual to the primal basis is captured by their

action on double-trace conformal blocks

αs
n,ℓ[G

s
∆n′,ℓ′ ,ℓ′ ] = δnn′δℓℓ′ , αs

n,ℓ[∂∆Gs
∆n′,ℓ′ ,ℓ′ ] = 0 ,

βs
n,ℓ[G

s
∆n′,ℓ′ ,ℓ′ ] = 0 , βs

n,ℓ[∂∆Gs
∆n′,ℓ′ ,ℓ′ ] = δnn′δℓℓ′ ,

αs
n,ℓ[G

t
∆n′,ℓ′ ,ℓ′ ] = 0 , αs

n,ℓ[∂∆Gt
∆n′,ℓ′ ,ℓ′ ] = 0 ,

βs
n,ℓ[G

t
∆n′,ℓ′ ,ℓ′ ] = 0 , βs

n,ℓ[∂∆Gt
∆n′,ℓ′ ,ℓ′ ] = 0 .

(2.19)

and similarly with s and t exchanged. These relations in particular imply that each of the

functionals in the dual basis has double zeros on essentially all s- and t-channel double

trace conformal blocks.

Reference [37] explained how to construct the functionals αs,t
n,ℓ, βs,t

n,ℓ in terms of contour

integrals within the cut plane. It also sketched how these functionals are related to the

position-space dispersion relation (2.15). We will now make the connection precise.

It turns out there are closed formed expressions for Gs(z, z̄) and Gt(z, z̄), analogous to

the second and third line of the dispersion relation in (2.9), but valid also when G(z, z̄) is

not single-valued. It will be useful to have a compact notation for these formulas. For a

holomorphic superbounded function f(z, z̄), we define its s-channel Ω-transform by

Ωs|u[f ](z, z̄) = θ(v − u)f(z, z̄) +

¨

C−×C+

dwdw̄

(2πi)2
π2(w̄ − w)KB(u, v; u′, v′)f(w, w̄) (2.20)

and similarly its t-channel transform by

Ωt|u[f ](z, z̄) = θ(u − v)f(z, z̄) −
¨

C−×C+

dwdw̄

(2πi)2
π2(w̄ − w)KB(u, v; u′, v′)f(w, w̄) , (2.21)

where KB(u, v; u′, v′) is the bulk dispersion kernel defined in (2.12). The second super-

script in Ω is a reminder that our whole discussion pertains to the space of u-channel

superbounded functions. It is apparent that

Ωs|u + Ωt|u = Identity . (2.22)

The integration contours are the same as in [37] and are shown in figure 4: w is integrated

over the contour C− wrapping the left-hand branch cut (−∞, 0), and w̄ over C+, which

wraps the right-hand branch cut (1, ∞).
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w
<latexit sha1_base64="5cT+lfWpmckeRoEk3Db1+oEfBLM=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7SRDZmeXmVklLMEP8Kqf4E28+i1+gb/hJNmDJhY0FFXddHcFieDauO6XU1hb39jcKm6Xdnb39g/Kh0ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYxvZ377AZXmsbw3kwT9iA4lH3BGjZUaj/1yxa26c5BV4uWkAjnq/fJ3L4xZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n80Ck5s0pIBrGyJQ2Zq78nMhppPYkC2xlRM9LL3kz819P2lBGGS+vN4NrPuExSg5Ittg9SQUxMZlGQkCtkRkwsoUxx+wBhI6ooMzawkk3GW85hlbQuqp5b9RqXldpNnlERTuAUzsGDK6jBHdShCQwQnuEFXp0n5815dz4WrQUnnzmGP3A+fwDNK5XU</latexit><latexit sha1_base64="5cT+lfWpmckeRoEk3Db1+oEfBLM=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7SRDZmeXmVklLMEP8Kqf4E28+i1+gb/hJNmDJhY0FFXddHcFieDauO6XU1hb39jcKm6Xdnb39g/Kh0ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYxvZ377AZXmsbw3kwT9iA4lH3BGjZUaj/1yxa26c5BV4uWkAjnq/fJ3L4xZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n80Ck5s0pIBrGyJQ2Zq78nMhppPYkC2xlRM9LL3kz819P2lBGGS+vN4NrPuExSg5Ittg9SQUxMZlGQkCtkRkwsoUxx+wBhI6ooMzawkk3GW85hlbQuqp5b9RqXldpNnlERTuAUzsGDK6jBHdShCQwQnuEFXp0n5815dz4WrQUnnzmGP3A+fwDNK5XU</latexit><latexit sha1_base64="5cT+lfWpmckeRoEk3Db1+oEfBLM=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7SRDZmeXmVklLMEP8Kqf4E28+i1+gb/hJNmDJhY0FFXddHcFieDauO6XU1hb39jcKm6Xdnb39g/Kh0ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYxvZ377AZXmsbw3kwT9iA4lH3BGjZUaj/1yxa26c5BV4uWkAjnq/fJ3L4xZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n80Ck5s0pIBrGyJQ2Zq78nMhppPYkC2xlRM9LL3kz819P2lBGGS+vN4NrPuExSg5Ittg9SQUxMZlGQkCtkRkwsoUxx+wBhI6ooMzawkk3GW85hlbQuqp5b9RqXldpNnlERTuAUzsGDK6jBHdShCQwQnuEFXp0n5815dz4WrQUnnzmGP3A+fwDNK5XU</latexit><latexit sha1_base64="5cT+lfWpmckeRoEk3Db1+oEfBLM=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7SRDZmeXmVklLMEP8Kqf4E28+i1+gb/hJNmDJhY0FFXddHcFieDauO6XU1hb39jcKm6Xdnb39g/Kh0ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYxvZ377AZXmsbw3kwT9iA4lH3BGjZUaj/1yxa26c5BV4uWkAjnq/fJ3L4xZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n80Ck5s0pIBrGyJQ2Zq78nMhppPYkC2xlRM9LL3kz819P2lBGGS+vN4NrPuExSg5Ittg9SQUxMZlGQkCtkRkwsoUxx+wBhI6ooMzawkk3GW85hlbQuqp5b9RqXldpNnlERTuAUzsGDK6jBHdShCQwQnuEFXp0n5815dz4WrQUnnzmGP3A+fwDNK5XU</latexit>

w̄
<latexit sha1_base64="nMIBuY6E8M8gmClq/qxdlT4fcpM=">AAACA3icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthXaUDabSbt0swm7G6WEHv0BXvUneBOv/hB/gX/DbZuDtj4YeLw3w8y8IBVcG9f9ckorq2vrG+XNytb2zu5edf+grZNMMWyxRCTqPqAaBZfYMtwIvE8V0jgQ2AlG11O/84BK80TemXGKfkwHkkecUWOlTi+gKn+c9Ks1t+7OQJaJV5AaFGj2q9+9MGFZjNIwQbXuem5q/Jwqw5nASaWXaUwpG9EBdi2VNEbt57NzJ+TEKiGJEmVLGjJTf0/kNNZ6HAe2M6ZmqBe9qfivp+0pQwwX1pvo0s+5TDODks23R5kgJiHTQEjIFTIjxpZQprh9gLAhVZQZG1vFJuMt5rBM2md1z617t+e1xlWRURmO4BhOwYMLaMANNKEFDEbwDC/w6jw5b8678zFvLTnFzCH8gfP5A8CkmJk=</latexit><latexit sha1_base64="nMIBuY6E8M8gmClq/qxdlT4fcpM=">AAACA3icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthXaUDabSbt0swm7G6WEHv0BXvUneBOv/hB/gX/DbZuDtj4YeLw3w8y8IBVcG9f9ckorq2vrG+XNytb2zu5edf+grZNMMWyxRCTqPqAaBZfYMtwIvE8V0jgQ2AlG11O/84BK80TemXGKfkwHkkecUWOlTi+gKn+c9Ks1t+7OQJaJV5AaFGj2q9+9MGFZjNIwQbXuem5q/Jwqw5nASaWXaUwpG9EBdi2VNEbt57NzJ+TEKiGJEmVLGjJTf0/kNNZ6HAe2M6ZmqBe9qfivp+0pQwwX1pvo0s+5TDODks23R5kgJiHTQEjIFTIjxpZQprh9gLAhVZQZG1vFJuMt5rBM2md1z617t+e1xlWRURmO4BhOwYMLaMANNKEFDEbwDC/w6jw5b8678zFvLTnFzCH8gfP5A8CkmJk=</latexit><latexit sha1_base64="nMIBuY6E8M8gmClq/qxdlT4fcpM=">AAACA3icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthXaUDabSbt0swm7G6WEHv0BXvUneBOv/hB/gX/DbZuDtj4YeLw3w8y8IBVcG9f9ckorq2vrG+XNytb2zu5edf+grZNMMWyxRCTqPqAaBZfYMtwIvE8V0jgQ2AlG11O/84BK80TemXGKfkwHkkecUWOlTi+gKn+c9Ks1t+7OQJaJV5AaFGj2q9+9MGFZjNIwQbXuem5q/Jwqw5nASaWXaUwpG9EBdi2VNEbt57NzJ+TEKiGJEmVLGjJTf0/kNNZ6HAe2M6ZmqBe9qfivp+0pQwwX1pvo0s+5TDODks23R5kgJiHTQEjIFTIjxpZQprh9gLAhVZQZG1vFJuMt5rBM2md1z617t+e1xlWRURmO4BhOwYMLaMANNKEFDEbwDC/w6jw5b8678zFvLTnFzCH8gfP5A8CkmJk=</latexit><latexit sha1_base64="nMIBuY6E8M8gmClq/qxdlT4fcpM=">AAACA3icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthXaUDabSbt0swm7G6WEHv0BXvUneBOv/hB/gX/DbZuDtj4YeLw3w8y8IBVcG9f9ckorq2vrG+XNytb2zu5edf+grZNMMWyxRCTqPqAaBZfYMtwIvE8V0jgQ2AlG11O/84BK80TemXGKfkwHkkecUWOlTi+gKn+c9Ks1t+7OQJaJV5AaFGj2q9+9MGFZjNIwQbXuem5q/Jwqw5nASaWXaUwpG9EBdi2VNEbt57NzJ+TEKiGJEmVLGjJTf0/kNNZ6HAe2M6ZmqBe9qfivp+0pQwwX1pvo0s+5TDODks23R5kgJiHTQEjIFTIjxpZQprh9gLAhVZQZG1vFJuMt5rBM2md1z617t+e1xlWRURmO4BhOwYMLaMANNKEFDEbwDC/w6jw5b8678zFvLTnFzCH8gfP5A8CkmJk=</latexit>

Figure 4. The integration contour used to define the Ω transform (2.20), (2.21). Note that the

contour is invariant under (w, w̄) 7→ (1 − w̄, 1 − w), i.e. it is crossing-symmetric.

The piecewise definition of the Ω transforms in the regions u < v and u > v may

appear awkward at first, but it is in fact dictated by analyticity — the expressions in

the two different domains are the analytic continuations of each other.12 We show this in

detail in appendix A.1, and give the gist of the argument here. Take for example (2.21)

for u < v and analytically continue it in z, z̄ outside of the region u < v. The singularities

of the kernel KB(u, v; u′, v′) move in the space of w, w̄ and we are forced to deform the

contour C− × C+ to avoid the singularities. One can then deform the contour back to the

original configuration C− × C+, but only at the expense of picking the contribution of the

singularities. It turns out that the only singularity which contributes is a simple pole at

(w, w̄) = (z, z̄), where the kernel has residue 1

π2(w̄ − w)KB(u, v; u′, v′) ∼ 1

(w − z)(w̄ − z̄)
. (2.23)

In other words, the extra term that Ωt|u[f ](z, z̄) picks in the process is precisely f(z, z̄).

Therefore, the step function in (2.21) precisely ensures that the Ω-transform is analytic.

With these definitions in place, we claim that the decomposition (2.15) is achieved by

the two Omega-transforms of G,

Gs = Ωs|u[G] , Gt = Ωt|u[G] . (2.24)

While the original dispersion relation (2.9) was written as an integral over a real contour in

the u′, v′ variables, the new version (2.15), (2.24) entails integrals over a different, complex

contour in the w, w̄ variables. Note that the factor w̄ − w is simply the Jacobian of the

coordinate change: du′dv′ = (w̄ − w)dwdw̄.

One of the virtues of the new dispersion relation is that Properties 1 and 2 are manifest,

i.e. it is easy to show that Gt and Gs are single-valued and have vanishing double disconti-

nuities around the s- and t-channel respectively. To see that, let us focus on Gt(z, z̄) and

take |z| and |z̄| small, so that we can drop the step function term in (2.21). The w, w̄

integral converges uniformly in a neighborhood of z = z̄ = 0. This means that to study

analytic properties of Gt(z, z̄) around z = z̄ = 0, we can simply expand in z, z̄ under the

integral sign. It is straightforward to check that KB(u, v; u′, v′) is single-valued around

z = z̄ = 0 and satisfies dDiscs[KB(u, v; u′, v′)] = 0. Indeed, the magic combination x goes

to zero as u → 0, and the hypergeometric in KB leads to at most a single log(u), i.e.

KB(u, v; u′, v′) = K
(0)
B (u, v; u′, v′) + log(u)K

(1)
B (u, v; u′, v′) , (2.25)

12The theta function term in (2.20), (2.21) only applies literally when u, v are real and non-negative.

As shown in appendix A.1, for general z, z̄ in the cut plane, the argument u − v should be replaced by

Re(
√

u − √
v).
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where K
(0)
B (u, v; u′, v′) and K

(1)
B (u, v; u′, v′) are holomorphic at z = z̄ = 0. The same

comments apply to Gs(z, z̄), showing that it is indeed single-valued around z = z̄ = 1 and

satisfies dDisct[Gs(z, z̄)] = 0.

We can obtain explicit formulas for the functionals αs,t
n,ℓ, βs,t

n,ℓ by expanding (2.20), (2.21)

into double-trace blocks and their derivatives under the integral sign. This immediately

leads to the contour-integral description of αs,t
n,ℓ, βs,t

n,ℓ found in [37]. Specifically, for each of

s and t:

αs,t
n,ℓ[G(w, w̄)] =

¨

C−×C+

dwdw̄

(2πi)2
As,t

n,ℓ(w, w̄)G(w, w̄)

βs,t
n,ℓ[G(w, w̄)] =

¨

C−×C+

dwdw̄

(2πi)2
Bs,t

n,ℓ(w, w̄)G(w, w̄) .

(2.26)

where the kernels As,t
n,ℓ, Bs,t

n,ℓ are defined by expanding (2.20), (2.21) in double-trace confor-

mal blocks under the integral sign

π2(w̄ − w)KB(v, u; v′, u′) =
∑

n,ℓ

[
As

n,ℓ(w, w̄)Gs
∆n,ℓ,ℓ(z, z̄) + Bs

n,ℓ(w, w̄)∂∆Gs
∆n,ℓ,ℓ(z, z̄)

]

π2(w̄ − w)KB(u, v; u′, v′) =
∑

n,ℓ

[
At

n,ℓ(w, w̄)Gt
∆n,ℓ,ℓ(z, z̄) + Bt

n,ℓ(w, w̄)∂∆Gt
∆n,ℓ,ℓ(z, z̄)

]

(2.27)

The resulting kernels agree with those found in [37] using a different, indirect method.13

For example,

As
0,0(w, w̄) =

w + w̄ − 2

(w̄ − w)2

{
4 + log

[
ww̄(1 − w)(1 − w̄)

(w̄ − w)4

]}

Bs
0,0(w, w̄) =

2(w + w̄ − 2)

(w̄ − w)2
.

(2.28)

It remains to be shown that when G(z, z̄) is single-valued, the contour inte-

grals (2.20), (2.21) defining Gs,t(z, z̄) through (2.24) reduce to the original dispersion

relation (2.9) involving dDisc. We sketch the argument here, leaving the details to ap-

pendix A.2. Let us focus on Gt(z, z̄). The idea is to start from (2.21) in a region where

the step function vanishes and wrap both w and w̄ contours on the right-hand branch cut,

wrapping the w̄ contour first and w second. The resulting integral comes in four pieces,

containing G(w+iǫ, w̄+iǫ), G(w+iǫ, w̄−iǫ), G(w−iǫ, w̄+iǫ) and G(w−iǫ, w̄−iǫ) respectively.

G(w, w̄) being single-valued around the t-channel is equivalent to

G(w + iǫ, w̄ − iǫ) = G(w − iǫ, w̄ + iǫ) = GE(w, w̄) . (2.29)

Using this condition, together with nontrivial identities satisfied by the kernel KB, the four

pieces nontrivially recombine to an integral depending only on the double-discontinuity

defined in (2.6). Furthermore, the antisymmetry of the integrand in (2.21) under w ↔ w̄

13Note that the expansion in (2.27) must be done in the domain of the contours, i.e. for Re(w̄) >

Re(w). The nontrivial branch-cut structure of KB(u, v; u′, v′) then implies As
n,ℓ(w, w̄) = At

n,ℓ(1 − w, 1 −
w̄), Bs

n,ℓ(w, w̄) = Bt
n,ℓ(1 − w, 1 − w̄) although naively (2.27) seems to give an extra minus sign in the

transformation.
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implies that many of the contributions cancel out and we are left only with the integral

over the sliver v′ > 0, u′ ≥ (
√

v′ +
√

u +
√

v)2, which is precisely the support of K:

Ωt|u[f ](z, z̄) =

¨

du′dv′K(v, u; v′, u′)dDisct[f(w, w̄)] (f(z, z̄) single-valued) . (2.30)

Both the bulk term and the contact term in (2.12) are correctly reproduced by

the argument.

To see how the decomposition G = Gs+Gt works in simple cases, the reader can consult

appendix B. There, we consider the correlator 〈φ2φ̄2φ2φ̄2〉, where φ is a free complex scalar

in d = 3 and d = 4, corresponding to G(u, v) = 1/
√

uv and G(u, v) = 1/(uv).

To summarize this subsection, we used the kernel of the dispersion relation to define

a transform Ω in (2.20) which establishes in a constructive way the decomposition (2.15).

Generally, the Ω-transform cannot be written in terms of dDisc alone, except when its acts

on single-valued correlators. In this case it reduces to the dispersion relation by a contour

deformation.

2.4 The Polyakov-Regge bootstrap

We now introduce one of the unifying ideas of our whole discussion, the Polyakov-Regge

expansion. We start by defining the s- and t-channel Polyakov-Regge blocks as the Ω-

transforms of the conformal blocks in the same channel,

P
s|u
∆,J ≡ Ωs|u[Gs

∆,J ] , P
t|u
∆,J ≡ Ωt|u[Gt

∆,J ] . (2.31)

A Polyakov-Regge block obeys the following properties:

(i) It is u-channel superbounded.

(ii) It is Euclidean singled-valued (in all channels).

(iii) It has the same double discontinuity as the corresponding conformal block in its defin-

ing channel, and vanishing double discontinuity in the other channel. In formulas,

dDiscs[P
s|u
∆,J ] = dDiscs[Gs

∆,J ] , dDisct[P
s|u
∆,J ] = 0 ,

dDisct[P
t|u
∆,J ] = dDisct[G

t
∆,J ] , dDiscs[P

t|u
∆,J ] = 0 .

(2.32)

These properties follow almost immediately from the general discussion in the previous

subsection. Perhaps the least obvious is the statement of Euclidean singled-valuedness.

Focus for definiteness on P
s|u
∆,J(z, z̄). Singled-valuedness around (1, 1) follows at once from

the definition (2.31) and from property 1 of the s-channel Omega transform (as stated at

the beginning of the previous subsection). To see singled-valuedness around (0, 0), we use

the Ω-decomposition of the conformal block,

Gs
∆,J = Ωs|u[Gs

∆,J ] + Ωt|u[Gs
∆,J ] = P

s|u
∆,J + Ωt|u[Gs

∆,J ] , (2.33)

and observe that both Gs
∆,J and Ωt|u[Gs

∆,J ] are singled-valued around (0, 0), for integer

spin J . The same decompositions makes clear that dDiscs[P
s|u
∆,J ] = dDiscs[Gs

∆,J ].
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Polyakov-Regge blocks are in fact the unique functions satisfying properties (i)–(iii).

This is clear from the fact that singled-valued, superbounded functions can be unambigu-

ously reconstructed from their s- and t-channel double discontinuities — most directly by

applying the position-space dispersion relation (2.9). This uniqueness will be very helpful.

Since Gs
∆,J is single-valued around (0, 0), we can write (2.31) as the dispersive transform

of an individual block

P
s|u
∆,J(z, z̄) =

¨

du′dv′K(u, v; u′, v′)dDiscs[Gs
∆,J(w, w̄)] . (2.34)

Polyakov-Regge blocks admit useful expansions in the s- and the t-channel. The general

structure of these expansions follows from (2.32). From dDiscs[P
s|u
∆,J ] = dDiscs[Gs

∆,J ] we

deduce that P
s|u
∆,J can be written in the s-channel as Gs

∆,J plus an infinite sum of double-

twist conformal blocks and their derivatives; while dDisct[P
s|u
∆,J ] = 0 implies a t-channel

expansion just in terms of double-twists and their derivatives:

P
s|u
∆,J = Gs

∆,J −
∞∑

n,ℓ=0

{
αs

n,ℓ[G
s
∆,J ] Gs

∆n,ℓ,ℓ + βs
n,ℓ[G

s
∆,J ] ∂∆Gs

∆n,ℓ,ℓ

}

=
∞∑

n,ℓ=0

{
αt

n,ℓ[G
s
∆,J ] Gt

∆n,ℓ,ℓ + βt
n,ℓ[G

s
∆,J ] ∂∆Gt

∆n,ℓ,ℓ

}
.

(2.35)

We remind the reader that the sum contains both even and odd ℓ. The coefficients in these

expansions are immediately fixed in terms of the dual basis of functionals by applying the

orthonormality relations (2.19). In complete analogy,

P
t|u
∆,J = Gt

∆,J −
∞∑

n,ℓ=0

{
αt

n,ℓ[G
t
∆,J ] Gt

∆n,ℓ,ℓ + βt
n,ℓ[G

t
∆,J ] ∂∆Gt

∆n,ℓ,ℓ

}

=
∞∑

n,ℓ=0

{
αs

n,ℓ[G
t
∆,J ] Gs

∆n,ℓ,ℓ + βs
n,ℓ[G

t
∆,J ] ∂∆Gs

∆n,ℓ,ℓ

}
.

(2.36)

We will now give a different description of the same Polyakov-Regge blocks. There

is in fact another familiar class of functions that are Euclidean single-valued and have a

conformal block decomposition of the form (2.35)–(2.36): Witten exchange diagrams in

AdSd+1. Consider an s-channel Witten exchange diagram W s
∆,J with internal propagator

of dimension ∆ and spin J . The function W s
∆,J shares with P

s|u
∆,J properties (ii) and (iii),

but it is not guaranteed to be u-channel superbounded. Note that there is an inherent

freedom in defining exchange Witten diagrams with spin since different ways of writing the

vertices can change the result by contact diagrams. Now it is always possible to “improve”

an exchange diagram by adding a finite number of contact diagrams (with up to 2(J − 1)

derivatives in the quartic vertices) such that the sum is superbounded. (This statement

is particularly transparent in Mellin space, as we will review in the next subsection.) By

uniqueness of Polyakov-Regge blocks, it follows that

P
s|u
∆,J = W s

∆,J +
∑

contacts , P
t|u
∆,J = W t

∆,J +
∑

contacts . (2.37)
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∆, J

u

∆, J
= +

Figure 5. The Polyakov-Regge block P
s|u
∆,J is a combination of exchange and contact Witten

diagrams such that the u-channel Regge behavior is the best possible.

A Polyakov-Regge block is simply a Witten diagram, where contact ambiguities are fixed

by Regge superboundedness in the u-channel! This is depicted in figure 5.

A comment is in order about crossing properties. While W s
∆,J can be defined to have

a simple transformation property under the t↔u crossing transformation, namely it picks

up an overall factor of (−1)J , this is not the case for P
s|u
∆,J , because the additional contact

diagrams spoil this symmetry. Similarly, W t
∆,J → (−1)JW t

∆,J under s↔u crossing, but

P
t|u
∆,J does not have such property. This is of course not surprising, since the definition of

a Polyakov-Regge blocks treats the three channels asymmetrically.

We are ready to derive the main statement. Starting from the Ω-decomposition of

superbounded correlator G,

G = Ωs|u[G] + Ωt|u[G] , (2.38)

we simply expand G inside Ωs|u[G] using the s-channel OPE and G in Ωt|u[G] using the

t-channel OPE (recall our conventions (2.3)):

G(z, z̄) =
∑

O
aOP

s|u
∆O,JO

(z, z̄) +
∑

P
aPP

t|u
∆P ,JP

(z, z̄) . (2.39)

This is the Polyakov-Regge expansion of G. It is a fully non-perturbative statement and

converges in the cut plane of figure 2. The OPE sum and Ω functionals (2.20) commute

because the OPE is absolutely convergent everywhere inside the integration contour, and

it does not diverge strongly enough near its boundaries (assuming superboundedness in

the Regge limit w, w̄ → ∞).

One could also derive (2.39) starting with the dispersion relation in (2.9), by inserting

the s- and t- channel OPEs to compute dDiscs[G] and dDisct[G], respectively, using (2.34).

The appearance of Witten diagrams and AdS space is purely kinematical and a priori

unrelated to holography: a (Polyakov-Regge) Witten diagram is simply the dispersive

transform of a conformal block.

In contrast with the usual conformal block expansion, individual terms in the Polyakov-

Regge expansion (2.39) are single-valued. The price to pay is that we must sum over two

channels. Note that summing Witten diagrams in all three channels would be incorrect:

in the best case scenario, for example if one made such a sum symmetrical by replacing

P s|u by 1
2(P s|u + P s|t), one would find 3

2G. In (2.39), u-channel singularities are generated

by infinite towers of terms in the other channels. As usual with dispersion relations, two

channels suffice.

– 17 –



J
H
E
P
0
5
(
2
0
2
1
)
2
4
3

Compatibility of the Polyakov-Regge expansion (2.39) with the usual Euclidean ex-

pansion is nontrivial: subtracting the s-channel OPE one must find

0 =
∑

O
aO
(
P

s|u
∆O,JO

(z, z̄) − Gs
∆O,JO

(z, z̄)
)

+
∑

P
aPP

t|u
∆P ,JP

(z, z̄) . (2.40)

We may now use the first line of (2.35) and the second line of (2.36) to expand both

summands over s-channel double-twist blocks and their derivatives. Compatibility thus

give the following nontrivial sum rules which relate s- and t-channel data:

∑

O
aO αs

n,ℓ[G
s
∆O,JO

] =
∑

P
aP αs

n,ℓ[G
t
∆P ,JP

] ∀n, ℓ ≥ 0 , (2.41)

together with the same sums with α replaced by β. These sum rules can be derived more

directly by applying the functionals (2.26) to the standard s=t crossing equation. We stress

that the sum rules are valid whether or not exact double-trace blocks appear in the OPE.

They follow from nothing more than unitarity, crossing symmetry and (in this case) Regge

superboundedness. The sum rules will be discussed at length in section 3.

2.5 Polyakov-Regge blocks in Mellin space and dispersion relation

Mellin space provides a representation of CFT correlators which shares many intuitive

features with gapped S-matrices. It is particularly effective in the context of holographic

theories since Witten diagrams admit convenient Mellin-space expressions. In this subsec-

tion we use this to rewrite the Polyakov-Regge expansion (2.39) in Mellin space. We will

find that the decomposition G = Gs +Gt is nothing but the Mellin-space dispersion relation

studied in [49]!

The Mellin representation of a four-point function G(u, v) takes the form14

G(u, v) =

¨

ds dt

(4πi)2
Γ

(
∆φ − s

2

)2

Γ

(
∆φ − t

2

)2

Γ

(
−∆φ +

s + t

2

)2

u
s
2

−∆φv
t
2

−∆φM(s, t) .

(2.42)

Here s, t are the Mellin variables and M(s, t) is the Mellin amplitude. It is convenient to

introduce a third Mellin variable u, related to the other two by

s + t + u = 4∆φ . (2.43)

We denote the Mellin variables by roman letters to avoid confusion with the cross-ratios

u, v. Our notation for the Mellin variables is related to that of reference [49] by

γ12 = ∆φ − s

2
, γ13 = ∆φ − u

2
, γ14 = ∆φ − t

2
. (2.44)

The contours in the s, t variables run in the imaginary direction from −i∞ to +i∞. As

discussed in detail in [49], various subtleties enter in choosing the contour.

One of the main virtues of the Mellin representation is that operators present in the

OPEs show up as simple poles of M(s, t). Specifically, each primary O present in the

14Recall that we are assuming the dimensions of the external operators are all equal to ∆φ, but the

operators themselves are not necessarily identical.
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s-channel gives rise to an infinite sequence of simple poles of M(s, t) at s = τO + 2m with

m = 0, 1, . . ., where τO = ∆O − JO is the twist. The s-channel OPE is then reproduced

by (2.42) by closing the s contour to the right and picking the contribution of these poles.

The residues at these poles are functions of the remaining Mellin variable t. Upon closing

the t contour, they must correctly reproduce the expansion of conformal blocks at small

u. It can be shown that the residues are polynomials in the t variable of degree JO.

These polynomials will be denoted Qm
∆O,JO

(t). They are uniquely fixed by the conformal

symmetry. Thus,

G(z, z̄) ⊃ aO Gs
∆O,JO

(z, z̄) ⇒ M(s, t) ∼ aO
Qm

∆O,JO
(t)

s − τO − 2m
as s → τO + 2m (2.45)

for m = 0, 1, . . .. Primary operators in the t-channel give rise to analogous poles with s

and t swapped.

The kinematical polynomials Qm
∆,J(t) depend additionally on ∆φ and d. They are

typically written as

Qm
∆,J(t) = − sin2

[
π

2
(∆ − J − 2∆φ)

] (∆ − 1)J Γ(∆ + J) Γ
(

∆−J−2∆φ+2m+2
2

)2

2J−1 π2 m!
(
∆ − d

2 + 1
)

m
Γ
(

∆+J
2

)4 Qm
∆,J(t)

(2.46)

where Qm
∆,J(t) are the so-called Mack polynomials. Qm

∆,J(t) is a polynomial in t − 2∆φ of

degree J with coefficients depending only on d, ∆ and m (and not on ∆φ). For example,

Qm
∆,0(t) = 1

Qm
∆,1(t) = t − 2∆φ +

∆ + 2m − 1

2
.

(2.47)

Qm
∆,J(t) can be computed for example using a recursion relation presented in appendix A

of reference [60]. For our purposes, the most important feature of Qm
∆,J(t) is that they all

have double zeros as a function of ∆ at ∆ = 2∆φ + J + 2n for n = 0, 1, . . ., thanks to

the factor sin2
[

π
2 (∆ − J − 2∆φ)

]
in (2.46). The role of these double zeros is to cancel the

double poles of the squared gamma function Γ
(
∆φ − s

2

)2
in the Mellin representation (2.42)

and thus ensure the Mellin-space poles (2.45) contribute conformal blocks with the correct

coefficients aO. It is expected that (2.45), together with the t-channel poles, are the only

singularities of M(s, t) at fixed u = 4∆φ − s − t.

Nontrivially, the Mellin amplitude M(s, t) is power-behaved at large complex s, t [46,

49]. Thanks to the gamma factors, the integrand in (2.42) is thus exponentially decaying

in Euclidean signature. The amplitude M(s, t) corresponding to an individual conformal

block is however generally not power-behaved [46, 60]. This is easy to see since for example

an s-channel conformal block can only have the poles in (2.45), but it must have an infinite

sequence of double zeros for each double-twist value s = 2∆φ + 2m, in order to cancel the

gamma function poles from (2.42). For this reason, blocks are not a very convenient basis

for Mellin amplitudes, and they are often replaced by Witten diagrams, which share the

same poles but not the double zeros [47].
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We are now ready to write down the Mellin-space form of the Polyakov-Regge blocks,

Ps|u
∆,J(s, t). The uniqueness property discussed below (2.33) will come in handy: we only

need to cook up a function with the right properties. Superboundedness in the u-channel

Regge limit means that

lim
|s|→∞

Ps|u
∆,J(s, t)s+t=fixed = 0 (2.48)

along any (non-real) direction in the complex plane.15 The statement in (2.35) that the

s-channel OPE of Ps|u
∆,J contains a single physical block, plus double-twist and their deriva-

tives, means that its only poles are at s = ∆ − J + 2m with residue given in (2.45) and no

poles in t. (Double-twist blocks and their derivatives are generated by the gamma factors

in (2.42).) Since t = 4∆φ − s − u, all singularities of Ps|u
∆,J(s, t) (at fixed u) are the poles in

s. There is a unique function with these properties:

Ps|u
∆,J(s, t) =

∞∑

m=0

Qm
∆,J(t + s − τ − 2m)

s − τ − 2m
. (2.49)

The numerator is simply the residue in (2.45) written as a function of u. We define the t-

channel Polyakov-Regge block Pt|u
∆,J(s, t) by the same expression with s and t interchanged.

Since the Mellin transform of Ps|u
∆,J(s, t) satisfies all the properties of the Polyakov-

Regge block listed below (2.31), it follows, by uniqueness, that it must be the Polyakov-

Regge block! That is:

P
s|u
∆,J(z, z̄) =

¨

ds dt

(4πi)2
Γ

(
∆φ − s

2

)2

Γ

(
∆φ − t

2

)2

Γ

(
−∆φ +

s + t

2

)2

× u
s
2

−∆φv
t
2

−∆φPs|u
∆,J(s, t) .

(2.50)

Recall the formula for the cross-ratios u = zz̄ and v = (1 − z)(1 − z̄).

The formula (2.49) explicitly shows that the Polyakov-Regge block is equal to the s-

channel exchange Witten diagram for an operator of dimension ∆ and spin J , supplemented

by contact terms. The contact terms are chosen precisely so that Ps|u
∆,J(s, t) vanishes in the

u-channel Regge limit, s, t → ∞ with s+t fixed. Note that in general Ps|u
∆,J(s, t) 6= Ps|t

∆,J(s, t)

since a different set of contact diagrams is needed to improve the u- and t-channel Regge

behaviour of a given s-channel exchange. Let us check that Ps|u
∆,J(s, t) and Ps|t

∆,J(s, t) indeed

differ by contact terms. We have

Ps|t
∆,J(s, t) = (−1)JPs|u

∆,J(s, 4∆φ − s − t) =
∞∑

m=0

Qm
∆,J(t)

s − τ − 2m
. (2.51)

The first equality is the definition which ensures Gs
∆,J appears with unit coefficient in P

s|t
∆,J .

The second equality uses symmetry of Mack polynomials Qm
∆,J(t) = (−1)JQm

∆,J(4∆φ − t −
τ − 2m). Thus

Ps|u
∆,J(s, t) − Ps|t

∆,J(s, t) =
∞∑

m=0

Qm
∆,J(t + s − τ − 2m) − Qm

∆,J(t)

s − τ − 2m
. (2.52)

15Generally M(s, t) = O(|s|J0 ) in this limit, where J0 is the u-channel Regge intercept [49, 60]. Super-

boundedness implies J0 < 0.
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The numerator of each summand vanishes as s → τ +2m, cancelling the pole, which means

the r.h.s. is a polynomial in s, t of degree J − 1, i.e. a contact diagram [48, 61].

Since the Mellin representation is unique [49], (2.50) allows us to write the Polyakov-

Regge expansion (2.39) directly in Mellin space:16

M(s, t) =
∑

O
aO Ps|u

∆O,JO
(s, t) +

∑

P
aP Pt|u

∆P ,JP
(s, t) . (2.53)

This will be an important formula. What is its physical interpretation? We now show that

this is nothing but the fixed-u dispersion relation for the meromorphic function M(s, t)!

To simplify the discussion, let us introduce a notation for the fixed-u amplitude:

M(s; u) ≡ M(s, 4∆φ − s − u) (2.54)

where we have simply expressed t as a function of s and u. In a (nonperturbative) unitary

CFT, it is known that the correlator grows at most linearly in the Regge limit |s| → ∞.

This is equivalent to boundedness of G(z, z̄) in the Regge limit [49]. In this section we

restrict our attention to superbounded correlators, where the analogous condition is that

lim
|s|→∞

|M(s; u)| = 0 (2.55)

as was imposed already for individual Polyakov-Regge blocks in (2.48). This condition

ensures convergence of an unsubtracted dispersion relation. We start from the Cauchy

formula

M(s; u) =

˛

Cs

ds′

2πi

M(s′; u)

s′ − s
, (2.56)

where Cs is a tiny clockwise circle around s. We now expand the contour, picking up

contributions form the poles of M(s′; u), and dropping arcs at infinity thanks to (2.55).

We are left with the s-channel poles listed in (2.45), and t-channel poles whose location

(at fixed u) satisfy t′ = 4∆φ − s′ − u = τP + 2m. Thus each s- and t-channel primary

contributes an infinite tower of residues:

M(s; u) =
∑

O
aO

∞∑

m=0

Qm
∆O,JO

(4∆φ − u − τO − 2m)

s − τO − 2m

+
∑

P
aP

∞∑

m=0

Qm
∆P ,JP

(4∆φ − u − τP − 2m)

4∆φ − s − u − τP − 2m
.

(2.57)

Collecting the contribution of each operator, and eliminating u in favor of t, this is pre-

cisely (2.53) with the Polyakov-Regge block in (2.49).

To summarize this section so far, we started from the dispersion relation in position

space in (2.9), which reconstructs correlators from their double discontinuities in two chan-

nels. We showed that it expresses correlators as a sum of Polyakov-Regge blocks, (2.39),

and we now found that this is equivalent to a dispersion relation in Mellin space. This is

a surprising and unexpected result: all CFT dispersion relations are equivalent.

16We apologize for P denoting both the t-channel primary and Mellin-space Polyakov-Regge block.
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Figure 6. Contour deformation used in deriving the position-space dispersion kernel from the

Mellin-space dispersion relation. We start from a Cauchy integral formula for M(s, t), (2.56).

Deforming the circular contour to a pair of straight contours in the imaginary direction leads to

the split representation (2.58).

2.6 Position-space kernel from Mellin space

In light of this observation, and given the simplicity of the Mellin-space dispersion rela-

tion, it is rewarding to derive the relatively complex position-space kernel (2.12) starting

from (2.56). This will provide the last missing edge, the rightmost edge, to the triangle in

figure 1. Our goal is not to be fully rigorous, but simply to present convincing evidence for

the equivalence. Indeed, the point of view of this paper is that Mellin space can be used

to motivate various position-space results. These results are in turn rigorously established

by working directly in position space.

The idea is simply to insert a suitable form of the Mellin-space dispersion relation into

the Mellin representation (2.42). We start with the Cauchy integral formula at fixed u, as

shown in (2.56). We then deform the circular contour to a pair of contours running in the

imaginary direction, to the right and to the left of s, as shown in figure 6. This leads to a

natural split of M(s, t) into s- and t-channel parts

M(s, t) = M s(s, t) + M t(s, t) , (2.58)

where

M s(s, t) =

ˆ s+ǫ+i∞

s+ǫ−i∞

ds′

2πi

M(s′, t′)
s′ − s

M t(s, t) =

ˆ s−ǫ+i∞

s−ǫ−i∞

ds′

2πi

M(s′, t′)
s − s′ =

ˆ t+ǫ+i∞

t+ǫ−i∞

dt′

2πi

M(s′, t′)
t′ − t

,

(2.59)

where we defined t′ = t+s−s′. When we insert (2.58) into the Mellin representation (2.42),

we obtain

G(u, v) = Gs(u, v) + Gt(u, v) , (2.60)

where

Gs(u, v) =
1

4

˚

ds dt ds′

(2πi)3
Γ

(
∆φ − s

2

)2

Γ

(
∆φ − t

2

)2

Γ

(
−∆φ +

s + t

2

)2

× u
s
2

−∆φv
t
2

−∆φ
M(s′, t′)

s′ − s
.

(2.61)

with the s′ contour the same as in (2.59). Gt(u, v) is given by an identical formula with
ds′

s′−s replaced with dt′

t′−t . We focus on Gs(u, v).
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At this point, it may be tempting to substitute for M(s′, t′) in (2.61) using the fact

that it is the Mellin transform of G(u, v), i.e. using the inverse of (2.42)17

M(s, t) =

ˆ ∞

0

ˆ ∞

0

dudv

uv

u∆φ− s
2 v∆φ− t

2

Γ
(
∆φ − s

2

)2
Γ
(
∆φ − t

2

)2
Γ
(−∆φ + s+t

2

)2 G(u, v) . (2.62)

Naively, this leads to a representation of Gs(u, v) as a double integral of G(u′, v′), with the

kernel given by

1

4u′v′

˚

ds dt ds′

(2πi)3

u
s
2

−∆φv
t
2

−∆φ

u′ s′

2
−∆φv′ t′

2
−∆φ

Γ(∆φ − s
2)2Γ(∆φ − t

2)2

Γ(∆φ − s′

2 )2Γ(∆φ − t′

2 )2

1

s′ − s
. (2.63)

However, this idea does not work because the integrand (2.63) diverges exponentially for

large imaginary s′ because of the gamma functions in the denominator. Moreover, we

want to express Gs(u, v) as an integral of dDiscs[G(u′, v′)] rather than G(u′, v′) anyway.

Thus, to recover the position-space dispersion relation (2.9), it would be nice to have a

formula for M(s′, t′) given as an integral of dDiscs[G(u′, v′)] and dDisct[G(u′, v′)], which

could then be inserted into (2.61). We do not know of such formula but fortunately it is

not needed to finish the argument. The reason is that (2.61) only receives contributions

from singularities of M(s′, t′) with Re(s′) > Re(s), since we can close the s′ contour to the

right. All of these singularities come from s-channel operators. Thus M(s′, t′) in (2.61) can

be replaced with any function with the same s-channel poles and residues. Thus, we can

make the substitution

M(s′, t′)
∣∣
s′-channel poles

=

¨

du′dv′

u′v′
u′∆φ− s′

2 v′∆φ− t′

2

Γ(∆φ − s′

2 )2Γ(∆φ − t′

2 )2Γ(−∆φ + s′+t′

2 )2

× dDiscs[G(u′, v′)]
2 sin2

[
π
2 (s′ − 2∆φ)

] .

(2.64)

in (2.61). Indeed, the s-channel poles come entirely from the small-u region in the inte-

gral (2.62), where replacing G(u, v) with dDiscs[G(u, v)] amounts to multiplying each block

Gs
∆O,JO

(u, v) by 2 sin2
[

π
2 (τO − 2∆φ)

]
, see (2.7). This can be compensated by dividing the

Mellin amplitude by 2 sin2
[

π
2 (s′ − 2∆φ)

]
as was done in (2.64). This works because the poles

corresponding to O occur at s′ = τO +2m and so sin2
[

π
2 (s′ − 2∆φ)

]
= sin2

[
π
2 (τO − 2∆φ)

]
at

the locations of the poles. Furthermore, the division has formally not introduced any new

singularity since it only cancelled zeros from existing gamma functions. For Gt(u, v) we

use a similar substitution with the t-channel sine-squared factors. We are unsure what the

correct integration region is in (2.64). A natural guess is to use the maximal region where

the OPE converges, i.e.
√

u′ <
√

v′ + 1. As we will see soon, the precise shape of the region

is not important for the purpose of reproducing the position-space dispersion relation.

17Formula (2.42) applies with straight vertical contours provided ∆φ < (τ s
min + τ t

min + τu
min)/4, where

τ s,t,u
min are the minimal twists in each channel. Similarly, formula (2.62) applies literally only if the same

condition is satisfied, since otherwise the integral (2.62) does not converge for any s, t. The condition can

be satisfied by subtracting low-twist conformal blocks from G(u, v) [49].
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When we use (2.64) in (2.61) and swap the order of Mellin-space and position-space

integrations, we arrive at

Gs(u, v) =

¨

du′dv′KMellin(u, v; u′, v′)dDiscs[G(u′, v′)] (2.65)

where

KMellin(u, v; u′, v′) =
1

4u′v′

˚

ds dt ds′

(2πi)3

Γ(∆φ − s
2)2Γ(∆φ − t

2)2

2 sin2
[

π
2 (s′ − 2∆φ)

]
Γ(∆φ − s′

2 )2Γ(∆φ − t′

2 )2

× u
s
2

−∆φv
t
2

−∆φ

u′ s′

2
−∆φv′ t′

2
−∆φ

1

s′ − s
.

(2.66)

The extra factor sin2
[

π
2 (s′ − 2∆φ)

]
in the denominator cancels the exponential growth of the

gamma factors, resolving our earlier problem. We have thus converted the Mellin-space dis-

persion relation to a position-space one, and it remains only to verify that KMellin(u, v; u′, v′)
agrees with the position-space kernel K(u, v; u′, v′) given in equations (2.11), (2.12).

To evaluate (2.66) concretely, let us first simplify the integrand by changing coordinates

to p, q, p′ given by

p =
s

2
− ∆φ , q =

t

2
− ∆φ , p′ =

s′

2
− ∆φ ⇒ p + q − p′ =

t′

2
− ∆φ . (2.67)

We get

KMellin(u, v; u′, v′) =
1

2π2u′v′

˚

dp dq dp′

(2πi)3

Γ(−p)2Γ(−q)2Γ(p′ + 1)2

(p′ − p)Γ(p′ − p − q)2

×
(

u

v′

)p (v

v′

)q (v′

u′

)p′

.

(2.68)

Dependence on ∆φ has dropped out as expected. Furthermore, KMellin(u, v; u′, v′) is man-

ifestly homogeneous in u, v, u′, v′ of degree −2, just like K(u, v; u′, v′). We show in ap-

pendix A.3 that (2.68) vanishes for
√

v′ <
√

u′ +
√

u +
√

v as expected from (2.11), and

that it contains precisely the right contact term, proportional to δ(
√

v′ −
√

u′ − √
u − √

v).

In general, computing the triple integral looks like a formidable task.

For
√

v′ >
√

u′ +
√

u +
√

v we could check that (2.68) agrees with KB(u, v; u′, v′)
in an expansion around v = 0, u′ = 0. We start by closing the q contour to the right,

encountering double poles of Γ(−q)2 at q = n, where n = 0, 1, . . .. This gives an expansion

of KMellin(u, v; u′, v′) around v = 0 containing terms vn log(v) and vn, which precisely

agrees with the structure of KB(u, v; u′, v′). Let us focus here on the term proportional

to v0 log(v)

KMellin(u, v; u′, v′)|v0 log(v) = − 1

2π2u′v′

¨

dp dp′

(2πi)2

Γ(−p)2Γ(p′ + 1)2

Γ(p′ − p)Γ(p′ − p + 1)

×
(

u

v′

)p (v′

u′

)p′

.

(2.69)
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The p′ contour can now be closed to the left, encountering poles at p′ = −1, −2, . . ., which

leads to a power-series expansion around u′ = 0. Focusing on the u′0 term, we get

KMellin(u, v; u′, v′)|v0 log(v)·u′0 =

ˆ

dp

2πi

[(p + 1) (−2H−p−2 − log u′ + log v′) + 1]

2π2v′2

(
u

v′

)p

(2.70)

where Hz is the harmonic number. The contour of the p integral can now be closed to the

right, encountering the poles of the harmonic number at p = 0, 1, . . .. The resulting sum

over residues is equal to

KMellin(u, v; u′, v′)|v0 log(v)·u′0 =
1

π2(u − v′)2
, (2.71)

which precisely agrees with the v0 log(v) · u′0 term in KB(u, v; u′, v′) (related to (2.28)).

We have checked many further terms, finding exact agreement with KB(u, v; u′, v′). This

makes us certain that KMellin exactly agrees with the dispersion kernel (2.11).

2.7 Formal properties of the dispersion kernel

The equivalence between the position-space and Mellin-space dispersion relations is sur-

prising, because the different approaches make very different properties manifest.

As noticed in [28], the kernel does not depend on the dimensionality of the space-time

in which the CFT resides. This was nontrivial there since the kernel was computed as an

infinite sum over conformal blocks, which depend on space-time dimension, and only the

two cases d = 2 and d = 4 could be studied. In contrast, in Mellin space, it is evident that

the kernel in (2.68) is independent of space-time dimension.

On the other hand, it is far from obvious from Mellin space that the kernel has nice

group-theoretic properties. It was manifest from the starting point in [28] that the dis-

persion relation commutes with the u-channel Casimir.18 Schematically, if Cu denotes

the u-channel quadratic Casimir invariant of the conformal group (see [62] for explicit

expressions),

Cu ◦
ˆ

u′,v′

K(u, v, u′, v′)dDiscs[G(u′, v′)] =

ˆ

u′,v′

K(u, v, u′, v′)dDiscs[Cu ◦ G(u′, v′)] . (2.72)

This implies that K(u, v, u′, v′) satisfies certain second-order differential equations discussed

in [28]. In Mellin space, Cu becomes the following finite-difference operator:

Cu ◦ M(s, t) = d

(
s + t

2
− 2∆φ

)
M(s, t) +

[(
s

2
− ∆φ

)2(
M(s − 2, t + 2) − M(s, t)

)

+

(
s + t

2
− 2∆φ

)2

M(s, t) −
(

s + t

2
− ∆φ

)2

M(s, t+2) + (s↔t)

]
.

(2.73)

In the notation (s↔t) the two arguments of M should be permuted so that the first

argument remains s plus an integer shift. The Casimir is a linear polynomial in d. The

18Reference [28] considered the fixed-s dispersion relation and (2.23) there manifestly commutes with the

s-channel Casimir.
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fact that its d-dependent part commutes with the dispersion relation in any d is simply

the fact that u is fixed. It is nontrivial, but also true, that the d-independent part also

commutes. That is, on any contour that is invariant under the shift of s and t by integers,

one can check the following surprising identity:

Cu ◦
ˆ

ds′

s′ − s
M(s′; u) =

ˆ

ds′

s′ − s
Cu ◦ M(s′; u). (2.74)

Thus the Mellin dispersion relation commutes with the Casimir equation.19

Besides the Casimir differential equations, an additional first-order equation was also

derived in [28] encoding the equality of d = 2 and d = 4 kernels ((3.3) there). It would be

interesting to find the Mellin interpretation of that equation. As shown in section 3.4 of

that paper, this set of differential equations uniquely determines the kernel K(u, v, u′, v′).
Without such differential equations it would seem virtually impossible to directly compute

the triple integral in (2.68) (without already knowing the answer to compare to).

3 Sum rules for superbounded correlators

The logic of section 2 implies the existence of infinitely many sum rules satisfied by the OPE

data in superbounded correlators. There are several complementary ways of understanding

the sum rules, corresponding to the vertices of the triangle in figure 1. The sum rules arise

by using the OPE on both sides of the dispersion relation (the first line of (2.9)). This leads

to the Polyakov-Regge sum rules (2.40) labelled by position-space variables z, z̄. It proves

useful to expand these at small z, z̄, where one finds that the sum rules can be labelled by

double-trace operators (2.41). We will see that if we work in Mellin space, the same set of

sum rules can be formally derived by combining the Mellin-space dispersion relation with

the ‘Polyakov conditions’ which say M(s, t) = ∂M(s, t) = 0 at double-trace locations. We

would like to stress that all of these sum rules are a consequence of nothing more than

crossing symmetry and unitarity.20 Indeed, they can all be derived by starting from the

standard crossing equation in position space and applying suitable linear functionals to it.

In other words, one should not think of the Polyakov condition as a new constraint on

conformal field theories but rather as a useful way of organizing the existing constraints of

crossing symmetry.

We will now discuss the sum rules in more detail, and use them to further illustrate

the equivalence of the above approaches.

3.1 Generalities

To simplify the discussion, we will assume that G(z, z̄) is u-channel superbounded in this

entire section. The assumption of superboundedness is not entirely unphysical. Perhaps

the simplest example is the four-point function of a complex scalar field 〈φφ̄φφ̄〉. This

19This is analogous to the fact that
´

ds′

s′−s
PJ (s′) commutes with the Legendre differential equation,

where s = cos θ. The polynomial solution PJ (s) turns into the non-polynomial solution QJ (s) to the same

equation.
20This section also assumes superboundedness. Unitarity guarantees just boundedness, used in section 4.
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correlator is u-channel superbounded provided the lightest operator in the φ × φ OPE has

∆0 > 1.21 Supersymmetry also provides many examples [63, 64].

All sum rules covered in this paper can be obtained by acting with suitable linear

functionals on the position-space crossing equation
∑

O
aO Gs

∆O,JO
(z, z̄) =

∑

P
aP Gt

∆P ,JP
(z, z̄) . (3.1)

Given a functional ω which commutes with the OPE sums, we obtain the sum rule
∑

O
aO ω[Gs

∆O,JO
] =

∑

P
aP ω[Gt

∆P ,JP
] . (3.2)

As discussed in [37] and reviewed around (2.41), the functionals αs
n,ℓ, βs

n,ℓ, αt
n,ℓ and βt

n,ℓ

are a basis for the space of functionals which commute with OPE sums in superbounded

correlators. The sum rules arising from these basis functionals are particularly interesting

because they automatically suppress the contribution of double-twist operators. Indeed,

the duality equations (2.19) imply that each of the basis functionals has double zeros as

a function of ∆ on almost all s- and t-channel double-twist blocks. This property makes

these functionals ideally suited for studying holographic CFTs since in the large-c limit,

they directly constrain single-trace operators. We will discuss applications to holographic

CFTs in a companion paper.

We will often be interested in correlators invariant under switching the s- and t-channels

(those where the u-channel OPE only contains primaries of even spin). In that case, the

crossing equation takes the form
∑

O
aO [Gs

∆O,JO
(z, z̄) − Gt

∆O,JO
(z, z̄)] = 0 , (3.3)

and the complete set of sum rules consists of
∑

O
aO αn,ℓ[G

s
∆O,JO

] = 0 ,
∑

O
aO βn,ℓ[G

s
∆O,JO

] = 0 , (3.4)

for n, ℓ ∈ N, where we introduced the notations

αn,ℓ = αs
n,ℓ − αt

n,ℓ , βn,ℓ = βs
n,ℓ − βt

n,ℓ . (3.5)

3.2 Free theory examples

To make the discussion more concrete, let us apply the basis functionals to some simple

correlators. Arguably the simplest correlator is the s-channel identity

G(z, z̄) = Gs
0,0(z, z̄) = (zz̄)−∆φ . (3.6)

This is realized as the correlator 〈φ1φ̄1φ2φ̄2〉 in the theory of two copies of complex scalar

mean field theory. G(z, z̄) is superbounded provided ∆φ > 1/2. The s-channel OPE

contains only the identity block, and the t-channel OPE only double-twist blocks

Gs
0,0(z, z̄) =

∞∑

n,ℓ=0

qMFT
n,ℓ Gt

∆n,ℓ,ℓ(z, z̄) , (3.7)

21The correlator goes as (zz̄)−∆0/2 in the u-channel Euclidean OPE limit, and the u-channel Regge limit

is bounded in the OPE limit by positivity of the s-channel OPE.
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where qMFT
n,ℓ are known functions of d and ∆φ [65]. Let us apply the basis functionals to

this equation and use (2.19). The validity of the resulting sum rules is equivalent to the

following action of the basis on the identity block

αs
n,ℓ[G

s
0,0] = 0 , βs

n,ℓ[G
s
0,0] = 0 , αt

n,ℓ[G
s
0,0] = qMFT

n,ℓ , βt
n,ℓ[G

s
0,0] = 0 . (3.8)

The actions on Gt
0,0 follow by switching s ↔ t everywhere. These formulas can be explicitly

verified from the description of the basis functionals as contour integrals (2.26). For exam-

ple βs
n,ℓ[G

s
0,0] = βt

n,ℓ[G
s
0,0] = 0 follows immediately by deforming the w̄ contour in (2.26) to

the right, where we encounter no singularity and the integral thus vanishes. It follows that

the Polyakov-Regge block of the identity operator is equal to the identity conformal block

P
s|u
0,0 (z, z̄) = Gs

0,0(z, z̄) , P
t|u
0,0 (z, z̄) = Gt

0,0(z, z̄) . (3.9)

We note in passing that it also immediately follows from (2.19) that the Polyakov-Regge

blocks identically vanish to the second order around double-twist dimensions

P
s|u
∆n,ℓ,ℓ(z, z̄) = ∂∆P

s|u
∆n,ℓ,ℓ(z, z̄) = 0 , P

t|u
∆n,ℓ,ℓ(z, z̄) = ∂∆P

t|u
∆n,ℓ,ℓ(z, z̄) = 0 (3.10)

for all n, ℓ ∈ N.

For a less trivial example, we will now consider the four-point function 〈OŌOŌ〉,
where O = φ2 with φ a free complex scalar in d = 4, so that ∆O = 2. This correlator

has a disconnected part, equal to Gs
0,0 + Gt

0,0, and a connected part. We will focus on the

connected part, which is proportional to

G(z, z̄) =
1

uv
. (3.11)

G(z, z̄) is superbounded and s ↔ t symmetric. The conformal block expansion consists of

a single family of twist-two primaries

G(z, z̄) =
∞∑

J=0

aJGs
J+2,J(z, z̄) =

∞∑

J=0

aJGt
J+2,J(z, z̄) , (3.12)

where aJ = (J !)2

(2J)! . Note that the whole family lies below the double-twist threshold. The

J = 2 primary is the stress-tensor. If we apply the basis functionals to this equation, we

find the following sum rules satisfied by the coefficients aJ

∞∑

J=0

aJ αn,ℓ[G
s
J+2,J ] = 0 ,

∞∑

J=0

aJ βn,ℓ[G
s
J+2,J ] = 0 . (3.13)

This is a toy version of the idea that the basis functionals directly constrain the single-

trace operators in holographic CFTs.22 Let us consider the sum rule coming from β0,0.

This functional has the following integral representation

β0,0[G] =

¨

C−×C+

dwdw̄

(2πi)2

4(w + w̄ − 1)

(w̄ − w)2
G(w, w̄) . (3.14)

22We can think of O as a single-trace operator. After we apply any of the basis functionals to the crossing

equation for 〈OŌOŌ〉, the disconnected part drops out by the above arguments, and we are left with a

sum rule for the ‘single-trace’ operators of twist two.
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We can explicitly evaluate β0,0[Gs
J+2,J ] by picking the residues at w = w̄ = 0, finding

β0,0[Gs
J+2,J ] =





2
3 for J = 0

−4 for J = 2

0 for J 6= 0, 2 ,

(3.15)

so the sum rule is satisfied since a0 = 1 and a2 = 1/6. Similarly, we consider α0,0, which

takes the form

α0,0[G] =

¨

C−×C+

dwdw̄

(2πi)2

2(w + w̄ − 1)

(w̄ − w)2

{
4 + log

[
ww̄(1 − w)(1 − w̄)

(w̄ − w)4

]}
G(w, w̄) . (3.16)

With some more work, we can evaluate

α0,0[Gs
J+2,J ] =





−2
9 for J = 0

2 for J = 1

−43
15 for J = 2

2(−1)J (2J+2)!
(J−2)J(J+3)((J+1)!)2 for J > 2 ,

(3.17)

so that the α0,0 sum rule holds thanks to the identity

∞∑

J=3

(−1)J(2J + 1)

(J − 2)J(J + 1)(J + 3)
= − 3

40
. (3.18)

This example illustrates the general phenomenon that the sum rules considered in this

paper converge as inverse power-laws at large ∆ and J . This is in contrast with the

sum rules coming from equating a pair of Euclidean OPEs at a fixed z, z̄, which converge

exponentially fast. This difference is due to the fact that functionals such as αn,ℓ, βn,ℓ

probe the u-channel OPE and Regge limits, where the exponential convergence of the s-

and t-channel OPEs becomes arbitrarily slow.

3.3 Generating functionals

The discussion of section 2.3 makes it clear that it is natural to combine the basis functionals

αs
n,ℓ, βs

n,ℓ, αs
n,ℓ and βs

n,ℓ to the following ‘generating’ functionals

Ω
s|u
z,z̄ =

∑

n,ℓ

[
Gt

∆n,ℓ,ℓ(z, z̄)αt
n,ℓ + ∂∆Gt

∆n,ℓ,ℓ(z, z̄)βt
n,ℓ

]

Ω
t|u
z,z̄ =

∑

n,ℓ

[
Gs

∆n,ℓ,ℓ(z, z̄)αs
n,ℓ + ∂∆Gs

∆n,ℓ,ℓ(z, z̄)βs
n,ℓ

]
.

(3.19)

Ω
s|u
z,z̄ is the linear functional obtained by applying the integral transform Ωs|u defined

in (2.20), followed by evaluating the result at z, z̄. Similarly for Ω
t|u
z,z̄. Equation (2.24)

then implies

Ω
s|u
z,z̄ + Ω

t|u
z,z̄ = evz,z̄ , (3.20)
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where evz,z̄ is the functional which evaluates a superbounded function at z, z̄. This iden-

tity demonstrates the functionals αs,t
n,ℓ, βs,t

n,ℓ lead to a complete set of sum rules in the

following sense. Suppose we are given a putative set of s-channel and t-channel OPE data

{(∆O, aO)}O, {(∆P , aP)}P , both of which define a superbounded correlator. Then this

OPE data satisfies the crossing equation (3.1) for all z, z̄ if and only if it satisfies the sum

rules (3.2), where ω ranges over all αs,t
n,ℓ, βs,t

n,ℓ.

Consider now the sum rule obtained by applying Ω
t|u
z,z̄

∑

O
aO Ω

t|u
z,z̄[Gs

∆O,JO
] =

∑

P
aP Ω

t|u
z,z̄[Gt

∆P ,JP
] . (3.21)

This sum rule suppresses all the t-channel double-twist operators because from (3.19) we

see that Ω
t|u
z,z̄[Gt

∆,J ] has double zeros as a function of ∆ at ∆ = 2∆φ + 2n + J . On the

other hand, the s-channel double-twists are not suppressed because Ω
t|u
z,z̄[Gs

2∆φ+2n+J,J ] =

Gs
2∆φ+2n+J,J(z, z̄) 6= 0. We can suppress also the s-channel double-twists with n > 0

by taking the z → 0 limit. This is allowed because the sums over O, P in (3.21) converge

uniformly in z in a neighbourhood of z = 0, thanks to the discussion around equation (2.25).

It can be helpful to give an alternative definition of the sum rule (3.21). Recall from

eqs. (2.35)–(2.36) that the α, β functionals describe the series expansion of Polyakov-Regge

blocks, which are the dispersive transform (2.34) of blocks. Thus the Ω
t|u
z,z̄ sum rule (3.21)

states the equality between dispersion relations and s-channel OPE (see also (2.40))

∑

O
aO

[
Gs

∆O,JO
(z, z̄) −

¨

du′dv′K(u, v; u′, v′)dDiscs[Gs
∆O,JO

(w, w̄)]

]

=
∑

P
aP

¨

du′dv′K(v, u; v′, u′)dDisct[G
t
∆P ,JP

(w, w̄)] .

(3.22)

From this perspective, the reason why each summand admits an expansion in zn and

zn log(z) is because the dispersion integral cancels all the non-integer powers from

Gs
∆,J(z, z̄). In practice, since the functional action is analytic in ∆ (this is clear from the

C− × C+ contour integral), the coefficient of a given integer power of z may be computed

by starting with ∆ large enough that Gs
∆,J(z, z̄) can be neglected, and then analytically

continuing in ∆. This is further described in appendix D.

Thus, let us define the functional Bs
v as the coefficient of log(z) in the small-z expansion

of Ω
t|u
z,z̄, with z̄ = 1 − v fixed

Bs
v = Ω

t|u
z,z̄|(log z)z0 . (3.23)

We can use (3.19) to give an expansion of Bs
v in the basis functionals

Bs
v =

1

2

∞∑

ℓ=0

(1 − v)−∆φk∆φ+ℓ(1 − v) βs
0,ℓ , (3.24)

where kh(z) is the 1D block

kh(z) = zh
2F1(h, h; 2h; z) , (3.25)
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and we used

Gs
∆,J(z, z̄) ∼ z

∆−J
2

−∆φ z̄−∆φk ∆+J
2

(z̄) as z → 0 . (3.26)

The superscript s reminds us that Bs
v is a linear combination of βs functionals. It follows

that Bs
v[Gs

∆,J ] has double zeros on all n > 0 double-twist dimensions and simple zeros

on the n = 0 ones, with slope given by (1 − v)−∆φk∆φ+ℓ(1 − v). Bs
v[Gt

∆,J ] has double

zeros on all double-twist dimensions. By expanding KB(u, v; u′, v′) in (2.21) at small u,

we get a representation of Bs
v acting on a general superbounded function G(w, w̄) as a

contour integral

Bs
v[G] =

¨

C−×C+

dwdw̄

(2πi)2

(w̄ − w)(u′ − v′ − v)

[v2 − 2(u′ + v′)v + (u′ − v′)2]
3
2

G(w, w̄) , (3.27)

where as usual u′ = ww̄, v′ = (1 − w)(1 − w̄) and C−, C+ wrap the left, right branch cut

respectively. More precisely, the oriented simple curve C− must encircle the cut (−∞, 0]

to its left but not the roots of the quadratic polynomial p = v2 − 2(u′ + v′)v + (u′ − v′)2

(as a function of w), which should be on its right. Similarly, C+ must wrap the cut [1, ∞)

to its right but not the roots of p as a function of w̄. This can be achieved by wrapping

both contours within a distance ǫ > 0 from the cuts, as long as v is away from the negative

real axis.23

This argument shows that Bs
v is a swappable functional (for superbounded correlators)

as long as v is on the first sheet and away from v ∈ (−∞, 0]. In fact, Bs
v[G] as a function

of v is holomorphic away from v ∈ (−∞, 0] for any superbounded G. Expansion of Bs
v

in the basis functionals in equation (3.24) supports these conclusions, since the expansion

coefficients (1 − v)−∆φk∆φ+ℓ(1 − v) are indeed holomorphic for v ∈ C\(−∞, 0].

It is useful to have an integral representation of Bs
v[G] which manifests the double zeros

on s- and t-channel double-twist conformal blocks. Such representation can be derived

either by expanding (3.22) or by closing both w and w̄ contours in (3.27) onto the same

branch cut of G(w, w̄). This argument is just a special case of the contour deformation

explained at the end of section 2.3, and in more detail in appendix A.2. Suppose G(w, w̄)

is single-valued around s-channel. Closing both contours onto the branch cut w, w̄ ∈
(−∞, 0], we find, using special properties of the kernel, that the integral depends only on

dDiscs[G(w, w̄)] and only the region
√

v′ ≥
√

u′ +
√

v contributes

Bs
v[G] =

ˆ ∞

v
dv′
ˆ (

√
v′−√

v)2

0
du′ u′ − v′ − v

π2 [v2 − 2(u′ + v′)v + (u′ − v′)2]
3
2

dDiscs[G(u′, v′)] . (3.28)

Similarly, if G(w, w̄) is single-valued around t-channel, we can close both contours onto

the cut w, w̄ ∈ [1, ∞) to find an integral depending on dDisct[G(w, w̄)] over the region√
u′ ≥

√
v′ +

√
v

Bs
v[G] =

ˆ ∞

v
du′
ˆ (

√
u′−√

v)2

0
dv′ u′ − v′ − v

π2 [v2 − 2(u′ + v′)v + (u′ − v′)2]
3
2

dDisct[G(u′, v′)] . (3.29)

23To see this, it is enough to check that if w, w̄ are both real such that w < 0 and w̄ > 1, then both roots

of p as a function of v are real and nonpositive. Denoting the roots v1,2, we have v1 + v2 = 2(u′ + v′) < 0

and v1v2 = (u′ − v′)2 ≥ 0, so v1, v2 ≤ 0.
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A few comments are in order. Firstly, the polynomial in the denumerator factors as

v2 − 2(u′ + v′)v + (u′ − v′)2 = [u′ − (
√

v +
√

v′)2][u′ − (
√

v −
√

v′)2]

= [v′ − (
√

v +
√

u′)2][v′ − (
√

v −
√

u′)2] .
(3.30)

Therefore, the polynomial is manifestly positive in the integration regions above. The

polynomial vanishes on the integration boundaries at
√

v′ =
√

u′ +
√

v and
√

u′ =
√

v′ +√
v. Thus in fact the integrals as written are divergent at this boundary and need to be

regularized, since
´

0 x−3/2dx = ∞. The original definition (3.27) is equivalent to cutting off

the u′ integral in (3.28) at u′ = (
√

v′−√
v)2−ǫ, and throwing away the ǫ−1/2 divergent term

as ǫ → 0, and similarly for (3.29). The integrals in (3.28) and (3.29) should be interpreted

as being regularized in that fashion.

Equations (3.28) and (3.29) make the structure of double zeros of Bs
v[Gs

∆,J ] and

Bs
v[Gt

∆,J ] manifest since

dDiscs[Gs
∆,J(u′, v′)] = 2 sin2

[
π

2
(∆ − J − 2∆φ)

]
Gs

∆,J(u′, v′)

dDisct[G
t
∆,J(u′, v′)] = 2 sin2

[
π

2
(∆ − J − 2∆φ)

]
Gt

∆,J(u′, v′) .

(3.31)

To evaluate Bs
v[Gs

∆,J ], we can use (3.28). The integral converges as long as ∆ > 2∆φ+J and

diverges at u′ = 0 otherwise. Thus, the integration leads to a simple pole (∆−J −2∆φ)−1,

which combines with the double zero of sin2[π
2 (∆ − J − 2∆φ)] to make a simple zero, in

agreement with the expansion (3.24), which only contains βs
0,ℓ. Similarly, we use (3.29) to

evaluate Bs
v[Gt

∆,J ]. The argument is the same except in this case the factor u′ −v′ −v in the

numerator suppresses the divergence at ∆ = 2∆φ + J and we find double zeros also on the

n = 0 double-twist family, as expected. We stress that while (3.28) and (3.29) diverge on

conformal blocks with small ∆ < 2∆φ, the original definition (3.27) is finite on all physical

conformal blocks. Since (3.27) is analytic in ∆, we can compute the functional in general

by analytically continuing (3.28) and (3.29).

Expressions such as (3.28) and (3.29) will be very useful later to diagnose positivity of

the functional actions on conformal blocks. Positivity will follow from positivity of the inte-

grand. In the present case, positivity is obscured by the need to regularize the integrals, but

luckily this issue will go away when we deal with physical (non-superbounded) correlators.

3.4 The Polyakov condition follows from crossing symmetry

Reference [49] obtained interesting sum rules on OPE data by imposing the ‘Polyakov

condition’ in Mellin space. After quickly reviewing their argument, we will show that

the resulting sum rule is equivalent to the sum rules arising from applying Bs
v to the

crossing equation.

The argument of [49] starts by explaining that if G(z, z̄) is a nonpeturbative CFT

correlator, then we expect the Mellin amplitude M(s, t) to vanish at s = 2∆φ. Indeed, if

M(2∆φ, t) 6= 0, the Mellin representation (2.42) would cause the s-channel OPE of G(z, z̄)

to contain terms ∂∆Gs
2∆φ+ℓ,ℓ(z, z̄), due to the double pole of Γ(∆φ − s

2)2. Nonperturbative
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correlators can only contain genuine conformal blocks and not their ∆-derivatives, hence

M(2∆φ, t) = 0.24 The next step is to use this constraint on the l.h.s. of the Mellin-space

dispersion relation, as written in (2.53). This gives the following family of sum rules on

the OPE data,25 parametrized by t,

−
∑

O
aO P∆O,JO

(2∆φ, t) =
∑

O′

aO′ P∆O′ ,JO′ (t, 2∆φ) , (3.32)

where P∆,J(s, t) = Ps|u
∆,J(s, t) = Pt|u

∆,J(t, s) is the Polyakov-Regge block given by equa-

tion (2.49), which we reproduce here:

P∆,J(s, t) =
∞∑

m=0

Qm
∆,J(t + s − τ − 2m)

s − τ − 2m
. (3.33)

We claim that the sum rule (3.32) is nothing but the Mellin transform (with respect to v)

of the sum rules arising from Bs
v

∑

O
aO Bs

v[Gs
∆O,JO

] =
∑

O′

aO′ Bs
v[Gt

∆O′ ,JO′
] . (3.34)

Intuitively, it is clear that the Polyakov condition and Bs
v encode the same constraint.

Indeed, Bs
v is obtained by expanding the position-space dispersion relation around u = 0

and keeping the leading term proportional to log u. This term arises precisely from the

double-twist terms ∂∆Gs
2∆φ+ℓ,ℓ(z, z̄) in the Polyakov-Regge blocks.

To genuinely derive (3.32) from (3.34), let us define the functional B̂s
t as the Mellin

transform of functional Bs
v

B̂s
t = Γ

(
∆φ − t

2

)−2

Γ

(
t

2

)−2 ˆ ∞

0

dv

v
v∆φ− t

2 Bs
v . (3.35)

We claim that
B̂s

t [Gs
∆O,JO

] = P∆O,JO
(2∆φ, t)

B̂s
t [Gt

∆O′ ,JO′
] = −P∆O′ ,JO′ (t, 2∆φ) ,

(3.36)

i.e. the Polyakov condition (3.32) is precisely the action of the B̂s
t functional on the position-

space crossing equation.

Let us illustrate the equivalence (3.36) by comparing the structure of zeros on double

trace blocks. Recall from (2.46) that Qm
∆,J(t) has double zeros as a function of ∆ at

all double-twist dimensions ∆ = 2∆φ + 2n + J . It follows that for generic t, the term

P∆O′ ,JO′ (t, 2∆φ) on the r.h.s. of (3.32) has double zeros on all double-trace dimensions

∆O′ = 2∆φ + 2n + JO′ . On the other hand, the term P∆O,JO
(2∆φ, t) on the l.h.s. contains

factor 2∆φ − τO − 2m in the denominator. For m = 0, this extra pole combines with the

double zero of Qm
∆O,JO

in the numerator to give a simple zero on the n = 0 double-twist. In

24The full argument is more involved since s = 2∆φ is an essential singularity of M(s, t), but the conclusion

remains unchanged.
25We denote the t-channel primaries by O′ rather than P to avoid the clash of notation with P∆,J .
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other words, the functional which leads to (3.32) is a linear combination of βs
0,ℓ for ℓ ∈ N,

which is also what we got for Bs
v. We can apply the Mellin transform to (3.24) term by

term to find the expansion of B̂s
t in the dual basis

B̂s
t =

∞∑

ℓ=0

bℓ(t) βs
0,ℓ , (3.37)

where

bℓ(t) =
1

2
Γ

(
∆φ − t

2

)−2

Γ

(
t

2

)−2 ˆ ∞

0

dv

v
v∆φ− t

2 (1 − v)−∆φk∆φ+ℓ(1 − v)

=
Γ(2∆φ + 2ℓ)

2Γ(∆φ)2Γ(∆φ + ℓ)2 3F2

(
−ℓ, ∆φ − t

2
, ℓ + 2∆φ − 1; ∆φ, ∆φ; 1

)
.

(3.38)

It is now easy to check (3.36) to the second order around all double-trace dimensions

using (3.37). Indeed, we have [60]

Q0
∆,ℓ(t) = − sin2

[
π

2
(τ − 2∆φ)

]
2
(

τ
2

)2
ℓ

Γ
(

τ
2 − ∆φ + 1

)2
Γ(τ + 2ℓ)

π2Γ
(

τ
2 + ℓ

)4

× 3F2

(
−ℓ, ∆φ − t

2
, ℓ + τ − 1;

τ

2
,
τ

2
; 1

) (3.39)

and so ∂2
∆Q0

∆,ℓ(t)|∆=2∆φ+ℓ = −2bℓ(t), which implies

P∆,ℓ(2∆φ, t) = bℓ(t)(∆ − 2∆φ − ℓ) + O((∆ − 2∆φ − ℓ)2) , (3.40)

in agreement with (3.37). Since (3.32) and −B̂s
t have the same expansions into the func-

tional basis, they are identical.

We can now adress the puzzle stated at the head of this subsection. If [49] derived the

sum rule (3.32) by assuming that M(s, t) vanishes at s = 2∆φ, and we derived the sum

rule (3.34) using only crossing symmetry. How can the resulting sum rules be the same?

The resolution is that the sum rules (3.32) and (3.34) hold whether M(s, t) vanishes

at s = 2∆φ or not. This must be true because, as we have shown, the sum rules follow

by applying appropriate linear functionals to the position-space crossing equation, without

assuming anything about the OPE spectrum. This may sound surprising: wasn’t the

sum rule (3.32) derived precisely from assuming M(2∆φ, t) = 0? To understand what is

going on, let us derive the sum rule (3.32) in the case that M(2∆φ, t) does not vanish.

M(2∆φ, t) 6= 0 is equivalent to saying that the s-channel OPE contains some terms of the

form ∂∆Gs
2∆φ+ℓ,ℓ. So let us write the s-channel OPE of G as follows

G(z, z̄) =
∞∑

ℓ=0

cℓ ∂∆Gs
2∆φ+ℓ,ℓ(z, z̄) +

∑′

O
aO Gs

∆O,JO
(z, z̄) , (3.41)

where the primed sum runs over all OPE contributions other than ∂∆Gs
2∆φ+ℓ,ℓ(z, z̄). For

the Mellin representation (2.42) to correctly reproduce this OPE, we must have

M(2∆φ, t) =
∞∑

ℓ=0

cℓ

2
∂2

∆Q0
∆,ℓ(t)|∆=2∆φ+ℓ = −

∞∑

ℓ=0

cℓ bℓ(t) . (3.42)
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On the other hand, if we repeat the derivation of the Mellin-space dispersion relation of

section 2.5, we find

M(2∆φ, t) =
∑′

O
aO P∆O,JO

(2∆φ, t) +
∑

O′

aO′ P∆O′ ,JO′ (t, 2∆φ) , (3.43)

where the s-channel sum does not include the ∂∆Gs
2∆φ+ℓ,ℓ(z, z̄) contributions since those

are on the inside of the contour in (2.56). By equating the r.h.s. of (3.42) and (3.43), we

arrive at the sum rule

−
∞∑

ℓ=0

cℓ bℓ(t) −
∑′

O
aO P∆O,JO

(2∆φ, t) =
∑

O′

aO′ P∆O′ ,JO′ (t, 2∆φ) . (3.44)

But this is equivalent to the original sum rule (3.32) thanks to the simple zeros of

P∆O,JO
(2∆φ, t) on the leading-twist family, i.e. eq. (3.40). In summary, the real meaning of

the Polyakov condition is not the constraint M(2∆φ, t) = 0 but rather the equality of two

independent ways of evaluating M(2∆φ, t), one using the dispersion relation (eq. (3.43))

and the other directly the s-channel OPE ((3.42)). This is manifest in (3.22).

Note that a simple object with M(2∆φ, t) 6= 0 for which the sum rule (3.32) holds

is the Polyakov-Regge block of an individual ‘single-trace’ operator. In theories that are

close to mean field theory, the sum rule thus relates anomalous dimensions of n = 0

double-trace operators to the single-trace primaries that can be exchanged, which is one

way that the Polyakov conditions are often (correctly) used, see for example [51, 66, 67].

Of course, to interpret the coefficient of ∂∆Gs
2∆φ+ℓ,ℓ(z, z̄) as the anomalous dimension of a

double-trace operator, it is necessary to assume that the spectrum contains no unexpected

near-degenerate operators (or that we know the full set, in case we have a mixing matrix).

One may refer to this assumption as elastic unitarity.26 Our point here is that the sum

rule (3.32) holds regardless of that assumption.

A technical comment is in order. We did not in fact demonstrate that B̂s
t are valid

functionals, i.e. that they satisfy the swapping condition with OPE in superbounded cor-

relators. They are infinite combinations of the functionals Bs
v, which, as explained above,

are valid for v ∈ C\(−∞, 0]. This is made explicit by the position-space formula (3.27)

since the contours can be placed in a region where both s- and t-channel OPEs converge

exponentially fast.27 On the other hand, to define B̂s
t through (3.35), we need to integrate v

all the way to v = 0, i.e. arbitrarily close to the forbidden region v ≤ 0, which is potentially

problematic because it forces the C− × C+ contour to the boundary of the region of OPE

convergence. In the rest of this paper, we will mostly use the position-space functionals

such as Bs
v, and so will not need to worry about this issue. It would be interesting to study

the swappability of B̂t directly by using its representation as a position-space integral using

the methods of [68].28

26We thank the authors of [49] for suggesting this name.
27Except for z, z̄ → ∞, where the swapping condition holds thanks to superboundedness of G(z, z̄).
28See appendix C for the position-space representation of a close cousin of B̂s

t .
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3.5 General Mellin-space sum rules

The previous subsection discussed the simplest example of the Polyakov condition, associ-

ated with M(2∆φ, t). The full set of Polyakov conditions similarly comes from29

M(2∆φ + 2n, t) and ∂sM(2∆φ + 2n, t) , where n ∈ N . (3.45)

Thanks to the factor Γ(∆φ − s
2)2 in the Mellin representation, these quantities are directly

computable from the s-channel OPE. Indeed, M(2∆φ + 2n, t) only receives contributions

from terms ∂∆Gs
2∆φ+2m+ℓ,ℓ with m ≤ n. Similarly, ∂sM(2∆φ + 2n, t) only comes from

terms Gs
2∆φ+2m+ℓ,ℓ with m ≤ n and ∂∆Gs

2∆φ+2m+ℓ,ℓ with m < n.

Exactly as in the previous subsection, the corresponding Polyakov-Mellin sum rules

can be derived by equating the prediction of the s-channel OPE with the prediction of

the dispersion relation (2.53), for each of the above quantities. As in the above, we get

correct sum rules by setting M(2∆φ + 2n, t) = 0 and ∂sM(2∆φ + 2n, t) = 0 on the l.h.s. of

the dispersion relation, provided we include exact double-twist operators (if present in the

theory) on the r.h.s. . As manifest in (3.22), this is because the Ω sum rules automatically

subtract the Euclidean OPE. Specifically, to derive the sum rules corresponding to all

Polyakov conditions, we expand the generating functional Ω
t|u
z,z̄ at small u = zz̄ and keep

the coefficient of un or un log(u). This yields a functional whose Mellin transform with

respect to v gives the Polyakov-Mellin sum rule when applied to the crossing equation.

The main conclusion remains the same. All of the stated sum rules follow from crossing

symmetry and superboundedness alone, irrespective of the detailed structure of the double-

trace spectrum of the OPEs.

A general Mellin-space sum rule can be obtained by formally taking the two-variable

Mellin transform of the position-space equality between the Euclidean OPE and Polyakov-

Regge expansion, i.e. (3.22). The sum rule thus looks as follows

∑

O
aO

[
Gs

∆O,JO
(s, t) − P∆O,JO

(s, t)
]

=
∑

O′

aO′P∆O′ ,JO′ (t, s) , (3.46)

where Gs
∆O,JO

(s, t) stands for the Mellin transform of the s-channel conformal block.30 For

∆ generic, Gs
∆,J(s, t) has double zeros as a function of s at s = 2∆φ + 2n. The Polyakov

conditions are precisely the sum rule (3.46) expanded to the second order around each

s = 2∆φ + 2n. It would be interesting to study for what values of s and t (3.46) is a

convergent sum rule (i.e. comes from a swappable functional).

3.6 Symmetry under s ↔ t and t ↔ u

Finally, let us comment on situations where some of the external operators in 〈φ1φ2φ3φ4〉
are identical. If φ1 = φ3 or φ2 = φ4, the u-channel OPE contains only primaries of even

spin, and thus the correlator is s ↔ t symmetric

G(z, z̄) = G(1 − z, 1 − z̄) . (3.47)

29These are all the s-channel Polyakov conditions. Non s↔t symmetric correlators also have an indepen-

dent set of t-channel Polyakov conditions associated with M(s, 2∆φ + 2n) and ∂tM(s, 2∆φ + 2n).
30Explicit expressions for Gs

∆O,JO
(s, t) appear in [46, 60].
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In this case, the complete set of sum rules in the superbounded setting consists of αn,ℓ =

αs
n,ℓ − αt

n,ℓ and βn,ℓ = βs
n,ℓ − βt

n,ℓ. The sum rule coming from applying Bs
v to the s=t

crossing equation takes the form
∑

O
aO Bv[Gs

∆O,JO
] = 0 , (3.48)

where the functional Bv is defined by

Bv[G(w, w̄)] = Bs
v[G(w, w̄)] − Bs

v[G(1 − w, 1 − w̄)] . (3.49)

From (3.24), we find the expansion of Bv in the functional basis

Bv =
1

2

∞∑

ℓ=0

(1 − v)−∆φk∆φ+ℓ(1 − v) (βs
0,ℓ − βt

0,ℓ) . (3.50)

The contour representation of Bv follows from (3.27)

Bv[G] =

¨

C−×C+

dwdw̄

(2πi)2

2(w̄ − w)(u′ − v′)

[v2 − 2(u′ + v′)v + (u′ − v′)2]
3
2

G(w, w̄)

=

ˆ ∞

v
du′
ˆ (

√
u′−√

v)2

0
dv′ 2(u′ − v′)

π2 [v2 − 2(u′ + v′)v + (u′ − v′)2]
3
2

dDiscs[G(u′, v′)] ,

(3.51)

where we used the fact that the contour C− ×C+ is invariant under (w, w̄) 7→ (1−w̄, 1−w).

The vanishing of (3.48) is immediate on that contour due to symmetry reasons.

Now suppose that φ1 = φ2 or φ3 = φ4, so that the s-channel OPE contains only

primaries of even spin and thus the correlator is t ↔ u symmetric. The main difference

between this and the s ↔ t symmetric situation is that now the basis functionals αs
n,ℓ, βs

n,ℓ,

αt
n,ℓ, βt

n,ℓ do not satisfy any obvious relations.31 It may be tempting to throw out αs
n,ℓ and

βs
n,ℓ with odd ℓ since only even spin appears in the s-channel OPE. However, this would be

a mistake because αs
n,ℓ[G

s
∆,J ], βs

n,ℓ[G
s
∆,J ] are generally nonvanishing even if ℓ is odd and J

is even, and thus these functionals lead to nontrivial sum rules even if only even J appears

in the s-channel.

Finally, suppose φ1 = φ2 = φ3 = φ4 and the correlator is thus fully symmetric. From

the discussion so far, we know that in this case a complete set of functionals consists of

αn,ℓ and βn,ℓ with ℓ both even and odd. In particular, αn,ℓ and βn,ℓ with ℓ odd lead to sum

rules with double zeros on all double-traces which can appear in the OPE. At the level of

Bv, symmetry between the t- and u-channels is implemented as v ↔ 1/v, but Bv and B1/v

still lead to independent sum rules. We can project onto the odd-spin basis functionals

by defining

B̃v = v
∆φ

2 Bv − v− ∆φ
2 B1/v . (3.52)

B̃v has the expansion

B̃v =
∞∑

ℓ odd

v
∆φ

2 (1 − v)−∆φk∆φ+ℓ(1 − v) β0,ℓ , (3.53)

31In the s ↔ t-symmetric case, there are relations because we have αs
n,ℓ ∼ −αt

n,ℓ and βs
n,ℓ ∼ −βt

n,ℓ, where

two functionals are equivalent if they lead to identical sum rules for s ↔ t symmetric correlators.
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where we used

(1 − 1/v)−∆φk∆φ+ℓ(1 − 1/v) = (−1)ℓv∆φ(1 − v)−∆φk∆φ+ℓ(1 − v) . (3.54)

When we consider subtractions, the analogue of B̃v will be used to prove that mean field

theory saturates the upper bound on the twist gap. In Mellin space, t-u crossing symmetry

is the statement M(s, t) = M(s, 4∆φ − s − t). We can get the corresponding functionals by

antisymmetrizing (3.46) under t ↔ 4∆φ −s−t. The conformal blocks Gs
∆O,JO

(s, t) for even

JO then drop out from the l.h.s. . However, if we want to decompose the corresponding

functional into αn,ℓ and βn,ℓ, we also need to keep track of the action on odd-spin blocks,

for which the term Gs
∆O,JO

(s, t) does not drop out. In particular, this logic allows one

to decompose the twist gap functional of [49] (their eq. (139)) into αn,ℓ and βn,ℓ. One

finds that their functional contains αn,ℓ and βn,ℓ for all n and all odd ℓ, as well as β0,ℓ

with ℓ = 2, 4, 6, . . .. We omit the details. In section 6.2, we will exhibit a candidate for

a twist gap extremal functional valid for any d and ∆φ which only contains αn,ℓ and βn,ℓ

with n = 0.

Finally, we should mention that imposing symmetry between channels in the su-

perbounded case is rather unphysical. Indeed, we are not aware of any superbounded,

s ↔ t ↔ u-symmetric correlator. The main purpose of this subsection was to set the stage

for analogous constructions including subtractions in the following sections.

4 Subtractions

In the rest of this paper, we overcome the remaining obstacle allowing us to apply analytic

functionals to generic correlators: the fact that they are generally “only” bounded, rather

than superbounded, in the u-channel Regge limit. This will force us to introduce subtrac-

tions. For conciseness of notation, we will focus on four-point functions of identical scalars,

the generalization being straightforward.

The basic idea of subtraction is to replace a correlator with a related object that is

better-behaved in the Regge limit. For example, replacing the Mellin amplitude (or a

flat-space S-matrix) in the following way:

M(s, t) 7→ M(s, t)

(s − s1)(s − s2)
(4.1)

improves its fixed-u Regge behavior by 1/s2, i.e. two units of spin. Here s1,2 are arbitrary

subtraction points. Since M(s, t) grows at most linearly in a unitary CFT, the quantity on

the right-hand-side vanishes in the Regge limit and we can then apply dispersion relation

logic to it, leading to what one would call a twice-subtracted dispersion relation.

As summarized in figure 7, analogous constructions exist in the three spaces considered

in the paper. In position space, one can simply divide the correlator by powers of 1/u or

1/v, or, alternatively, one may divide the kernel of the analytic functionals in (2.28) by

powers of 1/(w − w̄)2:

G(z, z̄) 7→ G(z, z̄)

u
or As

n,ℓ(w, w̄) 7→
As

n,ℓ(w, w̄)

(w − w̄)2
. (4.2)

– 38 –



J
H
E
P
0
5
(
2
0
2
1
)
2
4
3

Position space

Double twists Mellin space

(z, z̄)

(n, ℓ) (s, t)

G(z,z̄)

upvk/2−p

H(w,w̄)
(w−w̄)k

M(s,u)
(s−s1)···(s−sk)

Figure 7. In each space a natural rescaling can be used to improve convergence in the u-channel

Regge limit. Each of the shown rescalings leads to a k-times subtracted dispersion relation. Ap-

proaches can be combined.

Either of these three substitutions converts a superbounded sum rule into one which is

valid in an arbitrary CFT. Every sum rule can be expanded in a unique way in the dual

basis consisting of αn,ℓ and βn,ℓ. Demanding that the sum rule is subtracted, i.e. valid in

arbitrary CFT, restricts the allowed linear combinations.

In this section we discuss respective advantages and interrelations between these ap-

proaches. We begin by introducing notation for the Regge behavior of a given functional.

4.1 Function spaces and u-channel growth

Let us denote the doubly cut plane where the cross-ratios live as R = C\((−∞, 0]∪ [1, ∞)).

It will be important to classify functions on R × R according to their growth (or decay)

in the u-channel Regge and OPE limits z, z̄ → ∞. We say that a function F (z, z̄) is

“bounded by spin-J” in the u-channel if there exist positive constants R and A such that

for all (z, z̄) ∈ R × R satisfying |z| > R, |z̄| > R, we have

|F (z, z̄)| ≤ A|zz̄| J−1
2 . (4.3)

This terminology comes from the fact that a u-channel block with spin-J , analytically

continued to the u-channel Regge limit, behaves according to (4.3). For reference, let us

recall that in Mellin space the u-channel Regge limit corresponds to s, t large with s + t

fixed. Spin-J behaviour translates to M(s, t) = O(|s|J) in this limit.

Let VJ be the space of holomorphic functions on R × R that are bounded by spin-J

in the u-channel.32 Let us describe some example elements of VJ for various J . Firstly,

a physical four-point function G is bounded in the u-channel Regge limit, so satisfies G ∈
V1. Individual s- and t-channel blocks satisfy Gs

∆,J , Gt
∆,J ∈ V d

2
−2∆φ+ǫ for any ǫ > 0.

In particular, in unitary theories, conformal blocks decay faster in the Regge limit than

physical four-point functions. Note that this fails for u-channel conformal blocks since we

have Gu
∆,J(z, z̄) = O(|z|J−1) in the u-channel Regge limit. U-channel exchange Witten

diagrams of spin J belong to VJ . On the other hand, s- and t-channel exchange diagrams

32The spaces V, U defined in [37] can be written in terms of VJ . The space of functions bounded by a

constant in the u-channel is V = V1. The space of Regge super-bounded functions is U = ∪J<0VJ .
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for a generic choice of the 3-point couplings belong to VJ−1. As we saw however, they can

always be improved by contact diagrams to belong to V−ǫ.

The space of functionals is dual to the space of functions. We say that a functional ω

has spin-J decay or spin-J convergence (in the u-channel) if its action is well-defined on

all functions in VJ−ǫ with ǫ > 0.

An important class of functionals (including all functionals considered in this paper)

can be obtained via a contour integral against a kernel H(w, w̄) in cross-ratio space

ω[G(w, w̄)] =

¨

C−×C+

dwdw̄

(2πi)2
H(w, w̄)G(w, w̄). (4.4)

where the contours C− and C+ wrap the left and right branch cuts respectively, see figure 4.

A functional of this form has spin-J convergence if it obeys the scaling

H(w, w̄) = O(w−J−1) as w, w̄ → ∞ with fixed w/w̄, (4.5)

and if, furthermore, it is a sufficiently nice function of w/w̄. In practice, we want the func-

tionals to be sufficiently nice that their action commutes with the s- and t-channel OPEs.33

The functionals αn,ℓ, βn,ℓ defined in [37] all have spin-0 decay in the u-channel. For

example, the kernel for β0,0 is

Hβ0,0(w, w̄) = −4(1 − w − w̄)

(w̄ − w)2
= O(w−1) with fixed w/w̄. (4.6)

This means that individual αn,ℓ, βn,ℓ do not give valid sum rules for generic (non-

superbounded) physical correlators of identical scalars. To obtain functionals which do

lead to valid sum rules, we need kernels that decay with spin-J where J > 1. In practice,

the “subtraction” constructions exemplified by (4.1)–(4.2) can only shift the spin by even

integers, and so our functionals will have spin-2 convergence: we need two subtractions,

but not more.

We will exhibit several classes of such functionals.

4.2 A simple positive sum rule

Independent of the subtraction logic, it is rather easy to write down examples of kernels

H that create spin-2 functionals. A particularly simple one is:

H(w, w̄) =
1 − w − w̄

ww̄(1 − w)(1 − w̄)
, (4.7)

which satisfies H(w, w̄) = H(w̄, w) and H(w, w̄) = −H(1 − w, 1 − w̄) and decays as spin-2

in the Regge limit. As we will now show, the corresponding functional is positive on blocks

with ∆ − J > 2∆φ! Furthermore, it exhibits double zeros on each double-twist above the

leading one, τ = 2∆φ + 2n with n > 0.

Some additional care is needed in deriving the sum rule coming from this functional.

In the u-channel lightcone limit w → ∞ with w̄ fixed, the kernel goes as H(w, w̄) ∼ w−1, in

33We will not attempt to characterize the conditions on the function of w/w̄ in full generality. Instead,

we will check that the integral (4.4) is well-defined in specific examples.

– 40 –



J
H
E
P
0
5
(
2
0
2
1
)
2
4
3

contrast with the αn,ℓ and βn,ℓ kernels which are all O(w−3). A physical correlator G(w, w̄)

is bounded by 1 in this limit, but this is not enough to make the w integral converge — it

goes as
´

dw/w. The solution is to subtract the u-channel identity and apply the functional

to G(w, w̄) − 1. If w and w̄ are in opposite half-planes, the limit w → ∞ with w̄ fixed is

controlled by the u-channel OPE and we have G(w, w̄) − 1 = O(|w|−τ0/2), where τ0 > 0

is the u-channel twist gap. If w and w̄ are in the same half-plane, we are dealing with

the light-cone limit on the second sheet. It is expected that this limit is controlled by the

usual OPE, analytically continued to the second sheet, for operators up to the first twist

accumulation point (see [69] for a heuristic argument). Under this technical assumption

we have G(w, w̄)−1 = O(|w|−τ0/2) also on the second sheet. We will make this assumption

in the rest of this paper.

To derive the sum rule, we thus start from the identity

¨

C−×C+

dwdw̄

(2πi)2

1 − w − w̄

ww̄(1 − w)(1 − w̄)
[G(w, w̄) − 1] = 0 , (4.8)

which follows since the integrand is antisymmetric under (w, w̄) 7→ (1 − w̄, 1 − w), while

the contour is invariant under it. This will give us a sum rule upon inserting the s-channel

OPE for G.

To study positivity properties of this sum rule, it will be useful to first deform the

contours to make manifest the double zeros on double-twist conformal blocks. We keep

this discussion general since it will apply to other functionals defined by similar contour

integrals. The idea is to wrap both w and w̄ contours tightly on the left branch cut, similar

to the relation between the Ω transform and dispersion relation in section 2.3. Let us

temporarily ignore the identity subtraction G − 1 and consider (4.4), which becomes:

ω[G(w, w̄)] =

¨ 0

−∞

dwdw̄

(2πi)2
Discw̄[Discw[H(w, w̄)G(w, w̄)]] . (4.9)

In general, both H(w, w̄) and G(w, w̄) can have a nonzero discontinuity. To evaluate the

discontinuity of a product, note that

Discw[f(w)g(w)] = f(w + iǫ)g(w + iǫ) − f(w − iǫ)g(w − iǫ)

= Discw[f(w)]g(w + iǫ) + f(w − iǫ)Discw[g(w)]

= Discw[f(w)]g(w − iǫ) + f(w + iǫ)Discw[g(w)] .

(4.10)

Taking the average of the last two lines, we get

Discw[f(w)g(w)] = Discw[f(w)] Pw[g(w)] + Pw[f(w)] Discw[g(w)] , (4.11)

where we defined

Pw[f(w)] =
f(w + iǫ) + f(w − iǫ)

2
. (4.12)
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The integral against Pw[f(w)] is the principal value distribution, hence the notation P.

Thus

ω[G(w, w̄)] =

¨ 0

−∞

dwdw̄

(2πi)2
{Pw̄[Pw[H(w, w̄)]] Discw̄[Discw[G(w, w̄)]]

+ Discw̄[Pw[H(w, w̄)]] Pw̄[Discw[G(w, w̄)]]

+ Pw̄[Discw[H(w, w̄)]] Discw̄[Pw[G(w, w̄)]]

+ Discw̄[Discw[H(w, w̄)]] Pw̄[Pw[G(w, w̄)]]} .

(4.13)

Note that we assumed that H(w, w̄) has no w̄-singularities in R when w is on the left-cut;

this is clearly the case for H in (4.7). The first line of (4.13) is what we’re looking for: the

double-discontinuity of G. To get functionals with double-zeros on s-channel double-twists,

we need all the other lines to cancel out.

Let us briefly recall how this happens for the αn,ℓ or βn,ℓ functionals exemplified

in (2.28) [37]. Consider the action on one block, G(w, w̄) 7→ Gs
∆,J(w, w̄). It turns out

that for sufficiently large ∆, the last three terms in the curly bracket do not contribute to

the integral. The reason is that they can be reduced to a total derivative, which evaluates

to a contact term at z = z̄ = 0, where the integrand vanishes for sufficiently large ∆. How

this works for the βn,ℓ functionals was explained in detail in section 5 of [37]. (4.13) then

reduces to

ω[Gs
∆,J ] =

sin2
[

π
2 (∆ − J − 2∆φ)

]

π2

¨ 0

−∞
dwdw̄ Pw̄[Pw[H(w, w̄)]] Gs

∆,J(w, w̄) , (4.14)

where the conformal block in the integrand is evaluated in Euclidean kinematics, meaning

Gs
∆,J(w ± iǫ, w̄ ∓ iǫ). The formula is valid as long as the integral converges, which is always

true for sufficiently large ∆. The analytic continuation in ∆ gives the correct answer for

general ∆. The formula makes manifest that ω[Gs
∆,J ] has double zeros on all double-

twist dimensions for which the integral converges. Simple zeros and non-zero values of

ω[Gs
∆,J ] on low-lying double traces arise when the integral develops a simple or double

pole, thus cancelling the double zero of the prefactor. Note that in the integration region,

Gs
∆,J(w, w̄) has definite sign (−1)J . The kernel of the αn,ℓ or βn,ℓ functionals, however,

have a distributional nature at w = w̄, which makes it hard to understand their positivity

properties.

We can now see why the functional from (4.7) enjoys simple positivity properties.

Consider its action on a block Gs
∆,J . Since the kernel has no discontinuity, we can im-

mediately discard the last three lines of (4.13). The first line is then the integral over a

positive-definite function for even J , QED. This argument holds for ∆ large enough that

the singularity at w̄ = 0 can be neglected. This is the case for ∆−J > 2∆φ. Thus we have

shown that the functional is positive for all operators above the double-twist threshold.

Let us return to the sum rule resulting from (4.8), now evaluated on the contour

C− ×C+. We need to pay attention to the u-channel identity subtraction in G − 1. On this

contour we can insert the s-channel OPE for G, and calculate the integral directly for the

−1 term. Due to cancellations between the upper and lower branches of the contour, the
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latter simply gives −1 from a residue at (w, w̄) = (0, 0). The resulting sum rule is thus:

∑

O
aO B2,1[Gs

∆O,JO
] = 1 , (4.15)

where

B2,1[Gs
∆,J ] =

¨

C−×C+

dwdw̄

(2πi)2

1 − w − w̄

ww̄(1 − w)(1 − w̄)
Gs

∆,J(w, w̄)

=
sin2

[
π
2 (∆ − J − 2∆φ)

]

π2

¨ 0

−∞
dwdw̄

1 − w − w̄

ww̄(1 − w)(1 − w̄)
Gs

∆,J(w, w̄) .

(4.16)

We denote this functional as B2,1 because it will turn out to be a special case of a family

introduced below. The sum on the left-hand of (4.15) side is over all primaries in the

s-channel OPE, including the identity. As we already explained, we have B2,1[Gs
∆,J ] ≥ 0

for ∆ > 2∆φ + J and even J . For ∆ < 2∆φ + J the integral can be evaluated by analytic

continuation in ∆, but need not be positive.

The second line of (4.16) also makes it manifest that B2,1[Gs
∆,J ] has double zeros on

all n > 0 double-twists. Therefore, B2,1 should be a linear combination of α0,ℓ and β0,ℓ

with ℓ = 0, 1, . . .. We can compute

B2,1[Gs
2∆φ+ℓ,ℓ] = δℓ,0 (4.17)

and
B2,1[∂∆Gs

2∆φ,0] = H2∆φ−1 − 2H∆φ−1

B2,1[∂∆Gs
2∆φ+ℓ,ℓ] = (−1)ℓ (ℓ − 1)!(2∆φ + ℓ)ℓ+1

2(∆φ)ℓ(∆φ)ℓ+1
for ℓ ≥ 1 ,

(4.18)

where Hz is the harmonic number. In other words,

B2,1 = α0,0 + (H2∆φ−1 − 2H∆φ−1)β0,0 +
∞∑

ℓ=1

(−1)ℓ (ℓ − 1)!(2∆φ + ℓ)ℓ+1

2(∆φ)ℓ(∆φ)ℓ+1
β0,ℓ . (4.19)

This expression is meaningful if both sides act on functions in the domain of the individual

β0,ℓ functionals, for example the conformal blocks Gs
∆,J(w, w̄).

A lesson which will prove to be more general is that while the individual αn,ℓ, βn,ℓ are

not positive, and only have spin-0 convergence, their infinite sums over ℓ can be positive and

enjoy spin-2 convergence. Subtracted dispersion relations will provide a natural mechanism

for producing such positive functionals, B2,1 being a special case.

4.3 Mellin-inspired subtracted dispersion relation

In (3.23), we introduced a family of sum rules Bv with spin-0 decay by evaluating the

dispersion relation (minus Euclidean OPE) in the limit u → 0. Convergence may be

improved by acting with the same kernel from (3.28) on a rescaled correlator G 7→ G/u,

which is the improvement scheme used in [28]. However, these sum rules are not sign-

definite due to a singular denominator entering with power 3/2.

We will now derive a distinct position-space dispersion relation, valid for any 〈φφφφ〉
correlator in a unitary theory, and which will enjoy nice positivity properties.
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It will be based on the Mellin form of the subtraction shown in (4.1): M(s, t) 7→
M(s,t)

(s−s1)(s−s2) . As in section 2.6, we will use Mellin space to motivate the formula, which

can then be checked by working directly in position space. The nonperturbative Mellin

amplitude is bounded by spin-1 growth in the u-channel Regge limit, meaning

M(s, 4∆φ − s − u) = O(|s|) as |s| → ∞ at fixed u . (4.20)

Therefore, the arc at infinity in the dispersion relation vanishes if we apply Cauchy’s integral

formula to
M(s, 4∆φ − s − u)

(s − s1)(s − s2)
, (4.21)

where s1,2 are arbitrary subtraction points. It is convenient to maintain s ↔ t symmetry

by choosing s2 = 4∆φ − u − s1. Furthermore, we will set s1 = 2∆φ, since this choice puts

the extra poles of (4.21) to double-twist locations and leads to simpler formulas in position

space. In other words, we will apply Cauchy’s formula to M(s, t)/((s − 2∆φ)(t − 2∆φ)).

Going through the same steps as in section 2.6, we find that the dispersion relation in

Mellin space leads to the following position-space kernel

K2(u, v; u′, v′) =
1

4u′v′

˚

ds dt ds′

(2πi)3

Γ(∆φ − s
2)2Γ(∆φ − t

2)2

2 sin2
[

π
2 (s′ − 2∆φ)

]
Γ(∆φ − s′

2 )2Γ(∆φ − t′

2 )2

× 1

s′ − s

u
s
2

−∆φv
t
2

−∆φ

u′ s′

2
−∆φv′ t′

2
−∆φ

× (∆φ − s
2)(∆φ − t

2)

(∆φ − s′

2 )(∆φ − t′

2 )
.

(4.22)

The superscript of K2(u, v; u′, v′) means it corresponds to the spin-2 subtracted dispersion

relation; the only difference is the last factor. Below, we will generalize it to multiple

subtractions. Quite remarkably, K2(u, v; u′, v′) admits a concise closed form, which is very

similar to the unsubtracted case (2.12):

K2(u, v; u′, v′) = K2;B(u, v; u′, v′) θ(
√

v′ >
√

u′ +
√

u +
√

v)

+ K2;C(u, v; u′) δ(
√

v′ −
√

u′ − √
u − √

v) ,
(4.23)

where

K2;B(u, v; u′, v′) = − 3

64π

v + v′ − u − u′

(uvu′v′)
3
4

(
uv

u′v′

) 1
2

x
5
2 2F1

(
3

2
,
5

2
; 2; 1 − x

)

K2;C(u, v; u′) = − 1

4π

1

(uvu′v′)
1
4 (

√
u +

√
u′)

(
uv

u′v′

) 1
2

.

(4.24)

The contact term can be found by explicitly evaluating the Mellin integrals, as in ap-

pendix A.3. We obtained the bulk term by computing a few terms in its series expansion

as in section 2.6 and matching with an educated guess consisting of powers of u, v times a

function of the magic variable x, given in (2.13). We then verified the result to high order

against the series expansion of (4.22).

The formulas in (4.24) look deceptively similar to their unsubtracted cousin in (2.12),

but there are deep differences. For one thing, the relative sign between the bulk and contact
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term has changed, and they are now both negative. Second, the behavior as x → 0 now

gives x
5
2 2F1

(
3
2 , 5

2 ; 2; 1 − x
)

∼ x1/2 as opposed to x3/2. As we will see, this will cure the

u → 0 sum rules from their distributional nature. These will be crucial for applications.

We can now forget where the kernel came from and prove that it does the job by

working directly in position space. We claim that the correct subtracted dispersion relation

corresponding to kernels (4.24) takes the form

G(z, z̄) = 1u + Gs(z, z̄) + Gt(z, z̄)

Gs(z, z̄) =

¨

du′dv′K2(u, v; u′, v′)dDiscs[G(w, w̄)]

Gt(z, z̄) =

¨

du′dv′K2(v, u; v′, u′)dDisct[G(w, w̄)] .

(4.25)

Note in particular the appearance of u-channel identity on the r.h.s. of the first line (nonzero

only if identity is exchanged in the u-channel). To derive (4.25), we write down the corre-

sponding primitive dispersion relation (2.24) with the C− × C+ contour and run the same

contour deformation argument as in section 2.3. Thus, in analogy with (2.20), (2.21), define

the generating functionals

Ω
s|u
2;z,z̄[F ] = θ(v − u)F(z, z̄) +

¨

C−×C+

dwdw̄

(2πi)2
π2(w̄ − w)K2;B(u, v; u′, v′)F(w, w̄)

Ω
t|u
2;z,z̄[F ] = θ(u − v)F(z, z̄) −

¨

C−×C+

dwdw̄

(2πi)2
π2(w̄ − w)K2;B(u, v; u′, v′)F(w, w̄) ,

(4.26)

and set

Gs(z, z̄) = Ω
s|u
2;z,z̄[G(w, w̄) − 1u]

Gt(z, z̄) = Ω
t|u
2;z,z̄[G(w, w̄) − 1u] .

(4.27)

It immediately follows from this definition that

G(z, z̄) = 1u + Gs(z, z̄) + Gt(z, z̄). (4.28)

The subtraction of the u-channel identity is necessary to make the integrals converge in

the lightcone limit w → ∞ with w̄ fixed. Indeed,

(w̄ − w)K2;B(u, v; u′, v′) ∼ w−1 as w → ∞ with fixed w̄ . (4.29)

Recall that we are assuming G(w, w̄) = 1 + O(w−τ0/2) for τ0 > 0 in the u-channel lightcone

limit on both sheets. The integrals in (4.26) are automatically convergent in the u-channel

Regge limit since

(w̄ − w)K2;B(u, v; u′, v′) ∼ w−3 as w → ∞ with fixed w̄/w . (4.30)

In other words, the Mellin subtraction enhances the decay of the position-space kernel by

w−2 in the u-channel Regge limit, i.e. by two units of spin, as expected from (4.21).
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Exactly as we saw for KB(u, v; u′, v′), also K2;B(u, v; u′, v′) has a simultaneous pole at

(w, w̄) = (z, z̄) with a unit residue

π2(w̄ − w)K2;B(u, v; u′, v′) ∼ 1

(w − z)(w̄ − z̄)
. (4.31)

The residue combines with the theta functions in (4.26) to ensure that Gs(z, z̄) and Gt(z, z̄)

are analytic in the cut plane.

Finally, we can deform the C− × C+ to the left or to the right to get the second and

third line of (4.25). Note that the subtracted u-channel identity does not appear since

dDiscs,t[1] = 0. All the steps are covered in detail in appendix A in the unsubtracted case.

4.4 The B2,v family of sum rules

As an application, we can derive the spin-2 subtracted version of the functional Bv of

section 3.3. We start from the subtracted dispersion relation (4.25). We expand G(z, z̄)

using the s-channel OPE, and dDiscs,t[G(w, w̄)] under the integral sign using respectively

the s-,t-channel OPE. The resulting sum rule is the same as what we get by applying the

crossing-antisymmetric functional

Ω2;z,z̄ = Ω
t|u
2;z,z̄ − Ω

s|u
2;1−z,1−z̄ . (4.32)

to the OPE of crossing-symmetric G(w, w̄) − 1u. The sum rules read

∑

O
aO Ω2;z,z̄[Gs

∆O,JO
] = 1u . (4.33)

We will define B2,v as Ω2;z,z̄ at the leading order as z → 0 with fixed z̄ = 1 − v.

B2,v = Ω2;z=0,z̄=1−v . (4.34)

Note that there are no logarithms at this order in the subtracted kernel. This definition

and the formula for the dispersion kernel (4.24) give us the explicit form

B2,v[F ] =

¨

C−×C+

dwdw̄

(2πi)2

(w̄ − w)(v′ − u′)

u′v′√v2 − 2(u′ + v′)v + (u′ − v′)2
F(w, w̄) . (4.35)

The difference from Bv is the extra factor u′v′ in the denominator, and also the power of

the quadratic polynomial: 1/2 compared to 3/2. Overall, these lead to a faster decay of

the functional in the Regge limit by a factor w−2 as required. It is easy to see that B2,v is

s-t antisymmetric when acting on functions satisfying F(w, w̄) = F(w̄, w)

B2,v[F(w, w̄)] = −B2,v[F(1 − w̄, 1 − w)] . (4.36)

Therefore, for any s-t symmetric correlator G(w, w̄), we have34

B2,v[G(w, w̄) − 1u] = 0. (4.37)

34For non s-t symmetrical correlators, the functionals Bs,t
2,v would be given by similar formula with v′−u′ 7→

v±(v′−u′)
2

, respectively, such that B2,v = Bs
2,v − Bt

2,v.
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The corresponding non-perturbative sum rule is derived by expanding G(w, w̄) − 1u using

the s-channel OPE, or equivalently as the z → 0 limit of (4.33)

∑

O
aO B2,v[Gs

∆O,JO
] = 1u , (4.38)

where B2,v[Gs
∆O,JO

] can be computed using the dDiscs form of (4.35):

B2,v[Gs
∆,J ] =

ˆ ∞

v
dv′
ˆ (

√
v′−√

v)2

0
du′ v′ − u′

π2u′v′√v2 − 2(u′ + v′)v + (u′ − v′)2
dDiscs[Gs

∆,J(u′, v′)] .

(4.39)

This integral will be useful for practical evaluation. It converges for all ∆ > 2∆φ +

J . Therefore, B2,v[Gs
∆,J ] has double zeros on all n > 0 double-twists. Note that the

factor multiplying dDiscs[Gs
∆,J(u′, v′)] is always positive inside the integration region. On

the other hand, dDiscs[Gs
∆,J(u′, v′)] is only guaranteed to be positive in the Lorentzian

lightcone, i.e. for v′ ≥ 1, u′ ≤ (
√

v′ − 1)2. If v ≥ 1, then the integration region is a subset

of the Lorentzian lightcone. Therefore, we can conclude

B2,v[Gs
∆,J ] ≥ 0 for ∆ ≥ 2∆φ + J , assuming v ≥ 1 . (4.40)

Note that for v = 1, the square root becomes simply (w̄ − w) and the B2,v functional

reduces precisely to the simple positive functional introduced in section 4.2.

It is instructive to understand the relation between the C− × C+ and C− × C− forms

of the sum rule in (4.35)–(4.39), in particular the appearance of dDisc. A physical inter-

pretation in terms of commutators of detectors is given in subsection 4.5 below.

We thus have an infinite family of functionals labelled by v, each of which is positive

above the double-twist threshold. To understand their physical implications, let us discuss

the expansion of B2,v in the basis functionals αn,ℓ, βn,ℓ. Since B2,v[Gs
∆,J ] has double zeros

on all n > 0 double-twists, all the n > 0 basis functionals are absent and we can write:

B2,v =
∞∑

ℓ=0

[aℓ(v) α0,ℓ + bℓ(v) β0,ℓ] . (4.41)

The coefficients can be computed as

aℓ(v) = B2,v[Gs
2∆φ+ℓ,ℓ] , bℓ(v) = B2,v[∂∆Gs

2∆φ+ℓ,ℓ] , (4.42)

starting from (4.35). The computation of aℓ(v) reduces to a residue at (w, w̄) = (0, 1 − v),

the result being

aℓ(v) = (1 − v)−∆φk∆φ+ℓ(1 − v) . (4.43)

A similar but more involved calculation gives

bℓ(v) =
1

2
(1 − v)ℓv∆φ+ℓ∂h[v−h

2F1(h, h; 2h; 1 − v)]h=∆φ+ℓ

−
ˆ ∞

v
dz log(z − v) ∂z[(1 − z)ℓ

2F1(∆φ + ℓ, ∆φ + ℓ; 2∆φ + 2ℓ; 1 − z)] .
(4.44)
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The aℓ(v) coefficients are trivial to diagonalize by doing a series expansion around v = 1.

The interpretation of the generating function (4.41) is thus that any α0,ℓ can be promoted

to a spin-2 convergent functional by adding a unique (infinite) combination of β0,ℓ’s. One

can check that bℓ(v) admits a more explicit presentation as a linear combination of aj(v)

with 0 ≤ j ≤ ℓ

bℓ(v) = (H2∆φ+2ℓ−1 + H2∆φ+2ℓ−2 − 2H∆φ+ℓ−1 − H2∆φ+ℓ−2)aℓ(v)

+
ℓ−1∑

j=0

(−1)j+ℓ ℓ! (2∆φ + ℓ − 1)ℓ+2

2(ℓ − j)j! (2∆φ + j + ℓ − 1)(2∆φ + j − 1)j(∆φ + j)ℓ−j(∆φ + j)ℓ−j+1
aj(v) .

(4.45)

We will soon provide a justification for this using Mellin space. Note that aℓ(v), bℓ(v) are

holomorphic in v ∈ C\(−∞, 0], as is B2,v[F ] for any F(w, w̄) in the domain of B2,v.

Let us check that the B2,v sum rule (4.38) holds for the 〈φφφφ〉 correlator in mean field

theory. The only contributing primaries are the identity and the double traces with n = 0

and ℓ even. We can evaluate B2,v[Gs
0,0] most easily by closing both contours in (4.35) to

the right, picking the residue at (w, w̄) = (v, 1)

B2,v[Gs
0,0] = −v−∆φ . (4.46)

Thus

∑

O
aO B2;v[Gs

∆O,JO
] = −v−∆φ +

∞∑

ℓ=0

[1 + (−1)ℓ]qMFT
0,ℓ (1 − v)−∆φk∆φ+ℓ(1 − v)

= −v−∆φ + v−∆φ + 1 = 1 ,

(4.47)

in agreement with the r.h.s. of (4.35).

We see from (4.43) that each α0,ℓ occurs with positive coefficient in B2,v for v < 1,

and with alternating signs proportional to (−1)ℓ for v > 1. By antisymmetrizing under the

switch of t- and u-channels, implemented by v ↔ 1/v with suitable powers of v, it is thus

possible to cancel the even-spin α’s:

B̃2,v ≡ v
∆φ

2 B2,v − v− ∆φ
2 B2,1/v . (4.48)

Since aℓ(v) = (−1)ℓv−∆φaℓ(1/v), it follows that B̃2,v vanishes on the n = 0, ℓ even double-

twist conformal blocks, while having double zeros on all n > 0 double traces. Relatedly,

the contribution of the s-channel identity to the B̃2,v sum rule precisely cancels the inho-

mogenous term coming from the subtracted u-channel identity, giving the sum rule

∑′

O
aO B̃2,v[Gs

∆O,JO
] = 0 , (4.49)

where the sum runs over all non-identity primaries in the OPE. Since it is a difference

between two terms, positivity properties of this sum rule are not obvious; they are studied

in section 6. The first derivative of B̃2,v with respect to v at v = 1, denoted B̃′
2,1, will turn

out to enjoy nice properties. We can see hints of this by using (4.44) to compute the slope
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of the single zero around ∆ = 2∆φ + ℓ. By series-expanding the hypergeometric functions

and integrating term-by-term (or using (4.45)), we obtain the following simple formula:

B̃′
2,1[Gs

2∆φ+ℓ+γ,ℓ] =
ℓ(ℓ − 2)!∆φ(2∆φ + ℓ − 1)ℓ+1

(2∆φ + ℓ)(∆φ)2
ℓ

γ + O(γ2) (ℓ ≥ 2 even) , (4.50)

whereas for ℓ = 0 the slope vanishes. Remarkably, the slopes in (4.50) are positive! Thus

the B̃′
2,1 functional has double zeros for each double twist with n > 0, and has a single

zero with positive slope on the leading twist (and only double zeros for spin 0). Positivity

above all double-twists is a desired property which would allow the functional to establish

the existence of spinning operators below the double-twist thresholds, as will be further

investigated below.35

Finally, it is instructive to transform the functionals B2,v to Mellin space. Let us define

B̂2,t = Γ

(
∆φ − t

2

)−2

Γ

(
t

2

)−2 ˆ ∞

0

dv

v
v∆φ− t

2 B2,v , (4.51)

which has the inverse

B2,v =

ˆ ∆φ+i∞

∆φ−i∞

dt

4πi
v

t
2

−∆φΓ

(
∆φ − t

2

)2

Γ

(
t

2

)2

B̂2,t . (4.52)

Equivalently, B̂2,t is the dispersion relation for M(s, t)/[(s − 2∆φ)(t − 2∆φ)] at the leading

order around s = 2∆φ, that is, it implements the sum rule that the following integral along

the arc at infinity vanishes:

0 =

˛

ds′

2πi

M(s′, t′)
(s′ − 2∆φ)2(t′ − 2∆φ)

(4.53)

with t′ = t + 2∆φ − s′. This identification leads to the following closed formula for the

action of B̂2,t on arbitrary conformal blocks

B̂2,t[G
s
∆,J ] =

∞∑

m=0

(
1

τ − t + 2m
+

1

τ − 2∆φ + 2m

)
2(t − 2∆φ)(−1)JQm

∆,J(2∆φ − t)

(τ − 2∆φ + 2m)(τ − t + 2m)
.

(4.54)

The fact that the sum rule adds up to the u-channel identity, clear from the position

space derivation of (4.38), is likely related to the order-of-limit issues elucidated in sec-

tion 5 of [49].

This formula combined with the Mellin representation (4.52) in principle gives an

independent way to compute the action of B2,v on arbitrary conformal blocks. The formula

makes it manifest that B̂2,t[G
s
∆,J ] has double zeros on the n > 0 double traces, so that we

can write

B̂2,t =
∞∑

ℓ=0

[
âℓ(t) α0,ℓ + b̂ℓ(t) β0,ℓ

]
. (4.55)

35This fact has long been known form the lightcone bootstrap, in particular convexity property [21], but

an extremal functional which shows this was not known until [49] found such functional for certain range

of ∆φ.
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âℓ(t), b̂ℓ(t) can be computed in two ways: either as the Mellin transform of aℓ(v), bℓ(v) or

by expanding (4.54) around τ = 2∆φ. The result

âℓ(t) =
Γ(2∆φ + 2ℓ)

Γ(∆φ)2Γ(∆φ + ℓ)2 3F2

(
−ℓ, ∆φ − t

2
, ℓ + 2∆φ − 1; ∆φ, ∆φ; 1

)

b̂ℓ(t) = (H2∆φ+2ℓ−1 + H2∆φ+2ℓ−2 − 2H∆φ+ℓ−1 − H2∆φ+ℓ−2)âℓ(t)

+
ℓ−1∑

j=0

(−1)j+ℓ ℓ! (2∆φ + ℓ − 1)ℓ+2

2(ℓ − j)j! (2∆φ + j + ℓ − 1)(2∆φ + j − 1)j(∆φ + j)ℓ−j(∆φ + j)ℓ−j+1
âj(t) .

(4.56)

Note that the Mellin transform of B̃2,v gives B̂2,t − B̂2,2∆φ−t. It is not clear what positivity

properties are enjoyed in the Mellin basis B̂2,t; it would be nice to clarify the range of t

for which the Mellin-space functionals are valid. Appendix C contains an explicit formula

for the position-space kernel defining B̂2,t. In this work we focus on the position-space

basis B2,v.

4.5 A physical interpretation of B2,v and subtracted superconvergence

In this section, we explain a simple physical interpretation of the B2,v sum rule: it is a

subtracted version of the “superconvergence” sum rules of [58]. Superconvergence is the

statement that light-transformed (i.e. null-integrated) operators on the same null plane

commute. For example, consider null integrated scalars φ1 and φ3 in states created by

two other scalars φ2 and φ4. We will refer to φ1 and φ3 as “detectors.” An example

superconvergence sum rule is

0 = 〈Ω|φ4(x4)

[
ˆ ∞

−∞
dx+φ1(x+, x− = 0, ~x1),

ˆ ∞

−∞
dx+φ3(x+, x− = 0, ~x3)

]
φ2(x2)|Ω〉

if J0 < −1.

(4.57)

Here, we have written the positions of φ1, φ3 in lightcone coordinates. The statement (4.57)

becomes a nontrivial constraint on CFT data when we evaluate 〈Ω|φ4φ1φ3φ2|Ω〉 using the

t-channel OPE and 〈Ω|φ4φ3φ1φ2|Ω〉 using the s-channel OPE.

Let us explain the condition J0 < −1. The naïve argument for (4.57) is that φ1

and φ3 are spacelike-separated everywhere along their integration contours, and thus they

commute. However, as explained in [58], one must also study the ends of the integra-

tion contours x+
1 , x+

3 → ±∞. The result is that (4.57) holds if 〈φ4φ1φ3φ2〉 decays in the

u-channel Regge limit with spin J0 < −1. This condition may be violated in physical

correlators, so it is not immediately obvious how (4.57) is useful for bounding physical

correlators.36 Nevertheless, by studying (4.57) in simpler kinematics we will see how it is

related to B2,v.

Let us choose a conformal frame such that φ1 and φ3 lie at future null infinity. Suppose

that x24 is future-pointing and timelike. We can use translations to set x4 = 0 and boosts

36The conditions for superconvergence sum rules of spinning operators are not as stringent, and they are

easily satisfied in physical correlators.
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and dilatations to set x = x24 = (1, 0, . . . , 0). Finally, suppose φ1 and φ3 lie at positions

~n1, ~n3 ∈ Sd−2 on the celestial sphere and are integrated over retarded time. In the language

of [31], we are studying

〈Ω|φ4(0)[L[φ1](∞, z1), L[φ3](∞, z3)]φ2(x)|Ω〉, (4.58)

where L is the light-transform, and z1 = (1, ~n1), z3 = (1, ~n3) are future-pointing null vec-

tors.

An event shape in conformal collider physics is defined by fourier-transforming (4.58)

with respect to x [70]. This would give a matrix element of [L[φ1], L[φ3]] in a momentum

eigenstate. Here, we do not pass to momentum space. Thus, (4.58) could be called a

“position-space event shape.”

It is convenient to compute (4.58) using embedding-space coordinates X =

(X+, X−, Xµ) ∈ R
d,2. The embedding-space positions of the points are

X1 = (0, −α1, z1), X2 = (1, x2, x),

X3 = (0, −α3, z3), X4 = (1, 0, 0), (4.59)

where we must integrate α1, α3 along the real line. Let us write

〈φ1φ2φ3φ4〉 =
A(u, v)

(x2
13x2

24)∆φ
. (4.60)

Then we have

〈Ω|φ4(0)L[φ1](∞, z1)L[φ3](∞, z3)φ2(x)|Ω〉 =
1

(x2)∆φz
∆φ

13

ˆ ∞

−∞
dα1

ˆ ∞

−∞
dα3A(u′, v′),

(4.61)

where

z13 = −2z1 · z3, u′ =
α3(2 − α1)

z13
, v′ =

α1(2 − α3)

z13
, (4.62)

and the phase of (x2)∆φ is defined by analytically continuing to timelike x using the ap-

propriate iǫ prescription. The α1 and α3 contours run along the real axis, below the φ2

lightcone singularity at α1, α3 = 2, and above the φ4 lightcone singularity at α1, α3 = 0,

see figure 8.

Changing variables to cross-ratio space, we find
ˆ ∞

−∞
dα1

ˆ ∞

−∞
dα3A(u′, v′) = z13

ˆ

du′dv′ A(u′, v′)√
(u′ − v′)2 − 2(u′ + v′)v + v2

, (4.63)

where the integration contour is the same as in (4.35) and

v =
4

z13
=

2

1 − ~n1 · ~n3
. (4.64)

Note that the Jacobian for the change of variables from α1, α3 to u′, v′ is precisely the

square-root factor in the kernel for B2,v. To compute the commutator [L[φ1], L[φ3]], we

must subtract the same expression with 1 ↔ 3.
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α1, α3

1, 3 ∼ 4

1, 3 ∼ 2

Figure 8. Contour prescriptions for the α1 and α3 integrals in (4.61). The singularities in α1 occur

when φ1 is lightlike to φ4 at α1 = 0, and when φ1 is lightlike to φ2 at α1 = 2. The singularities

in α3 are in the same places. There is no 1 ∼ 3 lightcone singularity because φ1 and φ3 are not

lightlike separated. The contours for α1, α3 in (4.61) are in black. The contours that give rise to

dDiscs and dDisct are shown in red and blue, as described in the main text.

Comparing the integrands (4.63) and (4.35), we see that the B2,v sum rule is (up to a

constant) a superconvergence sum rule for the subtracted correlator

A(u′, v′) =
(v′ − u′)

u′v′ F(u′, v′), (4.65)

where F is a physical correlation function. The case v = 1 corresponds to detectors that

are “back-to-back” ~n1 · ~n3 = −1, while v → ∞ corresponds to nearly coincident detectors

~n1 · ~n3 → 1.

Let us describe some checks of this result. Firstly, a scalar superconvergence sum rule

has spin J = −1 decay in the u-channel Regge limit [58, 71]. However, the factor

v′ − u′

u′v′ =
1 − w − w̄

ww̄(1 − w)(1 − w̄)
(4.66)

adds 3 to that decay, resulting in a kernel with spin-2 decay, which matches the decay of

B2,v. Furthermore, scalar superconvergence sum rules only get contributions from odd-spin

Regge trajectories in the u-channel, and are thus trivial if applied to s-t symmetric four-

point functions. However, the factor (4.66) is s-t antisymmetric, so that superconvergence

applied to A is nontrivial even if F is s-t symmetric.

The superconvergence point of view gives a simple way to understand the contour

manipulations in appendix A.2 that allow one to write B2,v and its cousins in terms of

dDisc. In α1, α3-space these manipulations are much simpler because there is no square-root

factor
√

(u′ − v′)2 − 2(u′ + v′)v + v2 in the denominator. They are the same manipulations

used to relate superconvergence sum rules to the dDisc in [58, 71], and also to prove the

generalized Lorentzian inversion formula in [31]. (It also appears to have been used in

a recent discussion of energy-energy correlators [72].) To obtain the s-channel dDisc, we

deform α1 into the upper half-plane so that it wraps the φ2 lightcone singularity (red curve

in figure 8), and we deform α3 into the lower half-plane so that it wraps the φ4 lightcone

singularity (blue curve). Similarly, to obtain the t-channel dDisc, we deform α1 into the

lower half-plane so that it wraps the φ4 lightcone singularity (blue curve), and we deform

α3 into the upper half-plane so that it wraps the φ2 lightcone singularity (red curve).
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A virtue of unsubtracted superconvergence sum rules is that, when they are well-

defined, they are directly related to the dDisc by the fact that

〈Ω|φ4L[φ1]L[φ3]φ2(0)|Ω〉 = 〈Ω|[φ4, L[φ1]][L[φ3], φ2]|Ω〉,

〈Ω|φ4L[φ3]L[φ1]φ2(0)|Ω〉 = 〈Ω|[φ4, L[φ3]][L[φ1], φ2]|Ω〉, (4.67)

since L[φi] kills the vacuum. In particular, double-twist operators in the s- and t-channels

do not contribute. The subtraction (4.65) almost preserves this property, while improving

the u-channel Regge decay. Because of the poles in (4.66), it gives a sum rule with support

only on the leading tower of double-twists.

We see that there is a hierarchy between the naive crossing equation and superconver-

gence sum rules, with general dispersive sum rules in between. Non-dispersive sum rules

come from the condition that spacelike-separated operators at fixed positions commute.

This is just the usual crossing equation. We can obtain dispersive sum rules by integrating

the operators along null lines weighted by meromorphic functions of α1, α3. Finally, when

the weighting functions are constant, we obtain superconvergence sum rules.

4.6 Finite sums of αn,ℓ and βn,ℓ

The B2,v functionals provide a generating function for spin-two convergent combinations

of α0,ℓ and β0,ℓ functionals. We now discuss an alternative method to produce spin-two

convergent combinations, now involving only βn,ℓ’s but for different twists n.

Recall from [37] that the kernels for βn,ℓ take the form

Bn,ℓ(w, w̄) =
pn,ℓ(w, w̄)

(w̄ − w)4n+2ℓ+2
, (4.68)

where pn,ℓ(w, w̄) is a polynomial of total degree 4n + 2ℓ + 1, meaning that it is a linear

combination of monomials waw̄b with a + b ≤ 4n + 2ℓ + 1. The polynomials satisfy

pn,ℓ(w, w̄) = pn,ℓ(w̄, w) , pn,ℓ(w, w̄) = −pn,ℓ(1 − w, 1 − w̄) . (4.69)

Conversely, suppose we are given a kernel

H(w, w̄) =
p(w, w̄)

(w̄ − w)2N+2
, (4.70)

where N ∈ Z≥0 and p(w, w̄) is a polynomial of total degree at most 2N +1, satisfying (4.69).

It follows from the analysis of section 5.4 of [37] that H(w, w̄) can be written as a finite

linear combination of Bn,ℓ(w, w̄) with 2n + ℓ ≤ 2N . In other words, the space of finite

linear combinations of βn,ℓ is the same as the space of kernels of the form (4.70) with the

stated constraints on p(w, w̄). Every finite linear combination of βn,ℓ decays at least with

spin zero.

How do we construct finite linear combinations of βn,ℓ which decay at least with spin

two and thus apply to general unitary correlators? The solution is to divide (4.70) by
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(w̄ − w)2. Indeed, every finite combination of βn,ℓ which decays at least with spin two has

a kernel of the form

H(w, w̄) =
p(w, w̄)

(w̄ − w)2N+4
, (4.71)

where p(w, w̄) satisfies (4.69) and has total degree at most 2N + 1. Conversely, every such

kernel gives rise to a combination of βn,ℓ with at least spin two decay. The simplest example

is the functional with kernel

H(w, w̄) =
1 − w − w̄

(w̄ − w)4
. (4.72)

One can check that it decomposes as

1

24
β1,0 − d + 2

12d
β0,2 − ∆φ

24
β0,1 −

∆3
φ(4∆φ − d)

48(2∆φ + 1)(4∆φ − d + 2)
β0,0 . (4.73)

Every functional with kernel of the form (4.71) gives rise to a nonperturbative sum rule

for the OPE of the 〈φφφφ〉 four-point function. To show this, we need to check that the

functional action can be swapped with the OPE. The swapping property holds if the tail

of the OPE, i.e. primaries O with ∆O > ∆0, give a vanishing contribution to the sum

rule as ∆0 → ∞. In practice, we only need to check that the functional gives a finite

answer when acting on any nonperturbative four-point function in a unitary theory. The

only potentially problematic region of the double integral (4.4) occurs when w and/or w̄

approach complex infinity. Unitarity guarantees that G(w, w̄) is bounded by a constant for

|w|, |w̄| > R. Thus we only need to check that the integral (4.4) contains no divergence at

infinity when we replace G(w, w̄) with a constant, which is indeed true.

Let us give an explicit basis for the space of finite combinations of βn,ℓ which decay

with spin two. Firstly, let us recall from [37] the definition of β̂i,j functionals: they are

dual to monomials ziz̄j , and can be recovered from the generating function

∑

n,ℓ

Gs
∆n,ℓ,ℓ(z, z̄)βn,ℓ =

∞∑

i,j=0

ziz̄j β̂i,j . (4.74)

Each β̂i,j is a finite combination of βn,ℓ and vice versa. Let us introduce the following

combinations of β̂i,j

νi,j = (i + 1)2 β̂i+1,j − (j + 1)2 β̂i,j+1 − (i − j)(i + j + 1) β̂i,j . (4.75)

νi,j is defined for i, j ≥ 0 and satisfies νi,j = −νj,i. We have found experimentally (and

checked extensively) that νi,j with 0 ≤ i < j are a basis for the space of finite combinations

of βn,ℓ which decay with spin two. For example, the functional with kernel (4.72) is ν0,1/24.

In order to have a complete basis for the space of functionals with spin-2 decay and

with double zeros on all but finitely many double-twists, it remains to incorporate the

α-type functionals into the picture. Recall that the kernels defining αn,ℓ functionals take

the form

An,ℓ(w, w̄) =
pn,ℓ(w, w̄)

2(w̄ − w)4n+2ℓ+2
log

[
ww̄(1 − w)(1 − w̄)

(w̄ − w)4

]
+

qn,ℓ(w, w̄)

(w̄ − w)4n+2ℓ+2
, (4.76)
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where pn,ℓ(w, w̄) is the same polynomial which appears in (4.70) and qn,ℓ(w, w̄) is another

polynomial of total degree bounded by 4n + 2ℓ + 1 satisfying the same constraints as

pn,ℓ(w, w̄), i.e. (4.69). The second term in (4.76) can be eliminated by adding a finite

linear combination of β functionals. This means that we can get a basis for functionals

with spin-two decay as follows. Let Ni,j(w, w̄) be the kernel defining νi,j . A simple basis

of functionals is

functional kernel

νi,j Ni,j(w, w̄)

µi,j Ni,j(w, w̄) log
[

ww̄(1−w)(1−w̄)
(w̄−w)4

]
with 0 ≤ i < j . (4.77)

The νi,j functionals are finite sums of β-type functionals with spin-two decay, while the

µi,j functionals are finite sums of α-type and β-type functionals with spin-two decay.

Interestingly, the functional B2,v=1 from (4.19) is not in the finite span of µ or ν-type

functionals. The loophole is that it is a sum of α0,0 and infinitely many β0,ℓ’s: this is what

enables the new 1/(ww̄) singularity to appear.

4.7 Polyakov-Regge expansion with subtraction

Just like in the unsubtracted case, we can use the subtracted dispersion relation (4.25)

to exhibit a variant of the Polyakov-Regge expansion which now applies to every 〈φφφφ〉
correlator in a unitary CFT. First, define the spin-2 subtracted Polyakov-Regge blocks

P
s|u
2;∆,J(z, z̄) =

¨

du′dv′K2(u, v; u′, v′)dDiscs[Gs
∆,J(w, w̄)]

P
t|u
2;∆,J(z, z̄) =

¨

du′dv′K2(v, u; v′, u′)dDisct[G
t
∆,J(w, w̄)] = P

s|u
2;∆,J(1 − z, 1 − z̄) .

(4.78)

Inserting the OPE into the dispersion relation (4.25) leads to the Polyakov-Regge expansion

G(z, z̄) − 1 =
∑

O
aO
[
P

s|u
2;∆O,JO

(z, z̄) + P
t|u
2;∆O,JO

(z, z̄)
]

. (4.79)

The subtracted Polyakov-Regge blocks admit a simple Mellin representation

P
s|u
2;∆,J(z, z̄) =

¨

ds dt

(4πi)2
Γ

(
∆φ − s

2

)2

Γ

(
∆φ − t

2

)2

Γ

(
−∆φ +

s + t

2

)2

× u
s
2

−∆φv
t
2

−∆φPs|u
2;∆,J(s, t) ,

(4.80)

where Ps|u
2;∆,J(s, t) is the subtracted Polyakov-Regge block in Mellin-space

Ps|u
2;∆,J(s, t) =

∞∑

m=0

(∆φ − s
2)(∆φ − t

2)

(∆φ − τ
2 − m)(∆φ − s+t−τ

2 + m)

Qm
∆,J(t + s − τ − 2m)

s − τ − 2m
. (4.81)

P
s|u
2;∆,J(z, z̄) is the unique single-valued function with the following properties
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1. dDiscs[P
s|u
2;∆,J ] = dDiscs[Gs

∆,J ], dDisct[P
s|u
2;∆,J ] = 0.

2. P
s|u
2;∆,J is bounded by spin J < 2 in the u-channel Regge limit.

3. The n = 0 double-twist terms ∂∆Gs
2∆φ+ℓ,ℓ, ∂∆Gt

2∆φ+ℓ,ℓ are absent in the s- and

t-channel OPEs.

Properties 1 and 2 are true for a general spin-2 subtraction, and property 3 is specific to

the choice of subtraction scheme made above. Property 3 is related to the observation

made below (4.44) that, starting from a given α0,ℓ functional, it is always possible to add

a (unique) combination of β0,ℓ’s to make it spin-2 convergent. The combination is found

by series-expanding (4.43) around v = 1 and diagonalizing in ℓ. Thus, in this subtraction

scheme, we lose the β0,ℓ’s but get to keep all the individual α0,ℓ’s (supplemented by an

infinite sum of β0,ℓ).

It is clear from these properties that the Polyakov-Regge block for s-channel identity

is simply the identity: P
s|u
2;0,0 = u−∆φ . For identical external operators, the Polyakov-Regge

expansion can thus be written as mean field theory plus non-gaussianity:

G(z, z̄) = 1 + u−∆φ + v−∆φ +
∑′

O
aO
[
P

s|u
2;∆O,JO

(z, z̄) + P
t|u
2;∆O,JO

(z, z̄)
]

, (4.82)

where the sum
∑′

runs over non-identity primaries. It is worth mentioning that the

bracket is negative definite for all τO > 2∆φ and z, z̄ Euclidean, due to the minus signs

in (4.24). In [73] it was observed numerically that non-gaussianity is negative-definite in

the critical 3d Ising model, in agreement with a theorem relying on the lattice formulation.

Here we expressed non-gaussianity as a sum over mostly negative-definite terms; it would

be interesting to further investigate the overall sign of the sum.

For general correlators, we can derive, as before, nonperturbative OPE sum rules by

replacing G(z, z̄) in (4.79) by its Euclidean OPE:

∑

O
aO
[
Gs

∆O,JO
(z, z̄) − P

s|u
2;∆O,JO

(z, z̄)
]

− 1 =
∑

O
aOP

t|u
2;∆O,JO

(z, z̄) , (4.83)

which is a rewriting of (4.33). Both sides of this equation have an expansion in Gs
2∆φ+2n+ℓ,ℓ

with n ≥ 0 and ∂∆Gs
2∆φ+2n+ℓ,ℓ with n ≥ 1. The expansion coefficients are nonperturbative

sum rules valid for the OPE in an arbitrary unitary correlator 〈φφφφ〉.
The leading coefficient as z → 0 is noting but B2,v. The higher coefficients have both

zn and zn log z components and (when expanded also around z̄ = 0) generate finite sums

of α0,ℓ, αn,ℓ and βn,ℓ’s, supplemented (in a unique way) by infinite sums of β0,ℓ to make

them spin-2 convergent.

As we explain next, there exist other convenient generating functions for the higher-

twist α’s and β’s, which enjoy better and better Regge convergence.

4.8 Multiple subtractions

It is easy to further improve convergence in the Regge limit by adding powers of s and t

to the denominator of Cauchy’s integral formula in Mellin space, (2.56). Given the (naive)
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vanishing of the Mellin amplitude on double-twist families, we find it natural to put the

zeros on the first few double-twist families, i.e. we apply Cauchy to the sequence:

M(s, t),
M(s, t)

(s − 2∆φ)(t − 2∆φ)
,

M(s, t)

(s − 2∆φ)(s − 2∆φ − 2)(t − 2∆φ)(t − 2∆φ − 2)
, . . .

(4.84)

to obtain dispersion relations with spin-0,2,4. . . convergence, respectively. The resulting

dispersion relation is then identical to (2.53) but with each residue rescaled by a factor

Ps|u
k;∆,J(s, t) =

∞∑

m=0

(∆φ − s
2) k

2
(∆φ − t

2) k
2

(∆φ − τ
2 − m) k

2
(∆φ − s+t−τ

2 + m) k
2

Qm
∆,J(t + s − τ − 2m)

s − τ − 2m
. (4.85)

This may be interpreted physically as a spin-k-subtracted Polyakov-Regge block (k must

be even). Its defining property is that double-twist ∂∆G∆ are absent for the first k/2

double-twist trajectories in both the s- and t-channels, due to the zeros on the numerator.

Quite remarkably, this subtraction leads to natural formulas in position space as well.

Repeating the steps leading to (2.66), we obtain a Mellin representation of the spin-k-

convergent kernel, where k is any positive even integer:

Kk(u, v; u′, v′) =
1

4u′v′

˚

ds dt ds′

(2πi)3

Γ(∆φ − s
2)2Γ(∆φ − t

2)2

2 sin2
[

π
2 (s′ − 2∆φ)

]
Γ(∆φ − s′

2 )2Γ(∆φ − t′

2 )2

× 1

s′ − s

u
s
2

−∆φv
t
2

−∆φ

u′ s′

2
−∆φv′ t′

2
−∆φ

×
(∆φ − s

2) k
2
(∆φ − t

2) k
2

(∆φ − s′

2 ) k
2
(∆φ − t′

2 ) k
2

.

(4.86)

This admits a concise closed form (obtained by the combination of educated guesswork

and extensive checks)

Kk(u, v; u′, v′) = Kk;B(u, v; u′, v′) θ(
√

v′ >
√

u′ +
√

u +
√

v)

+ Kk;C(u, v; u′) δ(
√

v′ −
√

u′ − √
u − √

v) ,
(4.87)

where

Kk;B(u, v; u′, v′) = (−1)
k
2 (k2 − 1)

v+v′−u−u′

64π(uvu′v′)
3
4

(
uv

u′v′

) k
4

x
k+3

2 2F1

(
k + 1

2
,
k + 3

2
; 2; 1 − x

)

Kk;C(u, v; u′) =
(−1)

k
2

4π(uvu′v′)
1
4 (

√
u +

√
u′)

(
uv

u′v′

) k
4

. (4.88)

The improved convergence in the Regge limit is due to the extra powers of 1/(u′v′). The

behavior in the lightcone limit w → ∞ remains the same for all k ≥ 2.

Analogously to the case k = 2 discussed in the preceding sections, the correct position-

space dispersion relation takes the form

G(z, z̄) = 1 + Gs(z, z̄) + Gt(z, z̄)

Gs(z, z̄) =

¨

du′dv′Kk(u, v; u′, v′)dDiscs[G(w, w̄)]

Gt(z, z̄) =

¨

du′dv′Kk(v, u; v′, u′)dDisct[G(w, w̄)] .

(4.89)
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It can be derived by applying the following identity between functionals

Ω
s|u
k;z,z̄ + Ω

t|u
k;z,z̄ = evz,z̄ (4.90)

to G(w, w̄) − 1, where

Ω
s|u
2;z,z̄[F ] = θ(v − u)F(z, z̄) +

¨

C−×C+

dwdw̄

(2πi)2
π2(w̄ − w)K2;B(u, v; u′, v′)F(w, w̄)

Ω
t|u
2;z,z̄[F ] = θ(u − v)F(z, z̄) −

¨

C−×C+

dwdw̄

(2πi)2
π2(w̄ − w)K2;B(u, v; u′, v′)F(w, w̄) .

(4.91)

The Polyakov-Regge sum rules are equivalent to applying the crossing-antisymmetric func-

tional Ωk;z,z̄ to the OPE of crossing-symmetric G(w, w̄) − 1, where

Ωk;z,z̄ = Ω
t|u
k;z,z̄ − Ω

s|u
k;1−z,1−z̄ . (4.92)

The sum rules read ∑

O
aO Ωk;z,z̄[Gs

∆O,JO
] = 1 . (4.93)

Ωk;z,z̄ admits an expansion in double-twist blocks Gs
2∆φ+2n+ℓ,ℓ(z, z̄) with n ≥ 0 and their

derivatives ∂∆Gs
2∆φ+2n+ℓ,ℓ(z, z̄) with n ≥ k/2. We will define the higher-k analogue of B2,v

by taking the leading term as z → 0

Bk,v = (−1)
k
2

−1Ωk;0,1−v . (4.94)

It follows Bk,v takes the form of the integral

Bk,v[F ] =
Γ
(

k
2

)2

Γ(k − 1)

¨

C−×C+

dwdw̄

(2πi)2

(w̄ − w)(v′ − u′)

(u′v′)
k
2 [v2 − 2(u′ + v′)v + (u′ − v′)2]

3−k
2

F(w, w̄) .

(4.95)

When F(w, w̄) is single-valued around the s-channel, e.g. for F(w, w̄) = Gs
∆,J(w, w̄), we

have the dDiscs-manifesting formula

Bk,v[F ] =
Γ
(

k
2

)2

π2Γ(k − 1)

ˆ ∞

v
dv′
ˆ (

√
v′−√

v)2

0
du′ (v′ − u′) dDiscs[F(u′, v′)]

(u′v′)
k
2 [v2 − 2(u′ + v′)v + (u′ − v′)2]

3−k
2

.

(4.96)

Finally, the sum rule corresponding to Bk,v follows by taking z → 0 in (4.93)

∑

O
aO Bk,v[Gs

∆O,JO
] = (−1)

k
2

−1 . (4.97)

The sum runs over all primaries in the OPE including identity and the sum rules holds for

all v ∈ C\(−∞, 0]. We note in passing that the νi,j functionals defined in (4.75) can be

obtained from the Bk,v functionals. Indeed, one can check that Bk,v + (−1)
k
2 B2,v contains

only βn,ℓ in its expansion in αn,ℓ and βn,ℓ. The νi,j functionals are finite combinations of

derivatives of Bk,v + (−1)
k
2 B2,v with respect to v at v = 1.
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A simple physical interpretation of the Bk,v sum rule can be given in Mellin space

following (4.53): they implement the vanishing of the following integral on an arc at infinity

0 =

˛

s′→∞

ds′

2πi

M(s′, t′)
(2∆φ−s′

2

)(2∆φ−s′

2

)
k/2

(2∆φ−t′

2

)
k/2

. (4.98)

Similar sum rules are widely used in S-matrix theory to study the implications of causal

and unitary short-distance physics on low-energy effective theories [74]. The Bk,v sum rules

will be analyzed in the context of holographic theories in a forthcoming publication [57].

5 Intermezzo: Regge boundedness versus full crossing symmetry

In this section we take stock of the formal developments described so far and tie a few

conceptual loose ends.

We begin in section 5.1 by showing how our functional formalism leads to a simple way

to classify AdS contact diagrams and derive their conformal block expansion. The idea is

to define contact diagrams as functions with vanishing dDisc, bounded by some power in

the Regge limit. The prescribed Regge behavior dictates that they must be annhilated

by certain finite linear combinations of the double-twist functionals; this is enough to

determine them completely.37 As a byproduct of this analysis, we find that for any n and

any even ℓ it is possible (generally in more than one way) to construct a “Regge improved”

version βimp
n,ℓ of the βn,ℓ functional, which decays with spin ℓ and differs from the ordinary

βn,ℓ by the addition of odd-spin basis functionals.

In section 5.2, we use this new class of functionals to explain the connection between

our formalism and the lightcone bootstrap [20, 21], concisely implemented by the LIF [29].

When acting on a four-point function of identical scalars φ, βimp
n,ℓ yields a convergent sum

rule that expresses the anomalous dimensions γn,ℓ of the double-twist family [φφ]n,ℓ in terms

of the conformal data of all the other operators. This is to be contrasted with applying the

LIF block by block in the cross channel: γn,ℓ is expressed as divergent series, asymptotic

for large ℓ. The two formulas are related: our dispersive sum rule agrees with the LIF

for the contribution to γn,ℓ from a cross channel primary of spin J < ℓ, but the two sums

are cut off differently for large J . We hope that our formalism will provide the basis for a

version of the lightcone bootstrap with rigorous error bars.

In section 5.3 we comment on the fully crossing symmetric Polyakov expansion put

forward in [51, 55, 66]. Our version of the Polyakov expansion (which we call the “Polyakov-

Regge expansion”) only maintains crossing symmetry between two channels (s and t),

while manifesting good Regge behavior in the third (the u channel). This asymmetry

is very natural from the viewpoint of dispersion relations, and we have proven the full

nonperturbative validity of the Polyakov-Regge expansion. There is currently no complete

proposal for an s-t-u symmetric version of the Polyakov expansion, because of intrinsic

ambiguities in the higher spin s-t-u symmetric Polyakov blocks. We will comment on some

of the difficulties in deriving such an expansion.

37Reference [45] used a different set of functionals, with finite support in twist rather than spin and twist,

to arrive at the same conclusions.
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5.1 AdS contact diagrams and finite sums of βn,ℓ

Our analysis has relied crucially on nonperturbative boundedness of correlators in the

Regge limit: in the terminology introduced in section 4.1, a nonperturbative correlator is

bounded by spin one (it belongs to VJ=1). Perturbative expansions of CFTs generally have

worse Regge behavior order by order in the expansion parameter. An important class of

examples are holographic CFTs, understood as asymptotic expansions around mean field

theory in inverse powers of the central charge c. At the leading non-trivial order, O(1/c),

tree level Witten exchange diagrams in AdS have Regge behavior controlled by the spin of

the exchanged bulk field. To wit, an u-channel exchange of spin J behaves as spin J in the

u-channel Regge limit. Thus the tree-level (u-channel) graviton exchange belongs to V2,

exhibiting a worse Regge behavior than the true nonperturbative bound. What’s more,

tree level contact diagrams diverge faster and faster in the Regge limit as one increases the

number of derivatives in the quartic vertex. If the theory has a large gap ∆gap, we should

be able write an effective field theory in AdS, with higher derivative vertices weighted by

inverse powers of ∆gap. Resumming this derivative expansion is expected to restore good

Regge behavior. A case is point is string theory, where ∆gap ∼ MstringRAdS, and the Regge

behavior of tree-level four-point amplitudes is strictly better than spin two.

We will now explain how one can use finite combinations of βn,ℓ functionals to recover

the classification and OPE decomposition of contact Witten diagrams [47, 61].38 For sim-

plicity, we will focus on the case of identical external scalars. In this case, the contact

diagrams are precisely the four-point functions G(z, z̄) which are s-t-u symmetric, have

vanishing double discontinuity and are bounded by some power in the Regge limit. We

take this as the definition of contact diagrams and attempt to classify them. We will not

assume that the OPE has finite support in spin – that will be a result rather than an

assumption in the ensuing analysis.

It follows from t-u symmetry and dDiscs[G(z, z̄)] = 0 that the OPE only contains

even-spin double-trace blocks and their derivatives

G(z, z̄) =
∑

ℓ=0,2,...

∞∑

n=0

[
an,ℓ Gs

∆n,ℓ,ℓ(z, z̄) + 2qMFT
n,ℓ γn,ℓ ∂∆Gs

∆n,ℓ,ℓ(z, z̄)
]

, (5.1)

where an,ℓ and γn,ℓ are the anomalous OPE coefficients and anomalous dimensions, and

qMFT
n,ℓ was defined in (3.7). Let us assume that G(z, z̄) is bounded by spin J in the Regge

limit (as defined in section 4.1). This means that any functional which decays with spin

> J will give a valid sum rule satisfied by an,ℓ and γn,ℓ. In particular, functionals which

are finite linear combinations of αn,ℓ and βn,ℓ that decay with spin > J lead to finite linear

relations among an,ℓ and γn,ℓ. Since each individual αn,ℓ and βn,ℓ decays with spin zero,

we immediately learn that there are no contact diagrams which are bounded by negative

spin in the Regge limit.

Next, consider finite combinations of βn,ℓ which decay with spin two. The simplest

example is (4.72) with decomposition (4.73). This example implies the following relation

38See also e.g. [75, 76] for some early references on the OPE decomposition of Witten diagrams and [67, 77–

82] for recent analyses.
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among anomalous dimensions in every contact diagram Regge-bounded by spin < 2,

γ̂1,0 − 2(d + 2)

d
γ̂0,2 −

∆3
φ(4∆φ − d)

2(2∆φ + 1)(4∆φ − d + 2)
γ̂0,0 = 0 , (5.2)

where we defined γ̂n,ℓ = qMFT
n,ℓ γn,ℓ. Note that βn,ℓ with odd ℓ appearing in the functional

drop out from the relation since the OPE only contains even spin. With some more work,

one can also check

− 1

2∆φ + 1
ν0,2 +

∆φ + 1

2(2∆φ + 1)
ν0,1 = β0,2 + [odd spin] , (5.3)

where here and in the following [odd spin] stands for an arbitrary linear combination of

βn,ℓ with ℓ odd. Since (5.3) decays with spin two, we learn that

γ̂0,2 = 0 and γ̂1,0 =
∆3

φ(4∆φ − d)

2(2∆φ + 1)(4∆φ − d + 2)
γ̂0,0 (5.4)

in all contact diagrams bounded by spin < 2. By exploring the space of finite combina-

tions of the νi,j functionals, we convinced ourselves that their span includes functionals of

the form

βn,0 − 4−n(∆φ)3
n(2∆φ − d

2)n

Γ(n + 1)2(∆φ + 1
2)n(−d

2 + n + 2∆φ)n

β0,0 + [odd spin] for all n > 0 (5.5)

and of the form

βn,ℓ + [odd spin] for all ℓ = 2, 4, . . . . (5.6)

However, it does not include functionals of the form

βn,0 + [odd spin] . (5.7)

This implies that the solution space for γ̂n,ℓ is one-dimensional, satisfying

γ̂n,ℓ = 0 for all ℓ = 2, 4, . . . and γ̂n,0 =
4−n(∆φ)3

n(2∆φ − d
2)n

Γ(n + 1)2(∆φ + 1
2)n(−d

2 + n + 2∆φ)n

γ̂0,0

(5.8)

These are precisely the relation satisfied by the Φ4 contact Witten diagram [61]. In other

words, we have recovered the well-known fact that this is the only contact diagram bounded

by spin < 2 in the Regge limit. Note that the fact that the anomalous dimensions are

supported in ℓ = 0 was a result rather than an assumption in our analysis. This fact is

obvious if we work in Mellin space.

Contact diagrams with derivatives are recovered by relaxing the Regge bound. To

constrain the anomalous dimensions in contact diagrams Regge-bounded by spin < J , we

consider linear combinations of βn,ℓ which decay with spin J . The decomposition of all

such functionals into βn,ℓ is a technically challenging exercise which we have not solved in

full generality. Nevertheless, by studying numerous examples we convinced ourselves that
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for all even J and any n, we can improve the Regge behavior of βn,J by adding a suitable

combination of odd spin β functionals,

βimp
n,J = βn,J + [odd spin] = [spin-J decay] , (5.9)

where [spin-J decay] is a finite combination of βn,ℓ which decays as spin J in the Regge

limit. This observation implies the (true) fact that γ̂n,J = 0 in all contact diagrams Regge-

bounded by spin < J . More generally, we expect that for any finite relation
∑

n,ℓ

bn,ℓ γ̂n,ℓ = 0 (5.10)

valid in all contact diagrams bounded by spin < J , there exists a functional [spin-J decay]

such that ∑

n,ℓ

bn,ℓ βn,ℓ = [spin-J decay] + [odd spin] . (5.11)

It would be interesting to prove this claim explicitly.

Finally, let us comment on functionals whose expansion in αn,ℓ and βn,ℓ is supported

in ℓ odd. We will call them odd-spin functionals. Odd-spin functionals do not lead to

constraints on contact diagrams but do lead to non-perturbative sum rules since they

are non-vanishing on generic even-spin conformal blocks. They are interesting because

they suppress the contribution of all approximate double-traces, allowing to reach into the

ultraviolet. An interesting question is if there exist odd-spin functionals which decay with

spin > 1. The answer is yes, the simplest example which decays with spin 2 being

2ν1,3−(∆φ+2)ν1,2−16ν0,4+(11∆φ+30)ν0,3−4(∆φ+2)2ν0,2+(∆φ+2)(∆φ+1)2ν0,1 . (5.12)

Indeed, one can check that this functional is a linear combination of

β0,5

β0,3 β1,3

β0,1 β1,1 β2,1 .

(5.13)

We have also found examples which decay with spin 4 and spin 6 and believe there are

infinitely many odd-spin functionals which decay with arbitrarily large fixed spin. It will be

important to understand the space and consequences of odd-spin functionals systematically.

We conclude with an interesting vanishing property of odd-spin functionals. Suppose ω is

an odd-spin functional which decays with spin J , where J is even. Then

ω[Gs
∆,J ′ ] = 0 for all even J ′ < J (ω odd-spin) , (5.14)

where ∆ is any dimension allowed by unitarity bounds. For example (5.12) identically

vanishes on scalar conformal blocks. The proof is as follows. Consider a fully crossing-

symmetric sum of exchange Witten diagrams

G(z, z̄) = W s
∆,J ′(z, z̄) + W t

∆,J ′(z, z̄) + W u
∆,J ′(z, z̄) . (5.15)

G(z, z̄) is bounded by spin J ′ in the Regge limit. Its s-channel OPE contains only the single-

trace block Gs
∆,J ′ together with even-spin double-trace contributions. Since ω decays with

J > J ′, it leads to a valid sum rule for G(z, z̄). Since it is an odd-spin functional, all the

double-trace contributions drop out and we find ω[Gs
∆,J ′ ] = 0.
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5.2 Relationship with the lightcone bootstrap

The logic of the previous subsection serves as a good preparation for understanding the

relationship between dispersive sum rules and the lightcone bootstrap [20, 21]. Again, let

us focus on the case of identical scalars φ in a nonperturbative CFT. The lightcone boot-

strap allows us to estimate anomalous dimensions and OPEs of the double-twist operators

[φφ]n,ℓ in terms of the data of primaries exchanged in the φ × φ OPE. Let us focus on the

anomalous dimensions

γn,ℓ = ∆[φφ]n,ℓ
− 2∆φ − ℓ . (5.16)

The lightcone bootstrap can be implemented using the Lorentzian inversion formula

(LIF) [29] as follows. We consider [φφ]n,ℓ exchanged in the s-channel. ∆[φφ]n,ℓ
is found

as the location of a simple pole of cs(∆, ℓ), which is in turn fixed by the LIF in terms of

dDisctG and dDiscuG (the latter two giving the same contribution in the case of identical

scalars). Now, if we apply the LIF block-by-block to the t/u-channel OPE, we find that

each primary contributes a double pole to cs(∆, ℓ) at τ = ∆ − ℓ = 2∆φ + 2n. The double

pole can be interpreted as a contribution to the anomalous dimension because

1

τ − 2∆φ − 2n − γn,ℓ
=

1

τ − 2∆φ − 2n
+

γn,ℓ

(τ − 2∆φ − 2n)2
+ [higher-order poles] . (5.17)

Summing the contributions of all primaries to γn,ℓ then leads to the formula

γn,ℓ
asymp.

=
∑

O
aO γn,ℓ(∆O, JO) , (5.18)

where γn,ℓ(∆O, JO) is the function giving the contribution of primary O through the LIF.

However, (5.18) is not an exact sum rule for γn,ℓ. In fact, the sum over O on the r.h.s.

does not even converge. The correct interpretation of (5.18) is that it gives the asymptotic

expansion of γn,ℓ as ℓ → ∞. Why does (5.18) fail to be a nonperturbative sum rule? The

reason is that the procedure of extracting the anomalous dimension from the LIF does not

commute with expanding dDisct,uG in conformal blocks. Indeed, individual blocks only

lead to double poles of cs(∆, ℓ) at ∆ = 2∆φ + 2n + ℓ, whereas their total sum leads to a

shifted simple pole at ∆ = 2∆φ + 2n + ℓ + γn,ℓ. As explained in [27], this means that the

OPE must contain infinite towers of multitwist operators which give rise to the higher-order

poles in (5.17). It is precisely the tail of the infinite sum over the spin of these multitwist

towers which makes the r.h.s. of (5.18) diverge.

Let us explain how these problems are avoided using the dispersive sum rules. In order

to study the anomalous dimension γn,ℓ, we will use a functional βimp
n,ℓ , which is βn,ℓ improved

by an odd-spin functional so that it decays with spin ℓ in the u-channel Regge limit,

βimp
n,ℓ = βn,ℓ + [odd spin] = [spin-ℓ decay] . (5.19)

As explained in the previous subsection, we expect that such an improvement always exists,

but is not unique. See (5.3) for an example of βimp
0,2 . The ambiguity of βimp

n,ℓ is parametrized

by all odd-spin functionals that decay with spin ℓ. When we apply βimp
n,ℓ to the 〈φφφφ〉
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crossing equation, we get the nonperturbative sum rule

a[φφ]n,ℓ
βimp

n,ℓ [Gs
[φφ]n,ℓ

] = −
∑

O6=[φφ]n,ℓ

aO βimp
n,ℓ [Gs

O] , (5.20)

where we separated the contribution of the double-twist operator [φφ]n,ℓ from the rest.

Since βimp
n,ℓ is a swappable functional, the sum on the r.h.s. of (5.20) converges. We also

know from (5.19) that

βimp
n,ℓ [Gs

[φφ]n,ℓ
] = γn,ℓ + O(γ2

n,ℓ) . (5.21)

We can thus think of (5.20) as an implicit equation determining γn,ℓ from the rest of the

CFT data. We can play the same game with the αn,ℓ functional, which combined with (5.20)

gives a coupled pair of nonlinear equations for a[φφ]n,ℓ
and γn,ℓ valid nonperturbatively.

When we are close to mean field theory, such as for ℓ ≫ 1 or in the presence of a small

coupling, we have ∣∣∣∣∣
a[φφ]n,ℓ

2qMFT
n,ℓ

− 1

∣∣∣∣∣ ≪ 1 and |γn,ℓ| ≪ 1 . (5.22)

Equation (5.20) can then be solved perturbatively, and gives at the leading order

γn,ℓ = −
∑

O6=[φφ]n,ℓ

aO
βimp

n,ℓ [Gs
∆O,JO

]

2qMFT
n,ℓ

+ O(γ2
n,ℓ) . (5.23)

Let us compare this equation for γn,ℓ with the result of the LIF (5.18). One obvious

difference is that the sum over O in (5.18) is divergent whereas the sum in (5.23) converges.

This is because the large-spin tail of the sum is cut off differently in the two cases, as we

explain below. This feature makes (5.20), (5.23) more suitable as a basis for rigorous

estimates of γn,ℓ with controlled errors, and for carrying out the analytic bootstrap to

higher orders.

On the other hand, the two formulas are closely related. In fact, the dispersive sum

rule (5.23) agrees with the LIF about the contribution of primaries O with small spin,

namely for JO < ℓ. In other words, we have

βimp
n,ℓ [Gs

∆O,JO
] = −2qMFT

n,ℓ γn,ℓ(∆O, JO) for all ∆O and all ℓ > JO . (5.24)

This is the best we could hope for because as already stated βimp
n,ℓ has an additive ambiguity

in the form of odd-spin functionals with spin-ℓ decay. Such modifications will in general

change the action of βimp
n,ℓ on Gs

∆,J with J ≥ ℓ. On the other hand, as proved at the end of

the previous subsection, the action of βimp
n,ℓ on Gs

∆,J with J < ℓ is unambiguous. Another

obvious reason why (5.18) disagrees with (5.23) for JO ≥ ℓ is that the JO = ℓ double trace

operator O = [φφ]n,ℓ itself appears on the r.h.s. of the former but not of the latter.

To see that (5.24) holds, we will relate both sides to the OPE of exchange Witten

diagrams. Consider the s-t-u symmetric correlator

G(z, z̄) = W s
∆,J(z, z̄) + W t

∆,J(z, z̄) + W u
∆,J(z, z̄) , (5.25)
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where W s,t,u
∆,J are exchange Witten diagrams (with an arbitrary choice of three-point cou-

plings). G(z, z̄) is bounded by spin J in the Regge limit. Its OPE takes the form

G = Gs
∆,J +

∞∑

n=0

∑

ℓ=0,2,...

[
q

(1)
n,ℓ(∆, J) Gs

2∆φ+2n+ℓ,ℓ + q
(2)
n,ℓ(∆, J) ∂∆Gs

2∆φ+2n+ℓ,ℓ

]
. (5.26)

Since βimp
n,ℓ decays with spin ℓ > J , we can apply it to the s-t crossing equation of G, which

leads to the sum rule

βimp
n,ℓ [Gs

∆,J ] =

−
∞∑

n′=0

∑

ℓ′=0,2,...

[
q

(1)
n′,ℓ′(∆, J) βimp

n,ℓ [Gs
2∆φ+2n′+ℓ′,ℓ′ ] + q

(2)
n′,ℓ′(∆, J) βimp

n,ℓ [∂∆Gs
2∆φ+2n′+ℓ′,ℓ′ ]

]
.

(5.27)

By definition of βimp
n,ℓ in (5.19), only the second term in the square bracket with n′ = n,

ℓ′ = ℓ survives, and we get

βimp
n,ℓ [Gs

∆,J ] = −q
(2)
n,ℓ(∆, J) for ℓ > J . (5.28)

Note that q
(2)
n,ℓ(∆, J) for ℓ > J are independent of the contact ambiguity in G.

In order to relate q
(2)
n,ℓ(∆, J) to the function γn,ℓ(∆, J) appearing in (5.18), we apply

the LIF to G.39 We have

dDisct[G] = dDisct[G
t
∆,J ] and dDiscu[G] = dDiscu[Gu

∆,J ] . (5.29)

Thus we are effectively inverting a single conformal block. Since G is bounded by spin

J , we can trust the LIF for cs(∆′, ℓ) in the range ℓ > J . It then follows by definition of

γn,ℓ(∆, J) that

q
(2)
n,ℓ(∆, J) = 2 qMFT

n,ℓ γn,ℓ(∆, J) for ℓ > J (5.30)

which concludes the proof of (5.24).

Note that for (5.28) to hold, it is crucial that [odd spin] on the r.h.s. of (5.19) is

nonzero. This is because βn,ℓ[G
s
∆,J ] computes minus the coefficient of ∂∆Gs

2∆φ+2n+ℓ,ℓ in

P
s|u
∆,J + P

t|u
∆,J , which differs from W s

∆,J + W t
∆,J + W u

∆,J at the very least by the absence of

W u
∆,J . Of course, we already know that [odd spin] in (5.19) is nonzero because βn,ℓ only

decays with spin 0 whereas βimp
n,ℓ decays with spin ℓ > 0.

The summary of this subsection is as follows. There exist dispersive sum rules (5.20)

which provide a rigorous, convergent alternative to the lightcone bootstrap (5.18). The

“contribution of a conformal block of spin JO to the anomalous dimension of a spin-ℓ

double-twist operator” is only well-defined if ℓ > JO, where it agrees with the Lorentzian

inverse of a single block. In particular, (5.20) correctly reproduces the asymptotic large-

ℓ tails in γn,ℓ coming from individual blocks. The contributions to (5.20) with JO ≥ ℓ

differ from the Lorentzian inverse of a single block. This is what cuts off the large-JO
tails in (5.20) differently from (5.18), ultimately leading to a convergent formula. The

39This argument appeared in [79], see also [67].
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contribution of all double-twist operators to the dispersive sum rule for γn,ℓ is suppressed

thanks to the double zeros of βimp
n,ℓ [Gs

∆O,JO
]. The ambiguity of the JO ≥ ℓ contributions is

parametrized by odd-spin functionals. These lead to sum rules having double zeros on all

double-trace operators. Further examples of βimp
0,ℓ will be discussed in section 6.3.

5.3 Comments on the s-t-u symmetric Polyakov bootstrap

A key feature of the Polyakov-Regge expansion is that it only maintains crossing symmetry

between two channels (s and t), while treating the third channel asymmetrically. Phys-

ical primaries in the s- and t-channel are present term-by-term in the expansion, while

physical primaries in the u-channel only arise from the infinite sum over Polyakov-Regge

blocks. In other words, taking the s- and t-channel OPE limits commutes with the sum

over Polyakov-Regge blocks, while taking the u-channel OPE limit does not. The latter

fact prefectly agrees with expectation from the u-channel Lorentzian inversion formula:

inverting individual s- and t-channel conformal blocks only produces poles in cu(∆, J) at

double-trace locations. Poles at locations of actual u-channel primaries arise by performing

the sum over s- and t-channel blocks first, and inverting afterwards.

In that light, it is interesting to examine the proposal for an s-t-u symmetric Polyakov

expansion, put forward in [51, 55, 66]. These references postulated the existence of s-t-u

symmetric Polyakov blocks P sym
∆,J (z, z̄). The main defining property of these hypotheti-

cal objects is that any crossing-symmetric four-point function can be expaded in them

as follows

G(z, z̄) =
∑

O
aO Gs

∆O,JO
(z, z̄) =

∑

O
aO P sym

∆O,JO
(z, z̄) . (5.31)

Furthermore, P sym
∆,J (z, z̄) were proposed to be a sum of exchange Witten diagrams in the

three channels

P sym
∆,J (z, z̄) = W s

∆,J(z, z̄) + W t
∆,J(z, z̄) + W u

∆,J(z, z̄) , (5.32)

where W s
∆,J(z, z̄) is normalized so that the single-trace block Gs

∆,J appears with a unit

coefficient

P sym
∆,J = Gs

∆,J +
∞∑

n=0

∑

ℓ=0,2,...

[
q

(1)
n,ℓ(∆, J) Gs

2∆φ+2n+ℓ,ℓ + q
(2)
n,ℓ(∆, J) ∂∆Gs

2∆φ+2n+ℓ,ℓ

]
. (5.33)

The validity of (5.31) would then be equivalent to the cancellation of the double-traces,

which amounts to the sum rules

∑

O
aO q

(1,2)
n,ℓ (∆O, JO) = 0 for n ∈ N, ℓ ∈ 2N . (5.34)

W s,t,u
∆,J (z, z̄) carry an ambiguity which leads to a contact-term ambiguity of P sym

∆,J (z, z̄)

supported in spins 0, 2, . . . , J − 2. However, a choice of this ambiguity which makes (5.31)

hold has not been found and thus (5.31) has remained speculative as a nonperturbative

statement about CFT correlators. On the other hand, the proposal has been successfully

used to compute some double-trace data of the 〈φφφφ〉 correlator in the Wilson-Fischer

fixed point up to O(ǫ3). This was possible because up to this order the only relevant
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Polyakov block exchanged on the r.h.s. of (5.31) is that of the φ2 operator, which is a

scalar and thus carries no contact ambiguity.

We are thus faced with the question whether (5.31) holds nonperturbatively for a suit-

able choice of P sym
∆,J (z, z̄). Let us explain why one can not arrive at (5.31) by symmetrizing

the Polyakov-Regge expansion over the three channels. Assuming G(z, z̄) is s-t-u symmetric

and superbounded, we have the rigorous expansions

G(z, z̄) =
∑

O
aO
[
P

s|u
∆O,JO

(z, z̄) + P
t|u
∆O,JO

(z, z̄)
]

=
∑

O
aO
[
P

t|s
∆O,JO

(z, z̄) + P
u|s
∆O,JO

(z, z̄)
]

=
∑

O
aO
[
P

u|t
∆O,JO

(z, z̄) + P
s|t
∆O,JO

(z, z̄)
]

.

(5.35)

We can then fix the contact ambiguity by setting W s
∆,J to be the average between the two

distinct s-channel Polyakov-Regge blocks

W s
∆,J =

P
s|u
∆,J + P

s|t
∆,J

2
, W t

∆,J =
P

t|s
∆,J + P

t|u
∆,J

2
, W u

∆,J =
P

u|t
∆,J + P

u|s
∆,J

2
, (5.36)

where the factor of a half is fixed by requiring that W s
∆,J contains Gs

∆,J with unit coefficient.

This definition ensures that W s,t,u
∆,J are exchange diagrams in their respective channels,

supplemented by a contact term. However, when we now take the average of the three

equations (5.35), we find

∑

O

[
W s

∆,J(z, z̄) + W t
∆,J(z, z̄) + W u

∆,J(z, z̄)
]

=
3

2
G(z, z̄) , (5.37)

which is in contradiction with (5.31). The additional G(z, z̄)/2 on the r.h.s. comes from the

primaries which do not appear in the individual terms but are correctly reconstructed by

the infinite sums in (5.35) (u-channel primaries on the first line of (5.35)). Since this is a

general feature of the Polyakov-Regge expansion, there is no simple way to fix this problem

and recover (5.31). This means that if (5.31) can be given nonperturbative meaning, its

conceptual starting point should be different from the dispersion relations used in the

present work.

We would also like to stress that the breaking of the t-u symmetry by the fixed-

u Polyakov-Regge expansion is an important feature, rather than a bug. In particular, it

implies that even in the case of identical external operators both even- and odd-spin double-

traces appear in the Polyakov-Regge blocks. As explained in section 3.6, the cancellation

of odd-spin double-traces leads to infinitely-many nontrivial sum-rules and as explained

in the previous two subsections, these “odd-spin” sum rules exist also in the subtracted

case. It appears challenging to derive such sum rules from the s-t-u symmetric Polyakov

expansion, where we only get (5.34) for even ℓ. One possibility compatible with everything

said so far is that (5.34) hold nonperturbatively for some choice of the contact ambiguity,

but simply do not give a complete set of sum rules (since they miss the odd-spin sum rules).

It is worth pointing out that the s-t-u symmetric Polyakov bootstrap has been rigorous
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derived in the context of 1D CFTs using the analytic functionals point of view in [40], which

served as another inspiration for the present work. In 1D, there is no spin and therefore

no mismatch due to the odd-spin sum rules, which is what allows us to seamlessly connect

the functional basis with the s-t-u symmetric Polyakov sum rules in 1D.

Note added: since the original publication of this work, these issues have been clarified

in references [83, 84]. Their starting point is a dispersion relation [85] which manifests

the full s-t-u symmetry. Expanding the dispersion using the OPE leads to an expansion

of the correlator in terms of crossing-symmetric objects. These objects only differ from a

crossing-symmetric sum of exchange Witten diagrams by the presence of certain unphysical

singularities in Mellin space. Demanding that these singularities are absent gives rise to

the odd-spin sum rules. Demanding that the resulting expansion agrees with the usual

OPE gives rise to the usual ‘Polyakov’ sum rules associated with even-spin double traces.

6 Extremal functionals for mean field theory

In this section we apply our functionals to the spin-ℓ gap-maximization problem: for a fixed

external scaling dimension ∆φ, find a unitary solution to crossing where the lightest spin-ℓ

operator has the largest possible scaling dimension. Throughout, we assume that G is an

s-t-u symmetric correlator.

The maximal value for the twist gap is easily found from large-spin perturbation theory:

since infinitely many operators must have twists accumulating to 2∆φ, by negativity of their

anomalous dimensions, the twist gap cannot exceed 2∆φ [20, 21]. This value is saturated

by mean field theory. It is natural to expect that, if a twist gap of 2∆φ is imposed for any

particular spin ℓ ≥ 2, the only solution to crossing is the mean field theory correlator.

This can be argued directly using the Lorentzian inversion formula. The LIF predicts

the existence of double-twist operators of twist τ0,ℓ = 2∆φ + γ0,ℓ and ℓ ≥ 2. Furthermore,

the contribution of each crossed-channel primary to anomalous dimensions γ0,ℓ is nonpos-

itive, so γ0,ℓ is nonpositive. It can only vanish if dDisc of the correlator is saturated by

identity exchange, meaning that the spectrum contains only identity and double-twists.

The only such unitary correlator is mean field theory. A drawback of this argument is that

it does not lead to a rigorous sum rule for γ0,ℓ with controlled errors when the theory is

not mean field theory. In fact, simply summing over all crossed-channel contributions to

γ0,ℓ predicted by the LIF gives infinity [27, 29, 86], see also section 5.2.

For this reason, it would be preferable to prove the result using an extremal functional.

By the virtue of being a nonperturbative sum rule, such a functional would provide rigorous

estimates for γ0,J with controlled errors. If such a functional exists, it must have the

following properties

1. It is nonnegative on all conformal blocks with spin ℓ and τ ≥ 2∆φ, and on all

conformal blocks with spin 6= ℓ and τ allowed by unitarity bounds.

2. It has double zeros on all double-twist conformal blocks G2∆φ+2n+J,J with the excep-

tion of n = 0, J = ℓ, where it has a simple zero.
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We expect that such functional exists for general d, ∆φ and ℓ ≥ 2. Numerical evidence

for this claim in d = 3 appears in section 5.4 of [87]. In the language of our section 5.2,

this functional is precisely βimp
0,ℓ of equation (5.19), provided we can choose the odd-spin

ambiguity to satisfy Property 1 above.

The playground in this section will be the B̃2,v family of sum rules introduced in (4.48):

∑′

O
aOB̃2,v[Gs

∆O,JO
] = 0 , (6.1)

where the prime indicates that the sum runs over non-identity operators. We explain in

section 6.2 that the first derivative of B̃2,v with respect to v at v = 1, denoted B̃′
2,1 satisfies

a weaker version of Properties 1 and 2: for any d and ∆φ, this sum rule enjoys double

zeros on all double-twists, except for simple zeros on all n = 0 operators with ℓ ≥ 2.

Furthermore, we will show numerically that B̃′
2,1 is nonnegative above τ = 2∆φ for ℓ ≥ 2

and above the unitarity bound for ℓ = 0. This suffices to show that the only correlator

with no spinning operator (of any spin) below twist gap 2∆φ is mean-field-theory. This

is refined in subsection 6.3, where we construct combinations of B̃2,v’s, called Φℓ, which

have a unique single zero, at spin-ℓ. We show numerically that Φ2 satisfies Property 1 for

a range of ∆φ.

Since the results of this section may be of broader interest, we attempt to make it self-

contained and summarize all definitions in 6.1. The section concludes with a discussion of

possible application to the numerical bootstrap.

6.1 Self-contained recap and definitions of sum rules

The B2,v family of sum rules, for any real v > 0, can be defined by the following integral:

B2,v[F ] =

¨

C−×C+

dwdw̄

(2πi)2

(w̄ − w)(v′ − u′)

u′v′√v2 − 2(u′ + v′)v + (u′ − v′)2
F(w, w̄) . (6.2)

where the contour is depicted in figure 4, and u′ = ww̄, v′ = (1 − w)(1 − w̄). It is manifest

by symmetry that the integral vanishes if F is any s ↔ t crossing-symmetric function.

Specifically, the integrand is odd under the transformation w ↔ 1 − w̄, which preserves the

contour. Another important feature is spin-2 decay in the Regge limit w, w̄ → ∞, where

the integral scales as d2w
w3 . This ensures the integral actually converges for any bounded

F (see section 4.1); recall that correlators in any unitary CFT satisfy this condition. To

avoid a logarithmic divergence in the collinear limit w → ∞, however, we must subtract

the u-channel identity. Our sum rules thus originate from the following identity, valid for

any physical crossing-symmetric correlator:

0 = B2,v[G − 1] . (6.3)

G −1 can be expanded using the s-channel conformal blocks. The sum over said blocks can

be swapped with the action of B2,v. The tail of the sum over conformal blocks does not

spoil swappability since the integral in (6.2) converges for any bounded F .

Let us start by studying the expansion around v = 1:

B2,v = B2,1 + (v − 1)B′
2,1 + . . . (6.4)
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One may obtain corresponding sum rules by expanding (6.2) under the integration sign:

B2,1[F ] =

¨

C−×C+

dwdw̄

(2πi)2

1 − w − w̄

ww̄(1 − w)(1 − w̄)
F(w, w̄) ,

B′
2,1[F ] =

¨

C−×C+

dwdw̄

(2πi)2

1 − w − w̄

ww̄(1 − w)(1 − w̄)

2ww̄ − w − w̄

(w̄ − w)2
F(w, w̄) ,

(6.5)

and so on. Again it is easy to see directly that these converge and annihilate G − 1 by

symmetry; it is also straightforward to write down generalizations.40

A crucial fact, not evident from the above definition, is that all sum rules stemming

from B2,v enjoy double-zeros on n > 0 double-twists. This is shown by deforming the

contour to a new contour C− ×C− where both variables wrap the left-cut. In principle this

produces multiple combinations of principal values and discontinuities of the kernel and

correlator (see (4.13)), however, thanks to special properties of the square root and overall

antisymmetry in w̄ ↔ w, the result involves a clean dDisc:

B2,v[Gs
∆O,JO

] =

ˆ ∞

v
dv′
ˆ (

√
v′−√

v)2

0
du′ v′ − u′

π2u′v′√v2 − 2(u′ + v′)v + (u′ − v′)2
dDiscs[Gs

∆O,JO
] .

(6.6)

The dDisc operation produces the desired double zeros, see (2.7).

In this form, we can now can separate the u-channel identity and substitute in the

s-channel OPE for G, integrating term by term. As shown shortly, the u- and s- channel

identities integrate to 1 and −v−∆φ respectively on this contour, hence the identity (6.3)

may be written as: ∑′

O
aOB2,v[Gs

∆O,JO
] = 1 + v−∆φ . (6.7)

We have only used s ↔ t symmetry so far. The idea of the B̃2,v sum rules is to further use

t ↔ u symmetry, by antisymmetrizing:

B̃2,v ≡ v
∆φ

2 B2,v − v− ∆φ
2 B2,1/v . (6.8)

This cancels the right-hand-side and gives the sum rule advertised above in (6.1). There

would be many other ways to achieve the same cancellation, but the B̃ construct is unique

in that the resulting functional vanishes on all double-twists. This follows from the action

on n = 0 double-twists recorded in (4.43):

B2,v[Gs
2∆φ+ℓ,ℓ] = (1 − v)−∆φk∆φ+ℓ(1 − v) = Gs

2∆φ+ℓ,ℓ(u = 0, v) . (6.9)

Loosely, the reason why (6.6) does not vanish on n = 0 double-twists, despite the double

zero from dDisc, is that the zeros get canceled by divergences which effectively localize

the integral to u′ = 0 and v′ = v. For any correlator with t ↔ u symmetry, only even

spins ℓ contribute to the s-channel OPE and the combination B̃2,v vanishes thanks to the

40For example, the sum rule with kernel dwdw̄
(2πi)2(w̄−w)2q

(
1

u′av′b − 1
u′bv′a

)
converges in the Regge limit

provided 2q + 2a + 2b > 1 and is collinear-safe (identity does not need to be subtracted) if 2q + a + b > 1.
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Figure 9. Action of the functional B̃′
2,1 on conformal blocks Gs

∆,J for d = 2, ∆φ = 0.1. The

function being plotted is (J + 1)− 1

2 (τ + 1)24−∆ B̃′
2,1[Gs

∆,J ]. Dashed lines show the asymptotic

formula (D.18) for J = 0, 2, 20.

symmetries of the block in (6.9). Thus, all B̃2,v have double zeros on double-twists with

n > 0, and at least single zeros on even-spin n = 0 double-twists.

The result for u-channel identity (which is a sum of s-channel double-twists) quoted

above (6.7) follows from (6.9), and the similar claim for s-channel identity follows using

that B2,v[u−∆φ ] = −B2,v[v−∆φ ].

The integral representation in (6.6) converges when ∆ > 2∆φ +J , and can be correctly

computed outside that range by analytic continuation. In appendices D and E we detail

two concrete methods to numerically compute the B2,v sum rules, one based on direct

numerical integration of dDisc (both at generic v and for series expanding around v = 1),

and the other based on weight-shifting operators. Another method is based on evaluating

the Mellin space sum in (4.54); all methods agree.

6.2 Twist-gap bound: B̃′
2,1 is positive above 2∆φ

We report here on the positivity properties of B̃′
2,1. While B2,v (for v ≥ 1) is trivially

positive above all double-twists, positivity of B̃′
2,1 is less obvious since it is a difference

between two terms. We already showed in (4.50) that B̃′
2,1 has single zeros with positive

slope on each n = 0 double twists, and double zeros on all n > 0 double-twists. This

suggests positivity for ∆ > 2∆φ + J generally, which we now demonstrate numerically.

Since higher-dimensional conformal blocks (above the unitarity bound) are positive

sums of two-dimensional blocks, it suffices to show positivity in d = 2 to establish it in any

(integer) spacetime dimension.

The functional action for ∆φ = 0.1 in d = 2 is shown in figure 9. The spin-0 action

is clearly positive for all τ ≥ 0, while the higher-spin functionals exhibit the expected

sign-change at τ = 2∆φ and are positive above that. We explored a range of values of
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Figure 10. Similar content to figure 9 but for ∆φ = 2: the functional B̃′
2,1 is again positive for

τ > 2∆φ. The function being plotted is (∆ + J)4(τ + 1)74−∆−8 B̃′
2,1[Gs

∆,J ].

∆φ between 0 and 3 and always found qualitatively similar plots. A second example, with

∆φ = 2, is shown in figure 10.

To convince ourselves that the functional remains positive at larger values of ∆, we

computed its asymptotic behavior in appendix D.2. For generic v the functional is given

as (D.18), which we recopy here:

lim
∆−J≫1

B2,v[G
s(d=2)
∆,J ] =

2

C
∆φ

∆,J

Γ(p)4

Γ(2p)

ˆ tmax

0

dt(1 − t)

t
√

(1 + t)2 − 4tv

1 + t√
t

t
p
2

×
[
ξp

2F1(p, p, 2p, 1 − tξ2) + (ξ 7→ ξ−1)
] (6.10)

with p = 2∆φ + 1 and ξ = ∆−J
∆+J , and the normalization factor C

∆φ

∆,J is in (D.16). Special-

izations relevant to the v → 1 limit can be found below (D.18).

As is visible in figure 9, we find that the asymptotic behavior (dashed curves) is rapidly

approached with increasing twist; the error is found to be at the percent level already at

twist 20. We are therefore confident that the plots indicate the genuine behavior of the

functionals.

A noteworthy feature of the asymptotic formula (6.10) is that it depends only on ∆φ

and on the ratio ξ = ∆−J
∆+J (up to the overall positive factor C∆φ). This ratio was interpreted

holographically as an impact parameter in AdS space in [88]. For our current application,

the upshot is that to check that a combination of B2,v functionals is positive on heavy

states, it suffices to scan over a single variable ξ. In figure 11 we show the result of this

exercise for different values of ∆φ: we find that the functional B̃′
2,1 is always positive on

high-twist states!

6.3 Optimal bounds at fixed spin

It is expected that the result of the previous subsection can be significantly strengthened.

Not only there has to be a primary in the φ × φ OPE with τ ≤ 2∆φ and some ℓ ≥ 2, but

in fact there should be a primary with τ ≤ 2∆φ for each even ℓ ≥ 2.
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Figure 11. The functional B̃′
2,1 is positive on large-twist conformal blocks Gs

∆,J in d = 2 for all

values of ∆φ and ξ = ∆−J
∆+J

. The plot shows
C

∆φ

∆,J

2
Γ(4∆φ+2)
Γ(2∆φ+1)4 × ξ∆φB̃′

2,1[Gs
∆,J ].

How can we approach the task of constructing these functionals? First of all, Property

2 stated at the top of this section implies that the functionals must have the form (up to

an overall positive rescaling)

Φℓ = β0,ℓ + [odd spin] , (6.11)

where [odd spin] stands for a (possibly infinite) linear combination of odd-spin αs and βs.

Furthermore, the functional must decay with spin > 1 in the u-channel Regge limit. We

did not find finite linear combinations of the form (6.11) which also satisfy Property 1.

Indeed as noted above, finite linear combinations of αs and βs generally have additional

simple zeros away from double-traces.

We have seen previously that the B2,v sum rules, which are infinite linear combinations

of the basis functionals, have good positivity properties. So let us guess that Φℓ arises as

a projection of B2,v. The good news is that there is a unique projection of B2,v of the

form (6.11). Furthermore, we will check that for some values of d and ∆φ, the resulting

sum rule has the correct positivity Property 2.

To construct the projection, we will work in Mellin space and use orthogonality of

Mack polynomials. A general projection takes the form of an integral against a kernel fℓ(t)

over a vertical t contour

Φℓ =

ˆ ∆φ+i∞

∆φ−i∞

dt

2πi
fℓ(t) B̂2,t . (6.12)

Any such Φℓ has double zeros on all n > 0 double traces. We will fix fℓ(t) by requiring

the correct structure of zeros on the n = 0 family. Φℓ vanishes on the n = 0, even ℓ double

traces if and only if fℓ(t) is an odd function

fℓ(t) = −fℓ(2∆φ − t) . (6.13)

This is the condition that the Mellin integral yields a superposition of B̃2,v functionals. In
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order to have double zeros on all n = 0 double traces with even spin 6= ℓ, we must impose

ˆ ∆φ+i∞

∆φ−i∞

dt

2πi
fℓ(t) b̂ℓ′(t) = δℓ,ℓ′ for ℓ′ = 0, 2, 4, . . . , (6.14)

where b̂ℓ′(t) is the coefficients of β0,ℓ′ in the decomposition of B̂2,t, see (4.55) and (4.56).

In order to fix fℓ(t) using these constraints, we use completeness and orthogonality of

the Mack polynomials âℓ(t)

ˆ

dt

2πi
Γ

(
∆φ − t

2

)2

Γ

(
t

2

)2

âℓ(t) âℓ′(t) =
2(−1)ℓΓ(ℓ + 1)Γ(2∆φ + 2ℓ)2

(2∆φ + 2ℓ − 1)Γ(∆φ + ℓ)4Γ(2∆φ + ℓ − 1)
δℓℓ′ .

(6.15)

The t contour runs from t0 − i∞ to t0 + i∞ with 0 < t0 < 2∆φ. Since fℓ(t) satisfies (6.13),

it can be expanded in âℓ′(t) with ℓ′ odd. Equations (6.14) then uniquely fix the expansion

coefficients since b̂ℓ′(t) are related to âℓ′(t) by a lower-triangular change of basis, see (4.56).

Note that the construction breaks down for ℓ = 0 since b̂0(t) ∼ â0(t) and thus there is no

f0(t) satisfying both (6.13) and (6.14).

We can give a closed formula for fℓ(t). Firstly, one checks that for even ℓ, we have the

relationship

b̂ℓ(t) − b̂ℓ(2∆φ − t) = −d âℓ(t)

dt
. (6.16)

The formula for fℓ(t) is

fℓ(t) = cℓ

ˆ t

∆φ

dt′ Γ

(
∆φ − t′

2

)2

Γ

(
t′

2

)2

âℓ(t
′) , (6.17)

for some normalization cℓ to be determined. Why does this formula work? Firstly, note

that (6.13) holds because âℓ(t) = (−1)ℓâℓ(2∆φ − t). To see that (6.14) holds, compute

ˆ ∆φ+i∞

∆φ−i∞

dt

2πi
fℓ(t) b̂ℓ′(t) = cℓ

ˆ ∆φ+i∞

∆φ−i∞

dt

2πi
b̂ℓ′(t)

ˆ t

∆φ

dt′ Γ

(
∆φ − t′

2

)2

Γ

(
t′

2

)2

âℓ(t
′)

= −cℓ

2

ˆ ∆φ+i∞

∆φ−i∞

dt

2πi

d âℓ′(t)

dt

ˆ t

∆φ

dt′ Γ

(
∆φ − t′

2

)2

Γ

(
t′

2

)2

âℓ(t
′)

=
cℓ

2

ˆ ∆φ+i∞

∆φ−i∞

dt

2πi
âℓ′(t)âℓ(t)Γ

(
∆φ − t

2

)2

Γ

(
t

2

)2

= cℓ
Γ(ℓ + 1)Γ(2∆φ + 2ℓ)2

(2∆φ + 2ℓ − 1)Γ(∆φ + ℓ)4Γ(2∆φ + ℓ − 1)
δℓℓ′ .

(6.18)

The second equality follows from antisymmetry of f̂ℓ(t) and (6.16). The third equality

follows by integrating by parts. The boundary term vanishes for ℓ > 0 thanks to the

orthogonality (6.15) between aℓ(t) and a0(t) = const. We conclude

cℓ =
(2∆φ + 2ℓ − 1)Γ(∆φ + ℓ)4Γ(2∆φ + ℓ − 1)

Γ(ℓ + 1)Γ(2∆φ + 2ℓ)2
. (6.19)
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The formula for Φℓ therefore is

Φℓ =cℓ

ˆ ∆φ+i∞

∆φ−i∞

dt

2πi
B̂2,t

ˆ t

∆φ

dt′ Γ

(
∆φ − t′

2

)2

Γ

(
t′

2

)2

âℓ(t
′)

= −cℓ

ˆ ∆φ+i∞

∆φ−i∞

dt

2πi
Γ

(
∆φ − t

2

)2

Γ

(
t

2

)2

âℓ(t)

ˆ t

∆φ

dt′B̂2,t′ .

(6.20)

We believe that this formula defines a swappable functional which gives rise to a nonper-

turbative sum rule with vanishing r.h.s.

∑

O
aO Φℓ[G

s
∆O,JO

] = 0 . (6.21)

Equation (6.20) gives Φℓ as a weighted integral of B̂2,t. We can write B̂2,t as the Mellin

transform of B2,v, which gives Φℓ as a weighted integral of B2,v. In particular, for ℓ = 2

and ∆φ = 1 we were able to find the closed form

Φ2 =

$ ∞

0
dv

v + 1

2π2(v − 1)2

[
1

log(v) − 2iπ
− 1

log(v)

]
B2,v

+

& ∞

0
dv

v + 1

2π2(v − 1)2

[
1

log(v) + 2iπ
− 1

log(v)

]
B2,v ,

(6.22)

where the integral symbol shows how the pole at v = 1 is avoided. Curiously, the kernel is

essentially dDiscv=0[(v + 1)/((v − 1)2 log(v))]. One could presumably prove swappability

of Φ2 using this formula by bounding the contribution of the v → 0 and v → ∞ limits. We

leave a detailed proof to future work and content ourselves with checking (6.21) in examples.

We can compute Φℓ[G
s
∆,J ] starting from the definition (6.20) and using the known

expression for B̂2,t[G
s
∆,J ], equation (4.54). In practice, the integral over t′ in (6.20) can be

done analytically. We did the remaining integral over t numerically and approximated the

sum over m in (4.54) by a large but finite number of terms. We found that Φℓ[G
s
∆,J ] is

finite for all (∆, J) allowed by unitarity bounds.41 In that region, it is a smooth function

of ∆ satisfying Property 1. We checked that Φℓ[G
s
0,0] = 0, which implies (6.21) is satisfied

by the 〈φφφφ〉 MFT correlator. Furthermore, we checked that the ℓ = 2 sum rule (6.21)

is satisfied for the d = 4, ∆φ = 2 four-point function 〈ϕ2ϕ2ϕ2ϕ2〉, where ϕ is a free real

scalar field.

In assessing the positivity properties of Φℓ[G
s
∆,J ], we focused on Φ2. The following

facts were observed experimentally.

1. Φ2[Gs
0,0] = 0 and Φ2[Gs

∆,0] ≥ 0 for ∆ ≥ d−2
2 .

2. Φ2[Gs
∆,2] ≥ 0 for ∆ ≥ 2∆φ + 2.

3. Φ2[Gs
∆,J ] ≥ 0 for even J > 2 and ∆ ≥ τ0(d, ∆φ) + J .

41This is unlike B̂2,t[G
s
∆,J ], which has a double pole at τ = t.
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τ
<latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit>

τ
<latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit>

J = 0
<latexit sha1_base64="Sze/phmh8FAtcrfmWZZ5k5Tfsak=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoBch6EU8RTQPSJYwO9ubDJmdXWZmhRBy8AO86id4E69+il/gbzhJ9qDRgoaiqpvuriAVXBvX/XQKS8srq2vF9dLG5tb2Tnl3r6mTTDFssEQkqh1QjYJLbBhuBLZThTQOBLaC4dXUbz2g0jyR92aUoh/TvuQRZ9RY6e7mwu2VK27VnYH8JV5OKpCj3it/dcOEZTFKwwTVuuO5qfHHVBnOBE5K3UxjStmQ9rFjqaQxan88O3VCjqwSkihRtqQhM/XnxJjGWo/iwHbG1Az0ojcV//W0PWWA4cJ6E537Yy7TzKBk8+1RJohJyDQMEnKFzIiRJZQpbh8gbEAVZcZGVrLJeIs5/CXNk6rnVr3b00rtMs+oCAdwCMfgwRnU4Brq0AAGfXiCZ3hxHp1X5815n7cWnHxmH37B+fgGfj+WKA==</latexit><latexit sha1_base64="Sze/phmh8FAtcrfmWZZ5k5Tfsak=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoBch6EU8RTQPSJYwO9ubDJmdXWZmhRBy8AO86id4E69+il/gbzhJ9qDRgoaiqpvuriAVXBvX/XQKS8srq2vF9dLG5tb2Tnl3r6mTTDFssEQkqh1QjYJLbBhuBLZThTQOBLaC4dXUbz2g0jyR92aUoh/TvuQRZ9RY6e7mwu2VK27VnYH8JV5OKpCj3it/dcOEZTFKwwTVuuO5qfHHVBnOBE5K3UxjStmQ9rFjqaQxan88O3VCjqwSkihRtqQhM/XnxJjGWo/iwHbG1Az0ojcV//W0PWWA4cJ6E537Yy7TzKBk8+1RJohJyDQMEnKFzIiRJZQpbh8gbEAVZcZGVrLJeIs5/CXNk6rnVr3b00rtMs+oCAdwCMfgwRnU4Brq0AAGfXiCZ3hxHp1X5815n7cWnHxmH37B+fgGfj+WKA==</latexit><latexit sha1_base64="Sze/phmh8FAtcrfmWZZ5k5Tfsak=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoBch6EU8RTQPSJYwO9ubDJmdXWZmhRBy8AO86id4E69+il/gbzhJ9qDRgoaiqpvuriAVXBvX/XQKS8srq2vF9dLG5tb2Tnl3r6mTTDFssEQkqh1QjYJLbBhuBLZThTQOBLaC4dXUbz2g0jyR92aUoh/TvuQRZ9RY6e7mwu2VK27VnYH8JV5OKpCj3it/dcOEZTFKwwTVuuO5qfHHVBnOBE5K3UxjStmQ9rFjqaQxan88O3VCjqwSkihRtqQhM/XnxJjGWo/iwHbG1Az0ojcV//W0PWWA4cJ6E537Yy7TzKBk8+1RJohJyDQMEnKFzIiRJZQpbh8gbEAVZcZGVrLJeIs5/CXNk6rnVr3b00rtMs+oCAdwCMfgwRnU4Brq0AAGfXiCZ3hxHp1X5815n7cWnHxmH37B+fgGfj+WKA==</latexit><latexit sha1_base64="Sze/phmh8FAtcrfmWZZ5k5Tfsak=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoBch6EU8RTQPSJYwO9ubDJmdXWZmhRBy8AO86id4E69+il/gbzhJ9qDRgoaiqpvuriAVXBvX/XQKS8srq2vF9dLG5tb2Tnl3r6mTTDFssEQkqh1QjYJLbBhuBLZThTQOBLaC4dXUbz2g0jyR92aUoh/TvuQRZ9RY6e7mwu2VK27VnYH8JV5OKpCj3it/dcOEZTFKwwTVuuO5qfHHVBnOBE5K3UxjStmQ9rFjqaQxan88O3VCjqwSkihRtqQhM/XnxJjGWo/iwHbG1Az0ojcV//W0PWWA4cJ6E537Yy7TzKBk8+1RJohJyDQMEnKFzIiRJZQpbh8gbEAVZcZGVrLJeIs5/CXNk6rnVr3b00rtMs+oCAdwCMfgwRnU4Brq0AAGfXiCZ3hxHp1X5815n7cWnHxmH37B+fgGfj+WKA==</latexit>

J = 2
<latexit sha1_base64="NOWvNR1H6y4ZkugpSP3RoduW0mw=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVZIi6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukVau6TtW9O6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fgXGWKg==</latexit><latexit sha1_base64="NOWvNR1H6y4ZkugpSP3RoduW0mw=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVZIi6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukVau6TtW9O6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fgXGWKg==</latexit><latexit sha1_base64="NOWvNR1H6y4ZkugpSP3RoduW0mw=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVZIi6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukVau6TtW9O6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fgXGWKg==</latexit><latexit sha1_base64="NOWvNR1H6y4ZkugpSP3RoduW0mw=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVZIi6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukVau6TtW9O6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fgXGWKg==</latexit>

J = 4, 6, 8, 10
<latexit sha1_base64="fPXXOUxdaQb/CrYvVOcg6PEp4+M=">AAACBnicbVDLSsNAFL2pr1pfVZduBovgopREinYjFN2Iqwr2gW0ok8mkHTqZhJmJUEL3foBb/QR34tbf8Av8DadtFtp64MLhnHu59x4v5kxp2/6yciura+sb+c3C1vbO7l5x/6ClokQS2iQRj2THw4pyJmhTM81pJ5YUhx6nbW90PfXbj1QqFol7PY6pG+KBYAEjWBvp4fayWj4v18qO3S+W7Io9A1omTkZKkKHRL373/IgkIRWacKxU17Fj7aZYakY4nRR6iaIxJiM8oF1DBQ6pctPZxRN0YhQfBZE0JTSaqb8nUhwqNQ490xliPVSL3lT811PmlCH1F9broOamTMSJpoLMtwcJRzpC00yQzyQlmo8NwUQy8wAiQywx0Sa5gknGWcxhmbTOKo5dce6qpfpVllEejuAYTsGBC6jDDTSgCQQEPMMLvFpP1pv1bn3MW3NWNnMIf2B9/gCulJfF</latexit><latexit sha1_base64="fPXXOUxdaQb/CrYvVOcg6PEp4+M=">AAACBnicbVDLSsNAFL2pr1pfVZduBovgopREinYjFN2Iqwr2gW0ok8mkHTqZhJmJUEL3foBb/QR34tbf8Av8DadtFtp64MLhnHu59x4v5kxp2/6yciura+sb+c3C1vbO7l5x/6ClokQS2iQRj2THw4pyJmhTM81pJ5YUhx6nbW90PfXbj1QqFol7PY6pG+KBYAEjWBvp4fayWj4v18qO3S+W7Io9A1omTkZKkKHRL373/IgkIRWacKxU17Fj7aZYakY4nRR6iaIxJiM8oF1DBQ6pctPZxRN0YhQfBZE0JTSaqb8nUhwqNQ490xliPVSL3lT811PmlCH1F9broOamTMSJpoLMtwcJRzpC00yQzyQlmo8NwUQy8wAiQywx0Sa5gknGWcxhmbTOKo5dce6qpfpVllEejuAYTsGBC6jDDTSgCQQEPMMLvFpP1pv1bn3MW3NWNnMIf2B9/gCulJfF</latexit><latexit sha1_base64="fPXXOUxdaQb/CrYvVOcg6PEp4+M=">AAACBnicbVDLSsNAFL2pr1pfVZduBovgopREinYjFN2Iqwr2gW0ok8mkHTqZhJmJUEL3foBb/QR34tbf8Av8DadtFtp64MLhnHu59x4v5kxp2/6yciura+sb+c3C1vbO7l5x/6ClokQS2iQRj2THw4pyJmhTM81pJ5YUhx6nbW90PfXbj1QqFol7PY6pG+KBYAEjWBvp4fayWj4v18qO3S+W7Io9A1omTkZKkKHRL373/IgkIRWacKxU17Fj7aZYakY4nRR6iaIxJiM8oF1DBQ6pctPZxRN0YhQfBZE0JTSaqb8nUhwqNQ490xliPVSL3lT811PmlCH1F9broOamTMSJpoLMtwcJRzpC00yQzyQlmo8NwUQy8wAiQywx0Sa5gknGWcxhmbTOKo5dce6qpfpVllEejuAYTsGBC6jDDTSgCQQEPMMLvFpP1pv1bn3MW3NWNnMIf2B9/gCulJfF</latexit><latexit sha1_base64="fPXXOUxdaQb/CrYvVOcg6PEp4+M=">AAACBnicbVDLSsNAFL2pr1pfVZduBovgopREinYjFN2Iqwr2gW0ok8mkHTqZhJmJUEL3foBb/QR34tbf8Av8DadtFtp64MLhnHu59x4v5kxp2/6yciura+sb+c3C1vbO7l5x/6ClokQS2iQRj2THw4pyJmhTM81pJ5YUhx6nbW90PfXbj1QqFol7PY6pG+KBYAEjWBvp4fayWj4v18qO3S+W7Io9A1omTkZKkKHRL373/IgkIRWacKxU17Fj7aZYakY4nRR6iaIxJiM8oF1DBQ6pctPZxRN0YhQfBZE0JTSaqb8nUhwqNQ490xliPVSL3lT811PmlCH1F9broOamTMSJpoLMtwcJRzpC00yQzyQlmo8NwUQy8wAiQywx0Sa5gknGWcxhmbTOKo5dce6qpfpVllEejuAYTsGBC6jDDTSgCQQEPMMLvFpP1pv1bn3MW3NWNnMIf2B9/gCulJfF</latexit>

Figure 12. The action of the extremal functional Φ2 on conformal blocks Gs
∆,J for d = 3, ∆φ = 1.

Φ2 has double zeros on all even-spin double traces apart from n = 0, ℓ = 2, where it has a simple zero.

It is nonnegative above the unitarity bound for all spins 6= 2, and also for spin 2 provided τ ≥ 2∆φ.

In order to emphasize the key features, the function being plotted is
√

J + 1(τ +1)542−J−τ Φ2[Gs
∆,J ].

τ0(d, ∆φ) is a critical value of the twist below which Φ2[Gs
∆,J ] can be negative. If τ0(d, ∆φ) <

d − 2, then Φ2[Gs
∆,J ] satisfies all the properties needed to be an extremal functional. We

found that τ0(d, ∆φ) increases roughly linearly with ∆φ and crosses the unitarity bound for

some ∆φ. For d = 3 the crossing happens for some ∆φ ∈ (1, 2). For d = 4, it happens for

∆φ ∈ (2, 3). In particular, Φ2 is an extremal functionals for d = 3 provided ∆φ ∈ [1/2, 1]

and for d = 4 provided ∆φ ∈ [1, 2]. Figure 12 shows the action Φ2[Gs
∆,J ] in the case d = 3

∆φ = 1.

It would be interesting to study Φℓ for ℓ > 2 and also understand how to construct

the extremal functional for gap maximization at ℓ > 0 for general d and ∆φ since our

construction has the right positivity properties only in a certain range of ∆φ. In general the

extremal functional with correct positivity properties must differ from Φℓ by a functional

which has support in odd-spin αn,ℓ and βn,ℓ, and which itself decays with spin > 1. As

discussed in section 5.1, such functionals certainly exist. It was also shown there that such

odd-spin functionals identically annihilate all scalar conformal blocks. It follows that the

action of the extremal functional on scalar blocks agrees with that of Φℓ. In that light, it

is encouraging that Φ2[Gs
∆,0] ≥ 0 above the unitarity bound for general d and ∆φ. In fact,

since Φ2 is a special case of βimp
0,ℓ of section 5.2, we know that Φ2[Gs

∆,0] = −2qMFT
0,2 γ0,2(∆, 0)

(the result of applying LIF to scalar blocks), which is known to be positive.

Finally, note that mean field theory does not saturate the bound on the gap above

identity for ℓ = 0. Indeed, the scalar bound is an interesting function of ∆φ, conjecturally

passing through the 3D Ising CFT in d = 3 [87]. It is clear from our perspective why the
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case ℓ = 0 is special. As noted below equation (6.15), our construction breaks down for

ℓ = 0. More generally, there can not exist a functional of the form

β0,0 + [odd spin] (6.23)

which decays with spin > 1 in the Regge limit. Such a functional would be incompatible

with the scalar contact diagram of the AdS Φ4 interaction. The latter grows with spin

0 in the Regge limit and only contains terms Gs
2∆φ+2n,0 and ∂∆Gs

2∆φ+2n,0. On the other

hand, the existence of this contact diagram is perfectly compatible with functionals of the

form (6.11) with ℓ = 2, 4, . . ..

6.4 Φ2 sum rule in the 3D Ising CFT

Let us apply Φ2 to the 〈σσσσ〉 four-point function in the 3D Ising CFT. We have ∆σ ≈
0.51815 and so the only negative region of Φ2 is the small window 1 ≤ τ < 2∆σ for J = 2.

There is precisely one operator in this window: the stress tensor, at τ = 1. Thus Φ2 equates

minus the contribution of Tµν with a positive sum over all Z2-even primaries in the 3D

Ising CFT

− (fσσTµν )2Φ2[G3,0] =
∑

O6=Tµν

(fσσO)2Φ2[G∆O,JO
] . (6.24)

Since Φ2 has double zeros at τ = 2∆σ + 2n, the contribution of approximate double-twist

operators at large spin is suppressed. Therefore, we can expect that the sum rule is nearly

saturated by a handful of low-lying operators. We used the OPE data provided in [27] to

test the validity of the sum rule, computed numerically using the method below (6.22).

Remarkably, merely including the ǫ operator on the r.h.s. of (6.24) accounts for 95% of

the l.h.s. . In other words, the sum rule provides an approximate equation satisfied by ∆σ,

∆ǫ, cT and fσσǫ to 95% accuracy. Adding also the next-to-leading primaries with J = 0

and J = 2, i.e. ǫ′ and T ′
µν , brings the agreement to 98%. Thanks to positivity, this puts

a stringent upper bound on the contribution of the remaining operators. Detailed results

are shown in figure 13 and table 1.

6.5 Comparison of Φ2 with numerical functionals

We have presented strong evidence that Φ2 is an extremal functional for the twist gap

problem at ℓ = 2. It is interesting to compare it to extremal functionals obtained from

the numerical bootstrap [89–91]. An important feature of Φ2 is that it is an example of an

“improved” β0,2:

Φ2 = β0,2 + [odd spin] = [spin-2 decay]. (6.25)

The condition (6.25) has an ambiguity parametrized by odd-spin functionals that decay

with spin 2. In other words, any positive functional of the form

Φ2 + [odd spin with spin-2 decay] (6.26)

would be another extremal functional for the ℓ = 2 twist gap problem. Given that Φ2 is

conjecturally positive (for appropriate values of ∆φ), we should ask: can other functionals
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O JO τO (fσσO)2Φ2[GO]

Tµν 2 1 −1

ǫ 0 1.412 0.950

ǫ′ 0 3.830 0.020

T ′
µν 2 3.509 0.011

C ′
µνρσ 4 2.420 0.004

C ′′
µνρσ 4 3.385 0.004

Cµνρσ 4 1.023 0.002

ǫ′′ 0 6.896 < 10−5

C ′′′
µνρσ 4 4.941 < 10−5

T ′′
µν 2 5.076 < 10−6

identity 0 0 0

Table 1. The low-lying primaries of the 3D Ising CFT ordered according to the size of their

contribution to the Φ2 sum rule (6.24). The normalization is chosen so that Tµν contributes −1,

and thus all Z2-even operators must add up to +1. We see that ǫ alone gives 95% accuracy, and

the primaries in the table together give 99% accuracy. This means that the remaining operators

either have twists very close to 2∆σ + 2n, or have very small OPE coefficients.

of the type (6.26) be positive as well? We expect that the answer is: yes, the solution to

the spin-2 twist gap problem is not unique, and is given by a nontrivial convex subspace of

the space (6.26). We will obtain evidence for this claim using numerics.

We can approximate a solution to the spin-2 twist gap problem using the numerical

bootstrap. Following [1], we study linear combinations of “derivative” functionals42

ωderiv
mn [G] ≡ ∂m

z ∂n
z̄ G(z, z̄)

∣∣∣
z=z̄= 1

2

. (6.27)

By searching over a subspace of s-t antisymmetric functionals with derivative order up to Λ

Span{ωderiv
mn such that m + n ≤ Λ and m + n odd}, (6.28)

we obtain an upper bound on the twist gap at spin ℓ = 2, witnessed by a functional Φderiv
2,Λ .

Taking Λ larger and larger, this bound becomes closer and closer to optimal. We claim

that if the limit limΛ→∞ Φderiv
2,Λ exists, it should live in the space (6.26).

Property (5.24) gives a way to check this claim, despite the ambiguity in (6.26). We

can compare Φderiv
2,Λ and Φ2 acting on scalar blocks Gs

∆,0. Equation (5.24) implies

(
Φ2 + [odd spin with spin-2 decay]

)
[Gs

∆,0] = −2qMFT
0,2 γ0,2(∆, 0). (6.29)

Thus, we expect

lim
Λ→∞

Φderiv
2,Λ [Gs

∆,0] = Φ2[Gs
∆,0] = −2qMFT

0,2 γ0,2(∆, 0). (6.30)

42We expect the analysis of this section could be performed with any basis of functionals satisfying the

conditions in section 6.6.
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✏
00

<latexit sha1_base64="tHhfH/8MZGrMzoYNrAAFL3B6bFc=">AAACBnicbVDLSgNBEOz1GeMr6tHLYJB4Crsi6DHoxWME88BkCbOznWTI7OwyMyuEJXc/wKt+gjfx6m/4Bf6Gk2QPmljQUFR1090VJIJr47pfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgeZ8zaqz00MVEcxHLSqVXKrtVdwayTLyclCFHvVf67oYxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bXTwhp1YJST9WtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3ranjLEcGG96V/5GZdJalCy+fZ+KoiJyTQTEnKFzIixJZQpbh8gbEgVZcYmV7TJeIs5LJPmedVzq97dRbl2nWdUgGM4gTPw4BJqcAt1aAADCc/wAq/Ok/PmvDsf89YVJ585gj9wPn8AP7WZWw==</latexit><latexit sha1_base64="tHhfH/8MZGrMzoYNrAAFL3B6bFc=">AAACBnicbVDLSgNBEOz1GeMr6tHLYJB4Crsi6DHoxWME88BkCbOznWTI7OwyMyuEJXc/wKt+gjfx6m/4Bf6Gk2QPmljQUFR1090VJIJr47pfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgeZ8zaqz00MVEcxHLSqVXKrtVdwayTLyclCFHvVf67oYxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bXTwhp1YJST9WtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3ranjLEcGG96V/5GZdJalCy+fZ+KoiJyTQTEnKFzIixJZQpbh8gbEgVZcYmV7TJeIs5LJPmedVzq97dRbl2nWdUgGM4gTPw4BJqcAt1aAADCc/wAq/Ok/PmvDsf89YVJ585gj9wPn8AP7WZWw==</latexit><latexit sha1_base64="tHhfH/8MZGrMzoYNrAAFL3B6bFc=">AAACBnicbVDLSgNBEOz1GeMr6tHLYJB4Crsi6DHoxWME88BkCbOznWTI7OwyMyuEJXc/wKt+gjfx6m/4Bf6Gk2QPmljQUFR1090VJIJr47pfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgeZ8zaqz00MVEcxHLSqVXKrtVdwayTLyclCFHvVf67oYxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bXTwhp1YJST9WtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3ranjLEcGG96V/5GZdJalCy+fZ+KoiJyTQTEnKFzIixJZQpbh8gbEgVZcYmV7TJeIs5LJPmedVzq97dRbl2nWdUgGM4gTPw4BJqcAt1aAADCc/wAq/Ok/PmvDsf89YVJ585gj9wPn8AP7WZWw==</latexit><latexit sha1_base64="tHhfH/8MZGrMzoYNrAAFL3B6bFc=">AAACBnicbVDLSgNBEOz1GeMr6tHLYJB4Crsi6DHoxWME88BkCbOznWTI7OwyMyuEJXc/wKt+gjfx6m/4Bf6Gk2QPmljQUFR1090VJIJr47pfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgeZ8zaqz00MVEcxHLSqVXKrtVdwayTLyclCFHvVf67oYxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bXTwhp1YJST9WtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3ranjLEcGG96V/5GZdJalCy+fZ+KoiJyTQTEnKFzIixJZQpbh8gbEgVZcYmV7TJeIs5LJPmedVzq97dRbl2nWdUgGM4gTPw4BJqcAt1aAADCc/wAq/Ok/PmvDsf89YVJ585gj9wPn8AP7WZWw==</latexit> ✏
000

<latexit sha1_base64="RCVgeBhgCl3Zf8i8KaVvECwqgCE=">AAACB3icbVBLSgNBEK2Jvxh/UZduBoPEVZgRQZdBNy4jmA8kQ+jpqUma9HQP3T1CCDmAB3CrR3Anbj2GJ/AadpJZaOKDgsd7VVTVC1POtPG8L6ewtr6xuVXcLu3s7u0flA+PWlpmimKTSi5VJyQaORPYNMxw7KQKSRJybIej25nffkSlmRQPZpxikJCBYDGjxFip28NUMy5FtVrtlytezZvDXSV+TiqQo9Evf/ciSbMEhaGcaN31vdQEE6IMoxynpV6mMSV0RAbYtVSQBHUwmZ88dc+sErmxVLaEcefq74kJSbQeJ6HtTIgZ6mVvJv7raXvKEKOl9Sa+DiZMpJlBQRfb44y7RrqzUNyIKaSGjy0hVDH7gEuHRBFqbHQlm4y/nMMqaV3UfK/m319W6jd5RkU4gVM4Bx+uoA530IAmUJDwDC/w6jw5b86787FoLTj5zDH8gfP5A6azmYw=</latexit><latexit sha1_base64="RCVgeBhgCl3Zf8i8KaVvECwqgCE=">AAACB3icbVBLSgNBEK2Jvxh/UZduBoPEVZgRQZdBNy4jmA8kQ+jpqUma9HQP3T1CCDmAB3CrR3Anbj2GJ/AadpJZaOKDgsd7VVTVC1POtPG8L6ewtr6xuVXcLu3s7u0flA+PWlpmimKTSi5VJyQaORPYNMxw7KQKSRJybIej25nffkSlmRQPZpxikJCBYDGjxFip28NUMy5FtVrtlytezZvDXSV+TiqQo9Evf/ciSbMEhaGcaN31vdQEE6IMoxynpV6mMSV0RAbYtVSQBHUwmZ88dc+sErmxVLaEcefq74kJSbQeJ6HtTIgZ6mVvJv7raXvKEKOl9Sa+DiZMpJlBQRfb44y7RrqzUNyIKaSGjy0hVDH7gEuHRBFqbHQlm4y/nMMqaV3UfK/m319W6jd5RkU4gVM4Bx+uoA530IAmUJDwDC/w6jw5b86787FoLTj5zDH8gfP5A6azmYw=</latexit><latexit sha1_base64="RCVgeBhgCl3Zf8i8KaVvECwqgCE=">AAACB3icbVBLSgNBEK2Jvxh/UZduBoPEVZgRQZdBNy4jmA8kQ+jpqUma9HQP3T1CCDmAB3CrR3Anbj2GJ/AadpJZaOKDgsd7VVTVC1POtPG8L6ewtr6xuVXcLu3s7u0flA+PWlpmimKTSi5VJyQaORPYNMxw7KQKSRJybIej25nffkSlmRQPZpxikJCBYDGjxFip28NUMy5FtVrtlytezZvDXSV+TiqQo9Evf/ciSbMEhaGcaN31vdQEE6IMoxynpV6mMSV0RAbYtVSQBHUwmZ88dc+sErmxVLaEcefq74kJSbQeJ6HtTIgZ6mVvJv7raXvKEKOl9Sa+DiZMpJlBQRfb44y7RrqzUNyIKaSGjy0hVDH7gEuHRBFqbHQlm4y/nMMqaV3UfK/m319W6jd5RkU4gVM4Bx+uoA530IAmUJDwDC/w6jw5b86787FoLTj5zDH8gfP5A6azmYw=</latexit><latexit sha1_base64="RCVgeBhgCl3Zf8i8KaVvECwqgCE=">AAACB3icbVBLSgNBEK2Jvxh/UZduBoPEVZgRQZdBNy4jmA8kQ+jpqUma9HQP3T1CCDmAB3CrR3Anbj2GJ/AadpJZaOKDgsd7VVTVC1POtPG8L6ewtr6xuVXcLu3s7u0flA+PWlpmimKTSi5VJyQaORPYNMxw7KQKSRJybIej25nffkSlmRQPZpxikJCBYDGjxFip28NUMy5FtVrtlytezZvDXSV+TiqQo9Evf/ciSbMEhaGcaN31vdQEE6IMoxynpV6mMSV0RAbYtVSQBHUwmZ88dc+sErmxVLaEcefq74kJSbQeJ6HtTIgZ6mVvJv7raXvKEKOl9Sa+DiZMpJlBQRfb44y7RrqzUNyIKaSGjy0hVDH7gEuHRBFqbHQlm4y/nMMqaV3UfK/m319W6jd5RkU4gVM4Bx+uoA530IAmUJDwDC/w6jw5b86787FoLTj5zDH8gfP5A6azmYw=</latexit>

 ! " #
-

!

#

$

τ
<latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit>

J = 2
<latexit sha1_base64="NOWvNR1H6y4ZkugpSP3RoduW0mw=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVZIi6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukVau6TtW9O6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fgXGWKg==</latexit><latexit sha1_base64="NOWvNR1H6y4ZkugpSP3RoduW0mw=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVZIi6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukVau6TtW9O6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fgXGWKg==</latexit><latexit sha1_base64="NOWvNR1H6y4ZkugpSP3RoduW0mw=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVZIi6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukVau6TtW9O6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fgXGWKg==</latexit><latexit sha1_base64="NOWvNR1H6y4ZkugpSP3RoduW0mw=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVZIi6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukVau6TtW9O6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fgXGWKg==</latexit>

Tµν
<latexit sha1_base64="QcJjAJ3iPW7Q877lg1dvcW2zv50=">AAACBnicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmWFvrAJZTKZtENnJmFmIpTQvR/gVj/Bnbj1N/wCf8Npm4W2HrhwOOde7r0nTDnTxnW/nNLa+sbmVnm7srO7t39QPTzq6CRThLZJwhPVC7GmnEnaNsxw2ksVxSLktBuOb2d+95EqzRLZMpOUBgIPJYsZwcZKD61B7ovMl9l0UK25dXcOtEq8gtSgQHNQ/fajhGSCSkM41rrvuakJcqwMI5xOK36maYrJGA9p31KJBdVBPr94is6sEqE4UbakQXP190SOhdYTEdpOgc1IL3sz8V9P21NGNFpab+LrIGcyzQyVZLE9zjgyCZplgiKmKDF8YgkmitkHEBlhhYmxyVVsMt5yDqukc1H33Lp3f1lr3BQZleEETuEcPLiCBtxBE9pAQMIzvMCr8+S8Oe/Ox6K15BQzx/AHzucPEkCZ3w==</latexit><latexit sha1_base64="QcJjAJ3iPW7Q877lg1dvcW2zv50=">AAACBnicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmWFvrAJZTKZtENnJmFmIpTQvR/gVj/Bnbj1N/wCf8Npm4W2HrhwOOde7r0nTDnTxnW/nNLa+sbmVnm7srO7t39QPTzq6CRThLZJwhPVC7GmnEnaNsxw2ksVxSLktBuOb2d+95EqzRLZMpOUBgIPJYsZwcZKD61B7ovMl9l0UK25dXcOtEq8gtSgQHNQ/fajhGSCSkM41rrvuakJcqwMI5xOK36maYrJGA9p31KJBdVBPr94is6sEqE4UbakQXP190SOhdYTEdpOgc1IL3sz8V9P21NGNFpab+LrIGcyzQyVZLE9zjgyCZplgiKmKDF8YgkmitkHEBlhhYmxyVVsMt5yDqukc1H33Lp3f1lr3BQZleEETuEcPLiCBtxBE9pAQMIzvMCr8+S8Oe/Ox6K15BQzx/AHzucPEkCZ3w==</latexit><latexit sha1_base64="QcJjAJ3iPW7Q877lg1dvcW2zv50=">AAACBnicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmWFvrAJZTKZtENnJmFmIpTQvR/gVj/Bnbj1N/wCf8Npm4W2HrhwOOde7r0nTDnTxnW/nNLa+sbmVnm7srO7t39QPTzq6CRThLZJwhPVC7GmnEnaNsxw2ksVxSLktBuOb2d+95EqzRLZMpOUBgIPJYsZwcZKD61B7ovMl9l0UK25dXcOtEq8gtSgQHNQ/fajhGSCSkM41rrvuakJcqwMI5xOK36maYrJGA9p31KJBdVBPr94is6sEqE4UbakQXP190SOhdYTEdpOgc1IL3sz8V9P21NGNFpab+LrIGcyzQyVZLE9zjgyCZplgiKmKDF8YgkmitkHEBlhhYmxyVVsMt5yDqukc1H33Lp3f1lr3BQZleEETuEcPLiCBtxBE9pAQMIzvMCr8+S8Oe/Ox6K15BQzx/AHzucPEkCZ3w==</latexit><latexit sha1_base64="QcJjAJ3iPW7Q877lg1dvcW2zv50=">AAACBnicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmWFvrAJZTKZtENnJmFmIpTQvR/gVj/Bnbj1N/wCf8Npm4W2HrhwOOde7r0nTDnTxnW/nNLa+sbmVnm7srO7t39QPTzq6CRThLZJwhPVC7GmnEnaNsxw2ksVxSLktBuOb2d+95EqzRLZMpOUBgIPJYsZwcZKD61B7ovMl9l0UK25dXcOtEq8gtSgQHNQ/fajhGSCSkM41rrvuakJcqwMI5xOK36maYrJGA9p31KJBdVBPr94is6sEqE4UbakQXP190SOhdYTEdpOgc1IL3sz8V9P21NGNFpab+LrIGcyzQyVZLE9zjgyCZplgiKmKDF8YgkmitkHEBlhhYmxyVVsMt5yDqukc1H33Lp3f1lr3BQZleEETuEcPLiCBtxBE9pAQMIzvMCr8+S8Oe/Ox6K15BQzx/AHzucPEkCZ3w==</latexit>

T
0

µν
<latexit sha1_base64="rWCgwZzC5HmoDosW+JFi6uLF7rE=">AAACB3icbVBLSgNBEK2Jvxh/UZduGoPoKsyIoMugG5cR8oPMEHp6epIm3T1Dd48QhhzAA7jVI7gTtx7DE3gNO8ksNPFBweO9KqrqhSln2rjul1NaW9/Y3CpvV3Z29/YPqodHHZ1kitA2SXiieiHWlDNJ24YZTnupoliEnHbD8d3M7z5SpVkiW2aS0kDgoWQxI9hYqd86H+S+yHyZTQfVmlt350CrxCtIDQo0B9VvP0pIJqg0hGOt+56bmiDHyjDC6bTiZ5qmmIzxkPYtlVhQHeTzk6fozCoRihNlSxo0V39P5FhoPRGh7RTYjPSyNxP/9bQ9ZUSjpfUmvglyJtPMUEkW2+OMI5OgWSgoYooSwyeWYKKYfQCREVaYGBtdxSbjLeewSjqXdc+tew9XtcZtkVEZTuAULsCDa2jAPTShDQQSeIYXeHWenDfn3flYtJacYuYY/sD5/AF3TZoQ</latexit><latexit sha1_base64="rWCgwZzC5HmoDosW+JFi6uLF7rE=">AAACB3icbVBLSgNBEK2Jvxh/UZduGoPoKsyIoMugG5cR8oPMEHp6epIm3T1Dd48QhhzAA7jVI7gTtx7DE3gNO8ksNPFBweO9KqrqhSln2rjul1NaW9/Y3CpvV3Z29/YPqodHHZ1kitA2SXiieiHWlDNJ24YZTnupoliEnHbD8d3M7z5SpVkiW2aS0kDgoWQxI9hYqd86H+S+yHyZTQfVmlt350CrxCtIDQo0B9VvP0pIJqg0hGOt+56bmiDHyjDC6bTiZ5qmmIzxkPYtlVhQHeTzk6fozCoRihNlSxo0V39P5FhoPRGh7RTYjPSyNxP/9bQ9ZUSjpfUmvglyJtPMUEkW2+OMI5OgWSgoYooSwyeWYKKYfQCREVaYGBtdxSbjLeewSjqXdc+tew9XtcZtkVEZTuAULsCDa2jAPTShDQQSeIYXeHWenDfn3flYtJacYuYY/sD5/AF3TZoQ</latexit><latexit sha1_base64="rWCgwZzC5HmoDosW+JFi6uLF7rE=">AAACB3icbVBLSgNBEK2Jvxh/UZduGoPoKsyIoMugG5cR8oPMEHp6epIm3T1Dd48QhhzAA7jVI7gTtx7DE3gNO8ksNPFBweO9KqrqhSln2rjul1NaW9/Y3CpvV3Z29/YPqodHHZ1kitA2SXiieiHWlDNJ24YZTnupoliEnHbD8d3M7z5SpVkiW2aS0kDgoWQxI9hYqd86H+S+yHyZTQfVmlt350CrxCtIDQo0B9VvP0pIJqg0hGOt+56bmiDHyjDC6bTiZ5qmmIzxkPYtlVhQHeTzk6fozCoRihNlSxo0V39P5FhoPRGh7RTYjPSyNxP/9bQ9ZUSjpfUmvglyJtPMUEkW2+OMI5OgWSgoYooSwyeWYKKYfQCREVaYGBtdxSbjLeewSjqXdc+tew9XtcZtkVEZTuAULsCDa2jAPTShDQQSeIYXeHWenDfn3flYtJacYuYY/sD5/AF3TZoQ</latexit><latexit sha1_base64="rWCgwZzC5HmoDosW+JFi6uLF7rE=">AAACB3icbVBLSgNBEK2Jvxh/UZduGoPoKsyIoMugG5cR8oPMEHp6epIm3T1Dd48QhhzAA7jVI7gTtx7DE3gNO8ksNPFBweO9KqrqhSln2rjul1NaW9/Y3CpvV3Z29/YPqodHHZ1kitA2SXiieiHWlDNJ24YZTnupoliEnHbD8d3M7z5SpVkiW2aS0kDgoWQxI9hYqd86H+S+yHyZTQfVmlt350CrxCtIDQo0B9VvP0pIJqg0hGOt+56bmiDHyjDC6bTiZ5qmmIzxkPYtlVhQHeTzk6fozCoRihNlSxo0V39P5FhoPRGh7RTYjPSyNxP/9bQ9ZUSjpfUmvglyJtPMUEkW2+OMI5OgWSgoYooSwyeWYKKYfQCREVaYGBtdxSbjLeewSjqXdc+tew9XtcZtkVEZTuAULsCDa2jAPTShDQQSeIYXeHWenDfn3flYtJacYuYY/sD5/AF3TZoQ</latexit>

T
00

µν
<latexit sha1_base64="VqPp448Jkm9HW9XDch3Ir2dKp4Y=">AAACCHicbVBLSgNBEK3xG+Mv6tJNY5C4CjMi6DLoxmWE/CAzhJ6enqRJd8/Q3SOEIRfwAG71CO7ErbfwBF7DTjILTXxQ8Hiviqp6YcqZNq775aytb2xubZd2yrt7+weHlaPjjk4yRWibJDxRvRBrypmkbcMMp71UUSxCTrvh+G7mdx+p0iyRLTNJaSDwULKYEWys5LdqtUHui8yX2XRQqbp1dw60SryCVKFAc1D59qOEZIJKQzjWuu+5qQlyrAwjnE7LfqZpiskYD2nfUokF1UE+v3mKzq0SoThRtqRBc/X3RI6F1hMR2k6BzUgvezPxX0/bU0Y0Wlpv4psgZzLNDJVksT3OODIJmqWCIqYoMXxiCSaK2QcQGWGFibHZlW0y3nIOq6RzWffcuvdwVW3cFhmV4BTO4AI8uIYG3EMT2kAghWd4gVfnyXlz3p2PReuaU8ycwB84nz/cg5pB</latexit><latexit sha1_base64="VqPp448Jkm9HW9XDch3Ir2dKp4Y=">AAACCHicbVBLSgNBEK3xG+Mv6tJNY5C4CjMi6DLoxmWE/CAzhJ6enqRJd8/Q3SOEIRfwAG71CO7ErbfwBF7DTjILTXxQ8Hiviqp6YcqZNq775aytb2xubZd2yrt7+weHlaPjjk4yRWibJDxRvRBrypmkbcMMp71UUSxCTrvh+G7mdx+p0iyRLTNJaSDwULKYEWys5LdqtUHui8yX2XRQqbp1dw60SryCVKFAc1D59qOEZIJKQzjWuu+5qQlyrAwjnE7LfqZpiskYD2nfUokF1UE+v3mKzq0SoThRtqRBc/X3RI6F1hMR2k6BzUgvezPxX0/bU0Y0Wlpv4psgZzLNDJVksT3OODIJmqWCIqYoMXxiCSaK2QcQGWGFibHZlW0y3nIOq6RzWffcuvdwVW3cFhmV4BTO4AI8uIYG3EMT2kAghWd4gVfnyXlz3p2PReuaU8ycwB84nz/cg5pB</latexit><latexit sha1_base64="VqPp448Jkm9HW9XDch3Ir2dKp4Y=">AAACCHicbVBLSgNBEK3xG+Mv6tJNY5C4CjMi6DLoxmWE/CAzhJ6enqRJd8/Q3SOEIRfwAG71CO7ErbfwBF7DTjILTXxQ8Hiviqp6YcqZNq775aytb2xubZd2yrt7+weHlaPjjk4yRWibJDxRvRBrypmkbcMMp71UUSxCTrvh+G7mdx+p0iyRLTNJaSDwULKYEWys5LdqtUHui8yX2XRQqbp1dw60SryCVKFAc1D59qOEZIJKQzjWuu+5qQlyrAwjnE7LfqZpiskYD2nfUokF1UE+v3mKzq0SoThRtqRBc/X3RI6F1hMR2k6BzUgvezPxX0/bU0Y0Wlpv4psgZzLNDJVksT3OODIJmqWCIqYoMXxiCSaK2QcQGWGFibHZlW0y3nIOq6RzWffcuvdwVW3cFhmV4BTO4AI8uIYG3EMT2kAghWd4gVfnyXlz3p2PReuaU8ycwB84nz/cg5pB</latexit><latexit sha1_base64="VqPp448Jkm9HW9XDch3Ir2dKp4Y=">AAACCHicbVBLSgNBEK3xG+Mv6tJNY5C4CjMi6DLoxmWE/CAzhJ6enqRJd8/Q3SOEIRfwAG71CO7ErbfwBF7DTjILTXxQ8Hiviqp6YcqZNq775aytb2xubZd2yrt7+weHlaPjjk4yRWibJDxRvRBrypmkbcMMp71UUSxCTrvh+G7mdx+p0iyRLTNJaSDwULKYEWys5LdqtUHui8yX2XRQqbp1dw60SryCVKFAc1D59qOEZIJKQzjWuu+5qQlyrAwjnE7LfqZpiskYD2nfUokF1UE+v3mKzq0SoThRtqRBc/X3RI6F1hMR2k6BzUgvezPxX0/bU0Y0Wlpv4psgZzLNDJVksT3OODIJmqWCIqYoMXxiCSaK2QcQGWGFibHZlW0y3nIOq6RzWffcuvdwVW3cFhmV4BTO4AI8uIYG3EMT2kAghWd4gVfnyXlz3p2PReuaU8ycwB84nz/cg5pB</latexit>
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τ
<latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit>

J = 4
<latexit sha1_base64="PnPnMWmnzxOSs8s6SEsdVvoMXvc=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVRIp6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukdVZ1nap7V6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fhKOWLA==</latexit><latexit sha1_base64="PnPnMWmnzxOSs8s6SEsdVvoMXvc=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVRIp6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukdVZ1nap7V6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fhKOWLA==</latexit><latexit sha1_base64="PnPnMWmnzxOSs8s6SEsdVvoMXvc=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVRIp6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukdVZ1nap7V6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fhKOWLA==</latexit><latexit sha1_base64="PnPnMWmnzxOSs8s6SEsdVvoMXvc=">AAAB/3icbVDLSsNAFL2pr1pfVZdugkVwVRIp6EYouhFXFe0D2lAmk5t26GQSZiZCCV34AW71E9yJWz/FL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqrKyurW8UN0tb2zu7e+X9g5aKU0mxSWMey45PFHImsKmZ5thJJJLI59j2R9dTv/2IUrFYPOhxgl5EBoKFjBJtpPvby1q/XHGqzgz2MnFzUoEcjX75uxfENI1QaMqJUl3XSbSXEakZ5Tgp9VKFCaEjMsCuoYJEqLxsdurEPjFKYIexNCW0PVN/T2QkUmoc+aYzInqoFr2p+K+nzClDDBbW6/DCy5hIUo2CzreHKbd1bE/DsAMmkWo+NoRQycwDNh0SSag2kZVMMu5iDsukdVZ1nap7V6vUr/KMinAEx3AKLpxDHW6gAU2gMIBneIFX68l6s96tj3lrwcpnDuEPrM8fhKOWLA==</latexit>

Cµνρσ
<latexit sha1_base64="SEoJ/LRWi/i7T8Gy+i68vUuwuS4=">AAACEnicbVDLSsNAFJ34rPUVHzs3g0VwVRIRdFnsxmUF+4AmhMlk0g6dR5iZCDX0L/wAt/oJ7sStP+AX+BtO2yy09cCFwzn3cu89ccaoNp735aysrq1vbFa2qts7u3v77sFhR8tcYdLGkknVi5EmjArSNtQw0ssUQTxmpBuPmlO/+0CUplLcm3FGQo4GgqYUI2OlyD1uRkXA80DkgRrKQNMBR5PIrXl1bwa4TPyS1ECJVuR+B4nEOSfCYIa07vteZsICKUMxI5NqkGuSITxCA9K3VCBOdFjMrp/AM6skMJXKljBwpv6eKBDXesxj28mRGepFbyr+62l7ypAkC+tNeh0WVGS5IQLPt6c5g0bCaT4woYpgw8aWIKyofQDiIVIIG5ti1SbjL+awTDoXdd+r+3eXtcZNmVEFnIBTcA58cAUa4Ba0QBtg8AiewQt4dZ6cN+fd+Zi3rjjlzBH4A+fzB5+9nnU=</latexit><latexit sha1_base64="SEoJ/LRWi/i7T8Gy+i68vUuwuS4=">AAACEnicbVDLSsNAFJ34rPUVHzs3g0VwVRIRdFnsxmUF+4AmhMlk0g6dR5iZCDX0L/wAt/oJ7sStP+AX+BtO2yy09cCFwzn3cu89ccaoNp735aysrq1vbFa2qts7u3v77sFhR8tcYdLGkknVi5EmjArSNtQw0ssUQTxmpBuPmlO/+0CUplLcm3FGQo4GgqYUI2OlyD1uRkXA80DkgRrKQNMBR5PIrXl1bwa4TPyS1ECJVuR+B4nEOSfCYIa07vteZsICKUMxI5NqkGuSITxCA9K3VCBOdFjMrp/AM6skMJXKljBwpv6eKBDXesxj28mRGepFbyr+62l7ypAkC+tNeh0WVGS5IQLPt6c5g0bCaT4woYpgw8aWIKyofQDiIVIIG5ti1SbjL+awTDoXdd+r+3eXtcZNmVEFnIBTcA58cAUa4Ba0QBtg8AiewQt4dZ6cN+fd+Zi3rjjlzBH4A+fzB5+9nnU=</latexit><latexit sha1_base64="SEoJ/LRWi/i7T8Gy+i68vUuwuS4=">AAACEnicbVDLSsNAFJ34rPUVHzs3g0VwVRIRdFnsxmUF+4AmhMlk0g6dR5iZCDX0L/wAt/oJ7sStP+AX+BtO2yy09cCFwzn3cu89ccaoNp735aysrq1vbFa2qts7u3v77sFhR8tcYdLGkknVi5EmjArSNtQw0ssUQTxmpBuPmlO/+0CUplLcm3FGQo4GgqYUI2OlyD1uRkXA80DkgRrKQNMBR5PIrXl1bwa4TPyS1ECJVuR+B4nEOSfCYIa07vteZsICKUMxI5NqkGuSITxCA9K3VCBOdFjMrp/AM6skMJXKljBwpv6eKBDXesxj28mRGepFbyr+62l7ypAkC+tNeh0WVGS5IQLPt6c5g0bCaT4woYpgw8aWIKyofQDiIVIIG5ti1SbjL+awTDoXdd+r+3eXtcZNmVEFnIBTcA58cAUa4Ba0QBtg8AiewQt4dZ6cN+fd+Zi3rjjlzBH4A+fzB5+9nnU=</latexit><latexit sha1_base64="SEoJ/LRWi/i7T8Gy+i68vUuwuS4=">AAACEnicbVDLSsNAFJ34rPUVHzs3g0VwVRIRdFnsxmUF+4AmhMlk0g6dR5iZCDX0L/wAt/oJ7sStP+AX+BtO2yy09cCFwzn3cu89ccaoNp735aysrq1vbFa2qts7u3v77sFhR8tcYdLGkknVi5EmjArSNtQw0ssUQTxmpBuPmlO/+0CUplLcm3FGQo4GgqYUI2OlyD1uRkXA80DkgRrKQNMBR5PIrXl1bwa4TPyS1ECJVuR+B4nEOSfCYIa07vteZsICKUMxI5NqkGuSITxCA9K3VCBOdFjMrp/AM6skMJXKljBwpv6eKBDXesxj28mRGepFbyr+62l7ypAkC+tNeh0WVGS5IQLPt6c5g0bCaT4woYpgw8aWIKyofQDiIVIIG5ti1SbjL+awTDoXdd+r+3eXtcZNmVEFnIBTcA58cAUa4Ba0QBtg8AiewQt4dZ6cN+fd+Zi3rjjlzBH4A+fzB5+9nnU=</latexit>

C
0

µνρσ
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Figure 13. The action of functional Φ2 on conformal blocks of spin J = 0, 2, 4 for d = 3 and

∆φ = 0.51815, i.e. in the 3D Ising CFT. Also shown are the locations of several low-lying primaries

in the 3D Ising CFT, as predicted in [27]. The only negative contribution to the sum rule (6.24)

comes from the stress tensor. The breakdown of contributions is shown in table 1. For visual clarity,

the plotted function is y(∆ + 5)54−∆ Φ2[Gs
∆,J ], where the constant y is chosen so that the action

on the stress tensor is −1. To get the contributions of primaries to the sum rule, we must multiply

the plotted function by the OPE coefficient squared and divide by the rescaling factor.
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analytic

Figure 14. The action of numerical functionals Φderiv
2,Λ and the analytic functional Φ2 on scalar

blocks Gs
∆,0, as a function of ∆. We show the case ∆φ = 0.5181489 and d = 3. For visual

clarity, the plotted function is (∆+5)54−∆ Φ[Gs
∆,0]. The colored curves show numerical functionals

with derivative orders Λ ∈ {15, 19, 23, 27, 35, 43, 51, 59}. The black dashed curve is the analytic

functional Φ2. As Λ increases, the numerical functionals converge to the analytic one, in accordance

with (6.30). See appendix F for details of our numerical implementation.
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Figure 15. The ratio Φderiv
2,Λ [Gs

∆,0]/Φ2[Gs
∆,0] of numerical functionals to the analytic functional Φ2,

acting on scalar blocks, as a function of ∆. We show the case ∆φ = 0.5181489 and d = 3. The

numerical functionals are computed with derivative orders Λ ∈ {15, 19, 23, 27, 35, 43, 51, 59}. As Λ

increases, the ratio approaches 1, in accordance with (6.30).

In figure 14, we plot the action of Φderiv
2,Λ on scalar blocks for various Λ, along with the action

of Φ2, for ∆φ = 0.5181489 in d = 3 dimensions. Details of our numerical implementation

are described in appendix F. As Λ gets larger, the numerical functionals indeed approach

Φ2. We give further detail in figure 15, where we plot the ratio of numerical functionals to

the analytic functional. The ratio clearly approaches 1 as Λ increases. This is a spectacular

check of our claim that Φ2 is an extremal functional for the spin-2 twist-gap problem!

On the other hand, we do not necessarily expect the action of limΛ→∞ Φderiv
2,Λ on higher-

spin blocks Gs
∆,J≥2 to match that of Φ2, because of the ambiguity in (6.26). In fact, it is

not obvious whether Φderiv
2,Λ [Gs

∆,J≥2] should converge at all. Whether Φderiv
2,Λ converges, along

with its limiting value, could depend on details of the numerical implementation such as

the objective function used to test feasibility and the choice of which derivatives to include.

In figure 16, we plot the action of Φderiv
2,Λ on blocks with J = 2 and J = 4. For J = 2, the

functionals appear to converge to a different value from Φ2. For J = 4, it is unclear whether

they are converging at the given derivative order. It would be interesting to explore the

dependence of numerical functional actions for J ≥ 2 on different implementation choices.

6.6 Comments on numerical bootstrap applications

Numerical bootstrap computations require a basis of s-t antisymmetric functionals. The

most commonly-used basis is the derivative basis (6.28), first proposed in the original nu-

merical bootstrap work [1]. Although simple, the derivative basis has important properties

that make it suitable for numerical applications:

1. Swappability.

2. Completeness in the limit Λ → ∞.

3. Asymptotic positivity of finite linear combinations.
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Figure 16. The action of numerical functionals Φderiv
2,Λ (colored curves) and the analytic functional

Φ2 (dashed curve) on blocks Gs
∆,J with spins J = 2 and J = 4, as a function of ∆. The setup

is the same as in figure 14. In the case J = 2, when ∆ . 5 the numerical functionals appear to

converge to a different value from the analytic functional Φ2. In the case J = 4, the numerical

functionals do not appear to converge (at this derivative order). Both behaviors are consistent with

non-uniqueness of the form (6.26) in the solution of the spin-2 twist gap problem.

“Swappability” means that the action of a functional commutes with the infinite sum

over conformal blocks inside a physical four-point function. Its importance was emphasized

in [92]. For ωderiv
mn , swappability follows readily from the fact that the conformal block

expansion converges exponentially near the point z = z̄ = 1
2 [59]. By “completeness” of

the derivative basis, we mean that a sum of conformal blocks G satisfying ωderiv
mn [G] = 0 for

all m, n with m + n odd is exactly crossing symmetric.

Finally, we call a functional ω “asymptotically positive” if ω[G∆,J ] is positive for all

(∆, J) above the unitarity bound, except for a compact subset of (∆, J)-space which we

call the “compact negative region.” An asymptotically positive functional is equivalent

to a proof that the spectrum of a CFT must contain an operator inside the compact

negative region. Many of the most interesting applications of the numerical bootstrap

require such proofs.

On the other hand, the derivative basis may not be the most efficient for obtaining

certain bounds on CFT data. For example, extremal functionals computed numerically

using the derivative basis can recover the existence of double-twist operators: they often

exhibit double-zeros close to the values ∆ = 2∆φ +2n+ℓ. However, to obtain these double-

zeros, one must use a relatively high derivative order Λ. For example, the studies [27,

33] found about 100 double-twist operators using linear combinations of approximately

1000 functionals. The problem is that double-twist operators are needed to solve crossing

symmetry in the lightcone regime, and this is far from the point z = z̄ = 1
2 around which the
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derivative basis is defined. By contrast, dispersive functionals automatically have double-

zeros at most double-twist locations. In a precise sense, they automatically account for the

unit operator contributions to the crossing equation. It is conceivable that fewer of them

will be needed to obtain a realistic spectrum.

Thus, it is interesting to identify candidate bases of dispersive functionals satisfying

the three properties of swappability, completeness, and asymptotic positivity of finite linear

combinations. For the functionals considered in this work, swappability is equivalent to

spin-2 (or faster) decay as defined in (4.5). Any of our subtracted (or multiply-subtracted)

functionals have this property.

We do not have a systematic understanding of completeness for dispersive function-

als. In [37], it was conjectured that αn,ℓ, βn,ℓ form a complete set of s-t antisymmetric

functionals with spin-0 decay. Assuming this, we furthermore conjecture that νi,j , µi,j

defined in (4.75) and (4.77) provide a complete set of s-t antisymmetric functionals with

spin-2 decay.

Unfortunately, finite linear combinations of νi,j , µi,j do not appear to be asymptotically

positive. We have checked this claim numerically as follows. First, we evaluated the νi,j ,

µi,j for several i, j acting on G∆,J in the limit ∆, J → ∞ with fixed ξ = ∆−J
∆+J , using

the methods described in section 6.2 and appendix D.2. Using SDPB [93, 94], we searched

numerically for finite linear combinations whose leading behavior at large ∆ is positive as

a function of ξ ∈ [0, 1]. We did not find any such linear combinations.

Consequently, it appears necessary to include at least one functional that is an infinite

sum of αn,ℓ’s and βn,ℓ’s, possessing a compact negative region. One possible candidate is Φ2

defined in (6.20). Specifically, Φ2 has a compact negative region if τ0(d, ∆φ) < d−2, which

is true for sufficiently small ∆φ. In this case, a possible basis of dispersive functionals

for the numerical bootstrap — conjecturally satisfying all three properties above — is

{Φ2, νij , µij}. This is not necessarily the only or optimal choice. It will be important

to identify other examples of functionals with compact negative regions and find efficient

methods for computing them.

Positivity properties of dispersive functionals are simpler to analyze in the context

of 1D CFTs. Reference [95] applied a basis of dispersive functionals to numerical 1D

bootstrap, finding improvement over the derivative basis.

7 Conclusions

In this paper we have studied “dispersive” sum rules, a class of constraints on confor-

mal field theories embodying crossing symmetry of four-point correlation functions. The

defining property of dispersive sum rules is that they possess double zeros which make

them insensitive to operators with scaling dimensions ∆ = 2∆φ + 2n + J , commonly called

double-twist operators. These zeros are highly desirable for analytic purposes and enable,

physically, to probe highly boosted Lorentzian configurations.

At a technical level, our sum rules are double integrals over cross-ratios, where one

variable runs over the s-channel and the other over the t-channel cut (see figure 4). After

deforming the contour so both variables wrap the same cut, the integral can be most natu-
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rally computed as a sum of either s-channel or t-channel primaries, and by equating these,

one relates the OPE data in the two channels. When the correlator is crossing symmetric,

the same manipulations yield sum rules on the common data. Special properties of the

integration kernel ensure the appearance of the desired double zeros. The ingredients are

highly versatile: the quadratic polynomial raised to half-integer power in Bv in eq. (4.35),

or its v → 1 limit which gives 1/(w − w̄) in eq. (6.5), all times powers of cross-ratios

and possible single logarithms. These can be combined to give sum rules with various

physical properties.

More conceptually, all such sum rules originate from dispersion relations. A remarkable

finding of this paper is that all CFT dispersion relations are the same. One can reconstruct

a Mellin amplitude from its poles, or reconstruct a position space correlators from its dDisc,

and these two processes are simply Mellin transform of each other. Expanding either in the

OPE limit, one obtains a basis of analytic functionals. Physically, convergence of dispersive

sum rules exploits causality and unitarity, which ensure that correlators remain analytic

and bounded in the Regge limit, where points approach null infinity. Our sum rules, as

discussed in section 4.5, are precisely the statement that detectors placed at null infinity

commute with each other.

Different spaces manifest different properties. The Mellin representation offers great

insight and computability but tends to obscure positivity and swappability properties;

position space clarifies both, but computations can be technically difficult; finally the

double-twist basis αn,ℓ and βn,ℓ diagonalizes the OPE data but finite combinations are not

positive. The concept of Polyakov-Regge block P
s|u
∆,J allows to seamlessly translate between

all spaces. A Polyakov-Regge block can be defined equivalently as the dispersive transform

of a conformal block, as a Witten exchange diagram with improved Regge behavior, and

more abstractly as the unique solution to physical conditions of single-valuedness and Regge

(super)boundedness. Uniqueness allows to directly translate results obtained in different

spaces, bypassing difficult integral transforms.

Compared with the usual OPE, the Polyakov-Regge expansion is term-by-term single-

valued, at the price of using OPE data in two channels. The expansion also introduces

spurious double-twist operators, and our sum rules can be understood as the requirement

that spurious terms cancel out. Such constraints are often referred to as Polyakov condi-

tions. Our approach makes clear, as discussed in section 3.4, that the Polyakov conditions

are independent of any spectral assumption and are purely consequences of crossing: they

hold whether or not physical double-twist operators are present in the spectrum.

An important step taken in this paper was to define subtracted Polyakov-Regge blocks,

which have improved Regge behavior. These are necessary for applying the formalism to

generic unitary theories. Various natural subtraction schemes can be used, amounting to

dividing by powers of Mellin variable or position-space cross-ratios. A certain subtraction

scheme which enhances the leading double-twist trajectory (rescaling the Mellin amplitude

as M(s, t)/((s − 2∆φ)(t − 2∆φ))) enjoys an interesting sign property: for Euclidean cross-

ratios it is negative definite above the double-twist threshold. The subtracted Polyakov-

Regge expansion in (4.82) expresses the correlator as mean-field-theory plus a mostly-

negative non-gaussianity.
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The B2,v family of sum rules, obtained from the twice-subtracted dispersion relation

(whence the 2 subscript), turns out to also enjoy interesting sign properties. A certain

derivative around v = 1, B̃′
2,1, has a strictly positive slope on all double-twist operators.

The parameter v offers enough freedom to diagonalize in spin, creating functionals with

double-zeros on all but one double-twists operator. The functional called Φ2, with a single

zero on the first spin-2 double-twist, appears to be an extremal functional for the spin-

2 gap-maximization problem: it proves that mean field theory correlator is the unique

solution to crossing with no spin-2 operator of ∆ < 2∆φ. An important open problem is

to construct large classes of dispersive functionals with manifest positivity above a fixed

twist. Such functionals can be used to constrain effective field theories in AdS. We plan to

return to this problem in the near future.

The B2,v sum rules have a physical interpretation as subtracted versions of super-

convergence sum rules [58]. To see this connection in section 4.5, we studied a “position

space event shape,” where initial and final states are created by position-space local op-

erators, and we place detectors at future null infinity. The subtractions that give rise to

B2,v are easily generalized: we include a general weighting function of retarded time when

integrating the detectors along null infinity. When the weighting function is meromorphic

with poles at the retarded times of the source and sink operators, we obtain a dispersive

sum rule from the condition that the commutator of detectors should vanish. In confor-

mal collider physics, it is more natural to study event shapes where the initial and final

states are momentum eigenstates. It would be interesting to study the Fourier transform

of B2,v and its generalizations and understand whether momentum space makes manifest

any representation-theoretic or positivity properties. In general, Fourier space offers other

approaches to deriving dispersion relations, see e.g. [36, 56, 96–98]. It would be interesting

to understand the relationship between the resulting sum rules and the sum rules identified

in this work.

As explained in section 5.2, dispersive functionals yield a new approach to the light-

cone bootstrap [20, 21] with the possibility of rigorously-controlled errors. Applying the

Lorentzian inversion formula (LIF) to study double-twist operators in nonperturbative the-

ories involves several subtleties. Because of the presence of multi-twist operators in the

other channel, the LIF, naïvely applied, yields only an asymptotic expansion for anomalous

dimensions at large spin. To understand finite spin, one can introduce a generating function

C(z, h̄) that is well-defined at finite spin and perform numerical fits to extract anomalous

dimensions, as in [27, 33, 34, 99]. Dispersive functionals give an alternative way to control

the sum over multi-twists and obtain well-defined results at finite spin. In pursuing this

direction, it will be important to understand the space of odd-spin functionals with spin-J

Regge decay, which provide the ambiguities in βimp
n,ℓ . In particular, it will be interesting to

explore the possible positivity properties that βimp
n,ℓ can have.

As stated above, all of our sum rules come from integrating the crossing equation over

the two cross-ratios. The integration contour C− × C+ naturally lives on the boundary of

the common region of convergence of the pair of OPEs. In other words, the sum rules come

from distributions on this boundary. The recent article [68] developed an understanding of
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CFT correlators and OPE convergence in the language of such distributions. It would be

interesting to use their work as a foundation for a systematic treatment of dispersive sum

rules, addressing questions of swappability and completeness in a unified manner.

We explained how some dispersive sum rules with good positivity properties lead to

rigorous results concerning the distribution of operators in (∆, J)-space. There exists

another approach which has been successfully used to address this class of questions, based

on Tauberian theorems [100–104]. We expect that Tauberian theorems and dispersive sum

rules are closely related and it would be rewarding to make the connection sharp.

One of the original motivations for the development of analytic extremal functionals

was the observation that very similar functionals lead to the optimal bounds in the numer-

ical bootstrap. There is numerical evidence that the 3D Ising CFT saturates the upper

bound on dimension gap in the scalar sector [87]. Assuming it does, there must exist a

corresponding extremal functional, which exhibits double zeros on the primaries present

in the σ × σ OPE.43 Since most double-twist operators of the 3D Ising CFT have small

anomalous dimensions, αn,ℓ, βn,ℓ with even ℓ > 0 will appear in the extremal functional

with small coefficients. It would be very interesting to learn more about the exact 3D Ising

functional from this viewpoint.
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A Details on the dispersion relation

A.1 Proof that G = Gs + Gt

In this appendix, we will show that the piecewise definitions of Gs(z, z̄) and Gt(z, z̄) in

equations (2.20), (2.21) are analytic, i.e. the discontinuity of the θ function cancels the

discontinuity of the integral. This is equivalent to showing that if we define

Gs(z, z̄) =

¨

C−×C+

dwdw̄

(2πi)2
π2(w̄ − w)KB(u, v; u′, v′)G(w, w̄) for Re(

√
u) > Re(

√
v) ,

Gt(z, z̄) =

¨

C−×C+

dwdw̄

(2πi)2
π2(w̄ − w)KB(v, u; v′, u′)G(w, w̄) for Re(

√
u) < Re(

√
v) ,

(A.1)

43The numerical bootstrap works by constructing successively better approximations of this functional.
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then the analytic continuations satisfy G = Gs + Gt. We will focus on Gt(z, z̄). We will

start in the region Re(
√

u) < Re(
√

v), where the contour definition (A.1) is valid, and

analytically continue in z, z̄ to the region Re(
√

u) > Re(
√

v). It will be very convenient to

switch to the variables a, b, a′, b′, defined by

a =
√

u , b =
√

v ,

a′ =
√

u , b′ =
√

v′ .
(A.2)

For simplicity, we will restrict to Lorentzian kinematics 0 < z, z̄ < 1, which is equivalent

to 0 < a, b < 1, 0 < a + b ≤ 1. Inside this region, the contour definition of Gt(z, z̄) in (A.1)

is valid for a < b, i.e. z + z̄ < 1, while the definition of Gs(z, z̄) in (A.1) is valid for a > b,

i.e. z + z̄ > 1. Let us start by transforming the contour C− × C+ in w, w̄ variables to the

a′, b′ space. They both run parallel to the imaginary axis and have a small positive real

part ǫ > 0. The Jacobian of the transformation is (w̄ − w)dwdw̄ = −4a′b′da′db′, so that

we find

Gs(z, z̄) =

ˆ ǫ+i∞

ǫ−i∞

da′

2πi

ˆ ǫ+i∞

ǫ−i∞

db′

2πi
4π2a′b′KB(a2, b2; a′2, b′2)G(w, w̄) for a > b

Gt(z, z̄) =

ˆ ǫ+i∞

ǫ−i∞

da′

2πi

ˆ ǫ+i∞

ǫ−i∞

db′

2πi
4π2a′b′KB(b2, a2; b′2, a′2)G(w, w̄) for a < b .

(A.3)

The branch points of G(w, w̄) are at w = 0, 1 and w̄ = 0, 1, and these map to a′ = 0 and

b′ = 0. The corresponding branch cuts of G(w, w̄) can be chosen to coincide with a′, b′ real

and negative. Thus ǫ > 0 ensures that the contour stays inside R×R in the w, w̄ variables.

Next, we need to analyze singularities of the kernel KB(v, u; v′, u′). These can only

occur when x = 0, x = 1 or x = ∞, with x given by (2.13). We reproduce x here in the

a, b variables

x =
16aba′b′

(a + b + a′ + b′)(a + b − a′ − b′)(a − b + a′ − b′)(a − b − a′ + b′)

1 − x =
(a + b + a′ − b′)(a + b − a′ + b′)(a − b + a′ + b′)(a − b − a′ − b′)
(a + b + a′ + b′)(a + b − a′ − b′)(a − b + a′ − b′)(a − b − a′ + b′)

.

(A.4)

This means that for fixed a, b, b′, the singularities can occur only at the following values of a′

x = 0 : a′ = 0, a′ = ∞
x = 1 : a′ = b′ + a + b, a′ = b′ − a − b, a′ = −b′ + a − b, a′ = −b′ − a + b

x = ∞ : a′ = b′ + a − b, a′ = b′ − a + b, a′ = −b′ + a + b, a′ = −b′ − a − b .

(A.5)

As long as a < b, the contour Re(a′) = Re(b′) = ǫ avoids all singularities. What happens

as we increase a − b from a negative value to a positive one? Some singularities cross our

contour and thus to maintain analyticity of Gt(z, z̄), we need to deform the contour to make

sure the singularities do not cross it. The possible singularities crossing the contour are at

a′ = b′ +a−b and a′ = b′ −a+b, where x = ∞, and at a′ = −b′ +a−b and a′ = −b′ −a+b,

where x = 1. However, the latter two are in fact not singularities of the integrand, for the
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following reason. The integrand in (A.1) is defined so that f(x) = x3/2
2F1(1

2 , 3
2 ; 2; 1 − x)

inside KB is evaluated on the first sheet at the point a′ = b′ = ǫ (where 0 < x < 1), and

by analytic continuation along the rest of the contour. On the first sheet, f(x) only has a

branch cut at x ∈ (−∞, 0], and is holomorphic at x = 1. It is not hard to check that on

our contour, a′ = −b′ + a − b and a′ = −b′ − a + b occurs at x = 1 on the first sheet, so

there is no singularity there.

On the other hand, a′ = b′ + a − b and a′ = b′ − a + b are genuine singularities and

must be avoided. We can take a − b from −|a − b| to |a − b| along a complex semicircle

around the origin, in which case the contour corresponding to the analytic continuation of

Gt(z, z̄) winds around the singularities. On the other hand, when a > b the straight contour

defines −Gs(z, z̄), since KB(u, v; u′, v′) = −KB(v, u; v′, u′). Therefore, Gs(z, z̄) + Gt(z, z̄) is

equal to the difference of the integral along the winding and straight contour. To evaluate

this difference, note that f(x) has a simple pole at x = ∞, together with a logarithmic

branch cut

x3/2
2F1

(
1

2
,
3

2
; 2; 1 − x

)
=

4x

π
+ log(x)f1(x) + f2(x) , (A.6)

where f1,2(x) are holomorphic at x = ∞. The contribution of the logarithmic cut to Gs +Gt

vanishes,44 so we only need to take into account the simple poles at a′ = b′ + a − b and

a′ = b′ − a + b.

Gs(z, z̄) + Gt(z, z̄) =

ˆ ǫ+i∞

ǫ−i∞

db′

2πi

[
Res

a′=b′+a−b
− Res

a′=b′−a+b

]
4π2a′b′KB(b2, a2; b′2, a′2)G(w, w̄) .

(A.7)

Near the poles, we can keep only the first term on the r.h.s. of (A.6), which gives

4π2a′b′KB(b2, a2; b′2, a′2)

∼ 4(a′b′)
1
2 (ab)− 1

2
(
b2 − a2 + b′2 − a′2)

(a + b + a′ + b′)(a + b − a′ − b′)(a − b + a′ − b′)(a − b − a′ + b′)
,

(A.8)

so that
Res

a′=b′+a−b

[
4π2a′b′KB(b2, a2; b′2, a′2)G(w, w̄)

]

= − 1

b′ − b

√
(a − b + b′)b′

ab
G(w, w̄)|a′=b′+a−b

Res
a′=b′−a+b

[
4π2a′b′KB(b2, a2; b′2, a′2)G(w, w̄)

]

= − 1

b′ + b

√
(b − a + b′)b′

ab
G(w, w̄)|a′=b′−a+b .

(A.9)

The b′ integral in (A.7) can now be evaluated by closing the contour to the right. We can

not close to the left since G(w, w̄) has a branch cut there. Only the first residue, with pole

at b′ = b, contributes since b > 0. It gives exactly G(w, w̄) evaluated at a′ = a, b′ = b, in

other words

Gs(z, z̄) + Gt(z, z̄) = G(z, z̄) , (A.10)

44This can be shown by a similar contour argument as what follows for the simple poles, the only difference

being that the final b′ integration gives zero since the integrand has no singularities in the region Re(b′) > 0.
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which completes the proof. What we have shown is that this equation gives the analytic

continuation of either line of (A.1) to the other side of the inequalities stated there, and

demonstrates that both Gs(z, z̄) and Gt(z, z̄) are holomorphic in the entirety of R × R,

since G(z, z̄) is.

A.2 Recovering the original dispersion relation

The purpose of this appendix is to explain in more detail that when G(z, z̄) is single-valued

in the Euclidean signature, then the contour definition (A.1) of Gs(z, z̄), Gt(z, z̄) agrees

with the original dispersion relation (2.9). Let us again focus on Gt(z, z̄), the proof for

Gs(z, z̄) being entirely equivalent. We will restrict to Lorentzian kinematics z, z̄ < 0, or

equivalently u, v > 0 with
√

v ≥ √
u + 1.45 In particular,

√
v >

√
u, so (A.1) applies.

We want to demonstrate using a contour deformation that the second line of (A.1) is

equivalent to

Gt(z, z̄) =

¨

Ltu

du′dv′K(v, u; v′, u′)dDisct[G(w, w̄)] , (A.11)

where Ltu = {(u′, v′) : u′ > 1, 0 < v′ < (
√

u′ − 1)2} is a Lorentzian diamond and

K(v, u; v′, u′) =
v − u + v′ − u′

64π(uvu′v′)
3
4

[
x

3
2 2F1

(
1

2
,
3

2
; 2; 1 − x

)
θ(0 < x < 1) − 4δ(x − 1)

]
,

(A.12)

so that in fact the integration in (A.11) is restricted to the smaller region {(u′, v′) : u′ >

(
√

u +
√

v)2, 0 < v′ ≤ (
√

u′ − √
u − √

v)2}. Recall that dDisct[G(w, w̄)] is defined as

dDisct[G(w, w̄)] = −1

2

[
G(w+, w̄+) + G(w−, w̄−) − G(w+, w̄−) − G(w−, w̄+)

]
, (A.13)

where w, w̄ > 1 and we use notation w± = w ± iǫ, w̄± = w̄ ± iǫ for infinitesimal ǫ > 0.

Let us start by rewriting our end goal (A.11) as an integral in w, w̄ variables

Gt(z, z̄) = −1

2

ˆ ∞

1
dw

ˆ ∞

1
dw̄ (w̄ − w)θ(w̄ > w)K(v, u; v′, u′)

×
[
G(w+, w̄+) + G(w−, w̄−) − G(w+, w̄−) − G(w−, w̄+)

]
.

(A.14)

The indicator function θ(w̄ > w) is present because u′, v′ are invariant under w ↔ w̄ and

thus the region {(w, w̄) : w, w̄ > 1} is a double cover of the region Ltu. In fact, without the

factor θ(w̄ > w), the integral in (A.14) would vanish identically, due to being antisymmetric

under w ↔ w̄. Indeed, for all w, w̄ > 1 we have

G(w+, w̄+) = G(w̄+, w+) ,

G(w−, w̄−) = G(w̄−, w−) ,

G(w+, w̄−) = G(w̄−, w+) = G(w̄+, w−) = G(w−, w̄+) ,

(A.15)

where the first two lines follow from symmetry G(w, w̄) = G(w̄, w) inside R × R and the

third line from symmetry and single-valuedness in Euclidean signature.

45The proof for more general kinematics follows by analytic continuation.
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The strategy of deriving (A.14) from (A.1) is to wrap the w̄ contour tightly on the

branch cut w̄ ∈ [1, ∞), followed by wrapping the w contour on the same branch cut

w ∈ [1, ∞). This naturally produces the four terms in the square bracket in (A.14),

depending on whether w, w̄ are above or below the cut. The remaining task is to show that

each term comes multiplied with the same factor (w − w̄)θ(w̄ > w)K(v, u; v′, u′)/2.

Consider first the term containing G(w+, w̄+). After wrapping the w̄ contour in (A.1),

the resulting w integrand has various branch points located in w > 1. The branch points

can occur only at x = 0, 1, ∞, with all the a priori possibilities listed in (A.5). Recall that

we are assuming a, b > 0, b > a+1 and note that since both w and w̄ are above the branch

cut, we have a′ > 0, b′ = −
√

(w − 1)(w̄ − 1) < 0 with a′ ≥ −b′ + 1. It follows that the

singularities occur only at the following loci for w, w̄ > 1

x = 0 : w = 1, ∞ , w̄ = 1, ∞

x = 1 :
√

w
√

w̄ −
√

w − 1
√

w̄ − 1 =
√

v − √
u

√
w

√
w̄ +

√
w − 1

√
w̄ − 1 =

√
v +

√
u

x = ∞ :
√

w
√

w̄ −
√

w − 1
√

w̄ − 1 =
√

v +
√

u
√

w
√

w̄ +
√

w − 1
√

w̄ − 1 =
√

v − √
u .

(A.16)

These loci split the integration region w, w̄ > 1 into several subregions. We need to

analytically continue KB(v, u; v′, u′) in the integrand of (A.1) to each of these subregions.

Antisymmetry of the integrand under w ↔ w̄ ensures that most of these contributions

cancel. The only regions which make a non-vanishing contributions are

A : (w > 1) ∧ (w̄ > 1) ∧ (w̄ > w) ∧ (
√

w
√

w̄ −
√

w − 1
√

w̄ − 1 ≥ √
v +

√
u)

B : (w > 1) ∧ (w̄ > 1) ∧ (w̄ < w) ∧ (
√

w
√

w̄ −
√

w − 1
√

w̄ − 1 ≥ √
v +

√
u) .

(A.17)

x(a, b; a′, b′) is negative in both A and B, and is below the branch cut of

f(x) = x
3
2 2F1(

1

2
,
3

2
; 2; 1 − x) (A.18)

in A and above the cut in B. Thus in A, B, f(x) becomes

A : f(x) 7→ [−x(a, b; a′, −|b′|)] 3
2 2F1

(
1

2
,
3

2
; 2; 1 − x(a, b; a′, −|b′|) + iǫ

)

B : f(x) 7→ −[−x(a, b; a′, −|b′|)] 3
2 2F1

(
1

2
,
3

2
; 2; 1 − x(a, b; a′, −|b′|) − iǫ

)
.

(A.19)

We can combine the contribution from A and are B by changing the coordinates w ↔ w̄

in the latter. It follows that the total contribution of f(x) becomes

A + B : f(x) 7→
(

x

1 − x

) 3
2
[

2F1

(
1

2
,
3

2
; 2;

1

1 − x
+ iǫ

)
+ 2F1

(
1

2
,
3

2
; 2;

1

1 − x
− iǫ

)]
,

(A.20)
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where x = x(a, b; a′, |b′|) ∈ [0, 1], and where we used the identity

x(a, b; a′, −b′) =
x(a, b; a′, b′)

x(a, b; a′, b′) − 1
. (A.21)

Finally, we can simplify the result by using the following identity satisfied by the hyperge-

ometric for x ∈ [0, 1] and ǫ → 0+

(1 − x)− 3
2

[
2F1

(
1

2
,
3

2
; 2;

1

1 − x
+ iǫ

)
+ 2F1

(
1

2
,
3

2
; 2;

1

1 − x
− iǫ

)]

= 2 2F1

(
1

2
,
3

2
; 2; 1 − x

)
− 8δ(x − 1) .

(A.22)

The delta function comes from the simple pole of f(x) at infinity. In summary, we have

shown that the part of integration where w and w̄ are either both above or both below the

branch cut contributes

Gt(z, z̄) ⊃ −1

2

ˆ ∞

1
dw

ˆ ∞

1
dw̄ (w̄ − w)θ(w̄ > w)K(v, u; v′, u′)

[
G(w+, w̄+) + G(w−, w̄−)

]

(A.23)

with K(v, u; v′, u′) given by (A.12). This is in perfect agreement with (A.14).

What remains is to find the contribution to the integral when w and w̄ are on opposite

sides of the cut w, w̄ ∈ [1, ∞). In this situation b′ = |b′| =
√

(w − 1)(w̄ − 1) is positive. Af-

ter performing a similar analysis as in the previous case, we find that the only contribution

can come from the regions

Ã : (w > 1) ∧ (w̄ > 1) ∧ (w̄ > w) ∧ (
√

w
√

w̄ −
√

w − 1
√

w̄ − 1 ≥ √
v − √

u)

B̃ : (w > 1) ∧ (w̄ > 1) ∧ (w̄ < w) ∧ (
√

w
√

w̄ −
√

w − 1
√

w̄ − 1 ≥ √
v − √

u) ,
(A.24)

where x(a, b; a′, b′) ∈ (0, ∞). In region Ã, x is on the first sheet, and in B̃, it is on the second

sheet. Furthermore, the direction in which x winds around the origin to get to the second

sheet depends on whether we are looking at the contribution of G(w+, w̄−) or G(w−, w̄+).

Since G(w+, w̄−) = G(w−, w̄+) for single-valued functions, we can simply combine these

contributions. In summary, to get the combined contribution of G(w+, w̄−) and G(w−, w̄+)

to the integral, we should make the following replacement for f(x) (defined in (A.18))

f(x) 7→ f(x) − 1

2
f	(x − iǫ) − 1

2
f�(x + iǫ) , (A.25)

where the circular arrows indicate the direction of analytic continuation around the origin.

It is not hard to check that for x ∈ (0, ∞)

f(x) − 1

2
f	(x − iǫ) − 1

2
f�(x + iǫ) = 2θ(x < 1)f(x) − 8δ(x − 1) . (A.26)

The indicator function θ(x < 1) arises because the branch point x = ∞ is only logarithmic

and thus the double discontinuity in (A.25) annihilates f(x) for x > 1. In summary, the

part of integration where w and w̄ are on opposite sides of the branch cut contributes

Gt(z, z̄) ⊃ 1

2

ˆ ∞

1
dw

ˆ ∞

1
dw̄ (w̄ − w)θ(w̄ > w)K(v, u; v′, u′)

[
G(w+, w̄−) + G(w−, w̄+)

]
,

(A.27)
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again in perfect agreement with (A.14). The extra minus sign compared to (A.23) arises

because w and w̄ run in opposite directions when on opposite sides of the cut. This

completes the proof that (A.1) and (A.11) are equivalent.

A.3 Dispersion kernel from Mellin space

Below, we will consider the formula (2.68) for the dispersion kernel arising from Mellin

space, reproduced here

KMellin(u, v; u′, v′) =
1

2π2u′v′

˚

dp dq dp′

(2πi)3

Γ(−p)2Γ(−q)2Γ(p′ + 1)2

(p′ − p)Γ(p′ − p − q)2

×
(

u

v′

)p (v

v′

)q (v′

u′

)p′

.

(A.28)

We will show that, as expected, KMellin(u, v; u′, v′) vanishes for
√

v′ <
√

u′ +
√

u +
√

v, and

that the contact term proportional to δ(
√

v′ −
√

u′ − √
u − √

v) agrees with (2.12). We

assume u, v, u′, v′ are real and positive.

The first step is to evaluate the integral over q. It vanishes for v′ < v since in that

case we can deform the contour to the left, encountering no poles. When v′ > v, we can

use the formula
ˆ −ǫ+i∞

−ǫ−i∞

dq

2πi

Γ(−q)2

Γ(r − q)2
zq =

1

Γ(2r)
(1 − z)2r−1

2F1(r, r; 2r; 1 − z) , (A.29)

where ǫ > 0. We find

KMellin(u, v; u′, v′) =
1

π2u′v′

¨

dp dr

(2πi)2

Γ(−p)2Γ(p + r + 1)2

Γ(2r + 1)

×
(

u

u′

)p (v′

u′

)r (
1 − v

v′

)2r−1

× 2F1

(
r, r; 2r; 1 − v

v′

)
,

(A.30)

where we changed variables from p′ to r = p′ −p. The integral over p can now be evaluated

using the formula
ˆ −ǫ+i∞

−ǫ−i∞

dp

2πi
Γ(−p)2Γ(p + a)2zp =

Γ(a)4

Γ(2a)
z−a

2F1

(
a, a; 2a;

z − 1

z

)
, (A.31)

where 0 < ǫ < Re(a). The result is

KMellin(u, v; u′, v′) =
1

π2u(v′ − v)

ˆ

dr

2πi

Γ(r + 1)4

Γ(2r + 1)Γ(2r + 2)

[
(v′ − v)2

uv′

]r

× 2F1

(
r, r; 2r; 1 − v

v′

)
2F1

(
r + 1, r + 1; 2r + 2; 1 − u′

u

)
,

(A.32)

where the integral runs over any vertical line with Re(r) > 0. The only singularities of the

integrand are at negative integers. Therefore, the integral vanishes provided the integrand

decays as r → +∞. To diagnoze the asymptotics of the integrand, we need the asymptotics

of the hypergeometric

2F1(r, r; 2r; 1 − z) ∼ z− 1
4

(√
z + 1

2

)1−2r

as r → ∞ . (A.33)
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In the end, we find the following r → ∞ asymptotics of the integrand

KMellin(u, v; u′, v′)|r→∞ =

ˆ

dr

2πi

(√
v′−√

v√
u+

√
u′

)2r

2π(uu′vv′)
1
4 (

√
u +

√
u′)(

√
v′ − √

v)
. (A.34)

It follows KMellin(u, v; u′, v′) vanishes for
√

v′ <
√

u +
√

v +
√

u′ as expected. Furthermore,

we can evaluate the integral on the r.h.s. of (A.34) to find the contact term, since the latter

only comes from the r → ∞ asymptotics of the full integrand

KMellin(u, v; u′, v′) ⊃
δ

[
log

(√
v′−√

v√
u+

√
u′

)]

4π(uu′vv′)
1
4 (

√
u +

√
u′)(

√
v′ − √

v)

=
δ
(√

v′ − √
u − √

v −
√

u′
)

4π(uu′vv′)
1
4 (

√
u +

√
u′)

,

(A.35)

in perfect agreement with (2.12).

B Example decompositions

In this appendix, we will compute the decomposition G(u, v) = Gs(u, v) + Gt(u, v) for the

connected four-point function of 〈φ2φ̄2φ2φ̄2〉, where φ is a free complex scalar in d = 3 and

d = 4. In general d, the connected four-point function is

G(x1, x2, x3, x4) =
1

(|x12||x23||x34||x14|)d−2
⇒ G(u, v) = (uv)− d−2

2 . (B.1)

It is one of the simplest correlators for which dDiscs[G], dDisct[G] and dDiscs[dDisct[G]]

are all nonvanishing.

B.1 G(u, v) = 1/(uv)

In d = 4, we have G(u, v) = 1/(uv). G(u, v) is u-channel superbounded and s ↔ t symmet-

ric. It follows that Gt(u, v) = Gs(v, u) so it is enough to compute Gs(u, v). To do that, we

can use the dispersion relation in the form (2.9). Note that

dDiscs[G(x1, x2, x3, x4)] = −1

2
〈[φ2(x1), φ̄2(x2)][φ2(x3), φ̄2(x4)]〉 ∼ δ(x2

12)δ(x2
34)

x2
23x2

14

, (B.2)

so that dDiscs[G(u′, v′)] is localized to u′ = 0. Performing the v′ integral in the dispersion

relation leads to

Gs(u, v) =
1

u(v − u)
+

log(u
v )

(u − v)2

Gt(u, v) =
1

v(u − v)
+

log( v
u)

(u − v)2
.

(B.3)

It is easy to check that indeed Gs(u, v) + Gt(u, v) = 1/(uv). It may seem that Gs(u, v) and

Gt(u, v) have a pole at u = v but in fact the pole precisely cancels between the rational and
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logarithmic term, so that Gs,t are both holomorphic for z, z̄ ∈ R = C\((−∞, 0] ∪ [1, ∞)).

Furthermore, Gs,t are Euclidean single-valued around both s- and t-channel. Finally, it

follows by expanding Gs(u, v) around v = 0 that dDisct[Gs] = dDiscs[Gt] = 0 as required.

Gs,t are uniquely fixed by the properties listed in this paragraph.

Equivalently, Gs,t can be found by computing the functional actions α̂s
i,j [G], β̂s

i,j [G]

since we have

Gt(z, z̄) =
∞∑

i,j=0

[
α̂s

i,j [G] + β̂s
i,j [G]

log(zz̄)

2

]
ziz̄j . (B.4)

By computing α̂s
i,j [G], β̂s

i,j [G] with low values of i, j, we were able to guess the formulas

α̂s
i,j [G] =

Γ(i + j + 2)

Γ(i + 1)Γ(j + 1)
[H(i) + H(j) − 2H(i + j + 1)] + 1

β̂s
i,j [G] = − 2 Γ(i + j + 2)

Γ(i + 1)Γ(j + 1)
,

(B.5)

where H(i) is the harmonic number, which indeed resums to (B.3).

Note that this example illustrates that there is no contradiction between G = Gs + Gt

and dDisct[Gs] = dDiscs[Gt] = 0 even if the quadruple discontinuity of G is nonvanishing

qDisc[G] = dDiscs[dDisct[G]] 6= 0 . (B.6)

Indeed, in general we have

qDisc[G] = dDiscs[dDisct[G]] = dDiscs[dDisct[Gt]] 6= dDisct[dDiscs[Gt]] = 0 , (B.7)

since dDiscs and dDisct do not commute. This may seem surprising since dDiscs and dDisct

can be computed by analytically continuing in different variables (z and z̄ respectively).

Noncommutativity arises because the analytic structure as a function of z may depend on

whether z̄ is on the first or second sheet. Indeed, Gs(u, v) has a pole at u = v on the second

sheet, while there is no such pole on the first sheet.

B.2 G(u, v) = 1/
√

uv

For an example where dDiscs[G(u, v)] does not localize to a delta function at u = 0, we

consider d = 3 where

G(z, z̄) =
1√
uv

. (B.8)

The dispersion relation leads to

Gs(u, v) =
2 Li2

(√
v
u

)
− 2 Li2

(
−
√

v
u

)
+ log

(
v
u

)
log

(√
u−√

v√
u+

√
v

)

π2
√

uv
for v < u

Gt(u, v) =
2 Li2

(√
u
v

)
− 2 Li2

(
−
√

u
v

)
+ log

(
u
v

)
log

(√
v−√

u√
v+

√
u

)

π2
√

uv
for u < v .

(B.9)

Gs,t(u, v) appear to have a logarithmic branch point at u = v but in fact the branch

cut precisely cancels between the first dilogarithm and log(
√

u − √
v). Thus Gs,t(u, v)
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are holomorphic everywhere in R × R. The above formulas also satisfy dDiscs[Gt] =

dDisct[Gs] = 0. Finally, the identity

Gs(u, v) + Gt(u, v) =
1√
uv

(B.10)

is a consequence of the dilogarithm identity

Li2(x) + Li2

(
1

x

)
+

1

2
log2(−x) +

π2

6
= 0 . (B.11)

C Details on Mellin-space sum rules

The purpose of this appendix is to record the formula for the position-space kernel of

functional B̂2,t introduced in section 4 as the Mellin transform of B2,v

B̂2,t = Γ(∆φ − t

2
)−2Γ(

t

2
)−2

ˆ ∞

0

dv

v
v∆φ− t

2 B2,v . (C.1)

Recall the definition of B2,v as a double contour integral in eq. (4.35)

B2,v[F ] =

¨

C−×C+

dwdw̄

(2πi)2

(w̄ − w)(v′ − u′)

u′v′√v2 − 2(u′ + v′)v + (u′ − v′)2
F(w, w̄) . (C.2)

Recall also its dDisc-manifesting form (4.39)

B2,v[F ] =

ˆ ∞

v
dv′
ˆ (

√
v′−√

v)2

0
du′ v′ − u′

π2u′v′√v2 − 2(u′ + v′)v + (u′ − v′)2
dDiscs[F(u′, v′)] .

(C.3)

Since B̂2,t is the Mellin transform of B2,v, it admits analogous representations

B̂2,t[F ] =

¨

C−×C+

dwdw̄

(2πi)2
(w̄ − w)H2,t(u

′, v′)F(w, w̄)

B̂2,t[F ] =

ˆ ∞

0
dv′
ˆ v′

0
du′ 1

π2
H̃2,t(u

′, v′) dDiscs[F(u′, v′)].

(C.4)

It follows from these definitions that the position-space kernels are given by the following

Mellin integrals

H2,t(u
′, v′) = Γ

(
∆φ − t

2

)−2

Γ

(
t

2

)−2 ˆ ∞

0

dv

v
v∆φ− t

2
v′ − u′

u′v′√v2 − 2(u′ + v′)v + (u′ − v′)2

(C.5)

and

H̃2,t(u
′, v′) = Γ

(
∆φ − t

2

)−2

Γ

(
t

2

)−2ˆ (
√

v′−
√

u′)2

0

dv

v
v∆φ− t

2
v′ − u′

u′v′√v2 − 2(u′+v′)v + (u′−v′)2
.

(C.6)
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These integrals can be done in a closed form. We find

H2,t(u
′, v′) =

Γ( t
2 − ∆φ + 1)

Γ( t
2)2Γ(∆φ − t

2)

v′ − u′

u′v′ |v′ − u′|∆φ− t
2

−1

× 2F1

(
2∆φ − t

4
,
t − 2∆φ + 2

4
; 1; − 4u′v′

(v′ − u′)2

) (C.7)

and

H̃2,t(u
′, v′) =

1

2Γ
(

t
2

)2
Γ(2∆φ − t)

(v′ − u′)∆φ− t
2

u′v′ k∆φ− t
2

(
v′ − u′

v′

)
, (C.8)

where kh(z) = zh
2F1(h, h; 2h; z).

D Details on evaluation of B2,v functionals

D.1 Direct numerical integration of dDisc

The B2,v functionals can be computed as an integral over dDisc, as just recorded in

eq. (C.3). For dimensions ∆ > 2∆φ + J , we find that the integral converges rapidly when

employing, for example, standard analytic expressions of the conformal blocks in d = 2 and

d = 4. We found particularly convenient to use the W and W̄ coordinates described below

in eq. (D.5). For smaller values of ∆, it is necessary to perform an analytic continuation,

which we now detail, both for generic values of v and for the series expansion around v = 1.

Below the double-twist threshold, the divergences in eq. (C.3) occur at u′ → 0. This

region can be regularized (without creating problems elsewhere) by subtracting a finite

number of powers of u′ in the series expansion of the block. These subtractions then need

to be computed analytically; this turns out to be possible, we find:

ˆ (
√

v′−√
v)2

0

v′du′

π2u′√v2 − 2(u′ + v′)v + (u′ − v′)2

(
u′

v′

)p

=
Γ(p)Γ(p + 1)

π2Γ(2p + 1)
(1 − t)2p−1

2F1(p, p, 2p, 1 − t)

≡ Ip(t) (D.1)

where t = v/v′. This formula is useful because the right-hand-side is analytic in the

exponent p. This enables one to play an “add and subtract” game, where power laws are

subtracted from the integrand and added back in (analytically continued) integrated form:

B2,v[Gs
∆,J ] =

ˆ

du′dv′ (v
′ − u′)dDiscs[Gs

∆,J(u′, v′)] − v′∑
p(u′/v′)pfp(v′)

π2u′v′√v2 − 2(u′ + v′)v + (u′ − v′)2

+
∑

p

ˆ 1

0

dt

t
Ip(t)fp(v/t) .

(D.2)

By including sufficiently many terms in the finite sum
∑

p (where each exponent p depends

linearly on ∆) so that the first line converges, this formula gives the analytic continuation

of B2,v to any desired value of ∆. A subtlety worth mentioning is that the t integral on
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the second line can itself diverge near t = 1; this may be dealt with using a second level of

“add and subtract” now using the simpler identity:

ˆ 1

0
dt(1 − t)q ≡ 1

q + 1
. (D.3)

We have tested our numerical implementation against the analytic results for identity and

near double-twist behavior recorded in eqs. (4.43)–(4.46).

A comment is in order about the integration range. The region in eq. (D.2) is on the

left axis w, w̄ < 0, whereas standard expressions for conformal blocks are typically given for

0 < w < 1. In practice we deal with this by switching variables to W = w
w−1 and W̄ = w̄

w̄−1

and using the s ↔ u transformation law of conformal blocks. In our normalization (2.4)

the blocks are thus computed as:

Gs
∆,J(w, w̄) = (−1)J(ww̄)−∆φ × G∆,J

(
w

w − 1
,

w̄

w̄ − 1

)
(D.4)

where G are standard (global) blocks, for example for identical external operators in d = 2:

G
(d=2)
∆,J (W, W̄ ) =

k∆−J(W )k∆+J(W̄ ) + (W ↔ W̄ )

1 + δJ,0
. (D.5)

We then transform the first line of eq. (D.2) to W, W̄ coordinates.

For expanding around v = 1 the procedure needs to be adapted to deal with singular-

ities at w̄ = w as visible from eq. (6.5). Consider an integral the generic form:

f =

¨

C−×C+

dwdw̄

(2πi)2

f(w, w̄)

(w̄ − w)2q
(D.6)

where we will assume that f(w, w̄) is symmetrical in w ↔ w̄ and analytic except for

possible poles at w, w̄ = 0, 1. On the C− × C+ contour the denominator 1/(w̄ − w)2 causes

no difficulty, however the integral does not manifest the double zeros. We find that this

contour is not very convenient for numerics since it suffers from large cancellations. Instead,

we deform the w̄ contour so as to integrate both variables over the left cut C− × C−. The

branches add up to a combination of principal values and discontinuities (see eq. (4.13))

however all the discontinuities of the kernel give total derivatives thanks to symmetry of

f , by the argument given below eq. (4.13). Recall that we should first aim to compute the

integral for ∆ and ∆φ large enough that the integrand vanishes at 0 and ∞ and integration-

by-parts can be performed freely; we can then analytically continue from there. Thus only

the principal value of the kernel contributes. Switching to the W and W̄ variables we thus

have an integral of the form

f =

ˆ 1

0

dWdW̄

2π2
P g(W, W̄ )

(W̄ − W )2q
(D.7)

where g includes a Jacobian and dDisc, explicitly,

g(W, W̄ ) =
[
(1−W )(1−W̄ )

]2q−2 × dDiscs[f ]

(
W

W − 1
,

W̄

W̄ − 1

)
. (D.8)
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The principal value prescription P means to average over contours going and below the pole.

This is not yet convenient for numerics. The trick, we find, is to use symmetry in W ↔ W̄

to restrict the range to W < W̄ , and then replace the P-distribution by the so-called +

distribution and δ-functions. Note that the P prescription is equivalent to restricting the

integration to |W − W̄ | > ǫ and throwing away singular powers and logarithms of ǫ. The

+ prescription, on the other hand, is defined by subtracting from the integrand negative

powers of (W − W̄ ) in its Laurent series around W = W̄ ; they are related as follows:

ˆ 1

0

dWdW̄

2π2
P
[

g(W, W̄ )

(W̄ − W )2q

]
−
ˆ

0<W <W̄ <1

dWdW̄g(W, W̄ )

π2(W̄ − W )2q
+

=
2q−1∑

k=0

1

k(2q − 1 − k)!

ˆ 1

0

dW̄

π2W̄ k
∂2q−1−k

W g(W, W̄ )
∣∣∣
W =W̄

,

(D.9)

where the second line is obtained simply by P-integrating the subtraction implied by the

+ prescription. (Here when k = 0, 1
kW̄ k should be replaced by log W̄ .) Eq. (D.9) forms

the basis of our numerical implementation of sum rules of the form (D.6). For α-type

and β-type functionals, one can alternatively compute their actions using a combination

of recursion relations and the Lorentzian inversion formula. We detail these methods in

appendix E.

The terms on the second line can be further simplified using integration by parts when

g(W, W̄ ) = g(W̄ , W ), because for example ∂W g(W, W̄ )W =W̄ = 1
2∂W̄ g(W̄ , W̄ ). (In general,

one can always eliminate the log W̄ term this way.) We omit details and record only one

concrete example relevant for B′
2,1:46

ˆ 1

0

dWdW̄

2π2
P
[

g(W, W̄ )

(W̄ − W )2

]
=

ˆ

0<W <W̄ <1

dWdW̄g(W, W̄ )

π2(W̄ − W )2
+

−
ˆ 1

0

dW̄

2π2W̄
g(W, W̄ ) . (D.10)

For values of ∆ where the integrals do not converge, we analytically continue each sep-

arately. The + prescription is straightforward to analytically continue in ∆, using the

following analytic integral of a power of W :

ˆ W̄

0

dW W p

(W̄ − W )q
+

=
(−p)q−1

(q − 1)!

(
H(q − 1) − H(p)

)× W̄ p+1−q (D.11)

where H is the harmonic number. For one-dimensional integrals we simply use eq. (D.3).

Eqs. (D.7) and (D.10) summarize our method to compute integrals of the form (D.6), such

as B2,1 and B′
2,1 in eqs. (6.5). Finally, we evaluate B̃′

2,1 using

B̃′
2,1 = ∆φB2,1 + 2B′

2,1 . (D.12)

To give two examples, with d = 2 and ∆φ = 1
8 we find:

B̃′
2,1[Gs

0,1] = 0.807557 . . . , B̃′
2,1[Gs

2,2] = −10.585837 . . . (D.13)
46The formula with the least number of derivatives appears to be:

eq. (D.9) ≃
q∑

k=1

ck∂2q−2k
W g(W, W̄ )W =W̄

k(2k − 1)W̄ 2k−1(2q − 2k)!

where ck involves Bernoulli numbers: ck = −B2k(22k − 1) = {− 1
2
, 1

2
, − 3

2
, 17

2
, . . .}.
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D.2 Action of B̃2,v on large-twist two-dimensional blocks

In this appendix we study analytically the limit ∆−J ≫ 1 in d = 2. Because heavy blocks

decay exponentially like e−2∆/
√

w̄, the B2,v functionals are then saturated by the region

w, w̄ ∼ ∆2: the u-channel Regge limit.

To study this limit we rescale w 7→ w̄t and take w̄ → −∞. The B2,v functional in

eq. (C.3) becomes simply

lim
∆−J≫1

B2,v[Gs
∆,J ] =

ˆ tmax

0

dt(1 − t2)

π2t
√

(1 + t)2 − 4tv

ˆ 0

−∞

dw̄

w̄2
dDisc[Gs

∆,J(tw̄, w̄)] (D.14)

where tmax is the smallest of the roots of the square root denominator (or either of its

complex roots when v < 1). The integral will be dominated by w̄ ∼ −1/∆2, where the

blocks simplify. In d = 2, the (global) blocks have the scaling limit [20]:

Gs
J,∆(w, w̄) → 4

Γ(2h)

Γ(h)2

Γ(2h̄)

Γ(h̄)2
(ww̄)−∆φ

(
K0(2h̄/

√
−w)K0(2h/

√
−w̄) + (h ↔ h̄)

)
(D.15)

where h = ∆−J
2 , h̄ = ∆+J

2 . Note that in principle we could use the Stirling approximation

to simplify the Γ-functions, but this particular combination of Γ factors occurs frequently

and we prefer to keep it unexpanded. In fact, we will find convenient to divide by the

following overall shadow-symmetric combination of Γ-functions:

C
∆φ

∆,J ≡ (1 + δJ,0

)∆2 − J2

4

Γ
(

∆−J
2

)2

Γ(∆ − J)

Γ
(

∆+J
2

)2

Γ(∆ + J)

× Γ

(
2∆φ + ∆ − J

2

)
Γ

(
2∆φ + 2 − ∆ − J

2

)

× Γ

(
2∆φ + ∆ + J

2

)
Γ

(
2∆φ + 2 − ∆ + J

2

)
,

(
C

∆φ

∆,J

)−1 ∼ 2 sin

(
∆ − J − 2∆φ

2

)2 4∆−2

π3(1 + δ0,J)

(
∆2 − J2

4

)− 1
2

−2∆φ

.

(D.16)

The idea is that by respecting the shadow symmetry, we will ensure that subleading cor-

rections proceed in inverse powers of Casimir invariants rather than simply 1/∆, hopefully

making the formula more accurate. Indeed find empirically that dividing by C
∆φ

∆,J works

better than dividing by the second line at moderate values of ∆.

The radial integral of the blocks in eq. (D.15) gives the following Bessel moment:

ˆ ∞

0

dw̄

w̄
w̄−pK0(2a/

√
w̄)K0(2b/

√
w̄) =

Γ(p)4

4Γ(2p)
a−2p

2F1

(
p, p, 2p, 1 − b2

a2

)
, (D.17)

and, dividing by the limit of eq. (D.16), we find:

lim
∆−J≫1

B2,v[G
s(d=2)
∆,J ] =

2

C
∆φ

∆,J

Γ(p)4

Γ(2p)

ˆ tmax

0

dt(1 − t)

t
√

(1 + t)2 − 4tv

1 + t√
t

t
p
2

×
[
ξp

2F1(p, p, 2p, 1 − tξ2) + (ξ 7→ ξ−1)
]

(D.18)
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where p = 2∆φ + 1 and ξ = ∆−J
∆+J . In fact, all functionals derived from B2,v are given with

similar formulas just with different t-dependent kernels, for example

B2,1 :
dt(1 − t)

t
√

(1 + t)2 − 4tv
7→ dt

t
, B′

2,1 :
dt(1 − t)

t
√

(1 + t)2 − 4tv
7→
(

2dt

(1 − t)2
+

− δ(t − 1)

)

(D.19)

with the δ-function understood to have unit weight on the integration range 0 ≤ t ≤
tmax = 1. We expect corrections to eq. (D.18) to be suppressed by inverse powers of

Casimir invariants. In particular, the formula should be reliable for any large-twist block,

no matter its spin.

E Recursion relations for Polyakov-Regge blocks from weight-shifting

Many sum rules in this paper amount to decomposing Polyakov-Regge blocks into double-

traces. Here we describe recursion relations for Polyakov-Regge blocks using weight-shifting

operators that are well-suited for computing their decompositions into double-traces. One

virtue of this approach is that it can be straightforwardly extended to spinning operators.

Below, we will explain the general method and discuss an example with external scalar

primaries in detail.

Recall that a Polyakov-Regge block for a four-point function of scalars with dimensions

∆φ satisfies

P
s|u
∆,J = Gs

∆,J −
∞∑

n,ℓ=0

{
αs

n,ℓ[G
s
∆,J ] Gs

∆n,ℓ,ℓ + βs
n,ℓ[G

s
∆,J ] ∂∆Gs

∆n,ℓ,ℓ

}
(E.1)

=
∞∑

n,ℓ=0

{
αt

n,ℓ[G
s
∆,J ] Gt

∆n,ℓ,ℓ + βt
n,ℓ[G

s
∆,J ] ∂∆Gt

∆n,ℓ,ℓ

}
, (E.2)

where ∆n,ℓ = 2∆φ + 2n + ℓ. Thus, the expansion of P
s|u
∆,J into double traces encodes the

action of the functionals αs,t
n,ℓ, βs,t

n,ℓ on an individual conformal block Gs
∆,J . For a four-point

function of more general operators, there are natural generalizations of (E.1) and (E.2),

with functionals for each double-trace operator in the s- and t-channels.

The Polyakov-Regge block P
s|u
∆,J is uniquely determined by the properties listed in

section 2.4: (i) superboundedness in the u-channel, (ii) Euclidean single-valuedness, (iii)

double-discontinuities satisfying

dDiscs[P
s|u
∆,J ] = dDiscs[Gs

∆,J ] , dDisct[P
s|u
∆,J ] = 0 . (E.3)

We can use these properties to derive relations between Polyakov-Regge blocks using

weight-shifting operators.

Recall that a weight-shifting operator DA is a conformally-covariant differential op-

erator transforming in a finite-dimensional representation W of the conformal group

SO(d, 2) [105]. The index A is an index for W : A = 1, . . . , dim W . Each weight-shifting

operator has an associated weight wD for the Cartan subgroup of SO(d, 2) acting on W .
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Given a primary O with weight wO = (∆O, JO, . . . ), the object DAO transforms like a

primary with weight wO + wD and an extra index A under SO(d, 2).

Let DA,1 be a weight-shifting operator in the representation W acting at the point x1,

and D′A
3 be a weight-shifting operator in the dual representation W ∗ acting at point x3.

For simplicity, we focus on the case where DA,1 and D′A
3 only shift the conformal dimension

of the operator they act on

wD = (δ1, 0, . . . )

wD′ = (δ3, 0, . . . ). (E.4)

However, our analysis easily generalizes to arbitrary weights.

Consider the conformally invariant bilocal operator D = DA,1DA
3 . Acting on a four-

point function G of scalars with dimensions (∆1, ∆2, ∆3, ∆4), the object DG transforms

like a four-point function of scalars with dimensions

(∆′
1, ∆′

2, ∆′
3, ∆′

4) = (∆1 + δ1, ∆2, ∆3 + δ3, ∆4). (E.5)

Consider a Polyakov-Regge block P
s|u;∆i

∆,J for a four-point function of scalars with di-

mensions ∆i. The key observation is that P ′ = DP
s|u;∆i

∆,J satisfies almost all the condi-

tions required to be a Polyakov-Regge block for scalars with dimensions ∆′
i. Firstly, P ′

is conformally-invariant because D is conformally-invariant. P ′ is Euclidean single-valued

because weight-shifting operators are differential operators whose coefficients are single-

valued functions. Finally, P ′ is u-channel superbounded for the following reason. Note

that D commutes with the conformal generators L1 + L3 acting simultaneously on points

1 and 3. Consequently, it commutes with the conformal Casimirs in the u-channel. These

Casimirs can be used to measure the effective spin in the u-channel Regge limit, and thus

the Regge spin of P ′ is the same as that of P
s|u;∆i

∆,J .

However, P ′ does not quite have the correct dDisc to be Polyakov-Regge block. Acting

on a conformal block, D gives a finite linear combination of new conformal blocks

DGs,∆i

∆,J =
∑

m,j

r∆i
m,j(∆, J)G

s,∆′
i

∆+m,J+j . (E.6)

The quantum numbers (∆ + m, J + j) appearing on the right-hand side are the quantum

numbers of traceless-symmetric tnesor primaries appearing in the tensor product W ⊗V∆,J ,

where V∆,J is the generalized Verma module associated to a primary with dimension ∆ and

spin J . In particular, m and j range over a finite set of values. The coefficients in (E.6)

can be straightforwardly computed by applying crossing transformations for weight-shifting

operators as in [105, 106].

The dDisc of DGs,∆i

∆,J is the same as that of the right-hand side of (E.6). (Note that D

takes double-trace blocks to double-trace blocks in the same channel.) However, the dDisc

of the right-hand side also agrees with the dDisc of a sum of Polyakov-Regge blocks. It

follows that

DP
s|u;∆i

∆,J =
∑

m,j

r∆i
m,j(∆, J)P

s|u;∆′
i

∆+m,J+j . (E.7)
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This relation generalizes straightforwardly to Polyakov-Regge blocks of operators in arbi-

trary external and internal conformal representations. The relation (E.7) is useful as a

recursion relation in spin. We can choose W such that the sum on the right-hand side

comtains a single term with maximal spin J + j. Solving for this term determines the spin

J + j Polyakov-Regge block in terms of lower-spin Polyakov-Regge blocks.

Now consider the decomposition of P
s|u,∆i

∆0,J0
into s-channel conformal blocks. It is con-

venient to write this in terms of a contour integral

P
s|u;∆i

∆0,J0
=

J0∑

J=0

ˆ d
2

+i∞

d
2

−i∞

d∆

2πi
Bs;∆i

∆0,J0
(∆, J)Gs,∆i

∆,J . (E.8)

Note that the sum over J truncates at J0 because the Polyakov-Regge block is the sum of

a Witten spin-J0 exchange and lower-spin contact diagrams. The values of α-type and β-

type functionals are given by residues of Bs;∆i

∆0,J0
(∆, J) at double-trace locations. Inserting

this contour integral into (E.7), and equating the coefficients of conformal blocks on both

sides we find

∑

m,j

Bs;∆i

∆0,J0
(∆ − m, J − j)r∆i

m,j(∆ − m, J − j) =
∑

m,j

r∆i
m,j(∆0, J0)B

s;∆′
i

∆0+m,J0+j(∆, J). (E.9)

Taking residues of both sides, we obtain recursion relations for s-channel double-trace

functionals.

Similarly, we can insert the decomposition of Polyakov-Regge blocks into t-

channel blocks

P
s|u;∆i

∆0,J0
=

∞∑

J=0

ˆ d
2

+i∞

d
2

−i∞

d∆

2πi
Bt;∆i

∆0,J0
(∆, J)Gt,∆i

∆,J . (E.10)

The t-channel blocks satisfy their own analog of (E.6)

DGt,∆i

∆,J =
∑

m,j

r′∆i
m,j(∆, J)G

t,∆′
i

∆+m,J+j . (E.11)

Plugging this into (E.7) gives

∑

m,j

Bt,∆i

∆0,J0
(∆ − m, J − j)r′∆i

m,j(∆ − m, J − j) =
∑

m,j

r∆i
m,j(∆0, J0)B

t;∆′
i

∆0+m,J0+j(∆, J) . (E.12)

Taking residues of both sides, we obtain recursion relations for t-channel double-trace

functionals.

E.1 An example

Let us describe an example of the above methods in more detail. The simplest weight-

shifting operator that only shifts dimensions is the embedding-space vector

XA = (X+, X−, Xµ) = (1, x2, xµ) ∈ R
2,d. (E.13)
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This can be interpreted as a 0-th order differential operator in the vector representation

W = �, acting at x and changing the dimension of the operator there by −1. We can

define D = −2X1 · X3 = x2
13, which changes the dimensions by

D : (∆1, ∆2, ∆3, ∆4) → (∆1 − 1, ∆2, ∆3 − 1, ∆4) = (∆′
1, ∆′

2, ∆′
3, ∆′

4) (E.14)

The tensor product �⊗V∆,J contains traceless symmetric tensor representations V∆+m,J+j

with (m, j) ∈ {(1, 0), (−1, 0), (0, 1), (0, −1)}. The coefficients in (E.6) are [105, 107]

r∆i
−1,0(∆, J) = 1,

r∆i
1,0(∆, J) =

(∆ − 1)(∆ + 2 − d)(∆ − ∆12 + J)(∆ − ∆34 + J)(∆ − ∆12 − J + 2 − d)(∆ − ∆34 − J + 2 − d)

16(2−d
2 + ∆ − 1)(2−d

2 + ∆)(∆ + J − 1)(∆ + J)(∆ − J + 1 − d)(∆ − J + 2 − d)
,

r∆i
0,1(∆, J) =

(∆ − ∆12 + J)(∆ − ∆34 + J)

4(∆ + J − 1)(∆ + J)
,

r∆i
0,−1(∆, J) =

J(d + J − 3)(∆ − ∆12 − J + 2 − d)(∆ − ∆34 − J + 2 − d)

4(d−2
2 + J − 1)(d−2

2 + J)(∆ − J + 1 − d)(∆ − J + 2 − d)
. (E.15)

The t-channel decomposition coefficients r′∆i
m,j(∆, J) can be obtained by swapping 1 ↔ 3

in (E.6), which gives

r′∆i
m,j(∆, J) = r∆i

m,j(∆, J)
∣∣∣
∆1↔∆3

. (E.16)

Because there is a single term with maximal spin J + 1 appearing on the right-hand

side of (E.7), we can replace J → J − 1 and obtain a recursion relation for P
s|u;∆i

∆,J in terms

of Polyakov-Regge blocks with lower spins J −1 and J −2. The Polyakov-Regge block with

spin J = 0 is simply a scalar Witten exchange diagram. Furthermore, note that r∆i
0,−1(∆, J)

is proportional to J , which reflects the special case � ⊗ V∆,0 ∋ V∆±1,0, V0,1. Consequently

J = 0 is a sufficient base case for the recursion (E.7) to determine all Polyakov-Regge

blocks with higher spin.47

One complication of using the operator D = −2X1 · X3 is that it changes the quantum

numbers of external operators. Similarly, we can consider D ′ = D+0
1,AD+0,A

3 , where D+0 is

the dimension-raising weight-shifting operator defined in [105]. This gives a complementary

recursion relation that changes the external dimensions in the opposite way

D
′ : (∆1, ∆2, ∆3, ∆4) → (∆1 + 1, ∆2, ∆3 + 1, ∆4). (E.17)

Combining the two operators to form D ′D , we obtain a recursion relation for the spin J

Polyakov-Regge block in terms of Polyakov-Regge blocks with spins {J−1, J−2, J−3, J−4}
with the same external dimensions.

E.2 Relating to contact diagrams and the inversion formula

The above procedure for computing Polyakov-Regge blocks leads to simple closed-form

formulas for the action of s-channel functionals on s-channel blocks, following those of [37].

The reason is that the base case of the recursion P
s|u;∆i

∆0,0 is an s-channel Witten scalar

exchange, whose expansion in s-channel blocks is simple.

47Similar techniques were used for computing Witten diagrams in [108].
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To compute the action of t-channel double-trace functionals on s-channel blocks, it is

useful to relate them to the Lorentzian inversion formula. For convenience, we instead dis-

cuss the action of s-channel double-trace functionals on t-channel blocks, which is entirely

equivalent. We would thus like to decompose P
t|u
∆,J into s-channel double-traces.

Note that the s-channel Lorentzian inversion of a t-channel block computes the de-

composition of P
t|s
∆,J — the Polyakov-Regge block that is superbounded in the s channel —

into s-channel double-traces. Specifically let I(t)
s (∆, J, ∆′, J) be the s-channel Lorentzian

inversion of Gt
∆′,J ′ . The decomposition of P

t|s
∆′,J ′ into double-traces is given by

coefficient(P
t|s
∆′,J ′ , ∂∆Gs

∆n,ℓ,ℓ) = − dRes
∆=2∆φ+2n+ℓ

I(t)
s (∆, ℓ, ∆′, J)

coefficient(P
t|s
∆′,J ′ , Gs

∆n,ℓ,ℓ) = − Res
∆=2∆φ+2n+ℓ

I(t)
s (∆, ℓ, ∆′, J). (E.18)

The Lorentzian inversion of 2d and 4d blocks is known exactly [79], and in 3-

dimensions it can be computed efficiently numerically by decomposing 3d blocks into 2d

blocks [32–34, 109].

As discussed in section 2.4, the Polyakov-Regge blocks P
t|u
∆,J and P

t|s
∆,J that are bounded

in the u and s channels, respectively, differ by contact diagrams. This follows from the

fact that

P
t|u
∆,J = W t

∆,J + Ct|u
∆,J , (E.19)

where Ct|u
∆,J are contact interactions with spins < J in all channels. Meanwhile, we have

P
t|s
∆,J = (−1)J P

t|u
∆,J

∣∣∣
2↔3

W t
∆,J = (−1)J W t

∆,J

∣∣∣
2↔3

, (E.20)

where the first line follows from uniqueness of Polyakov-Regge blocks satisfying properties

(i), (ii), and (iii), and the second line is a symmetry of Witten diagrams. Consequently,

P
t|u
∆,J − P

t|s
∆,J = Ct|u

∆,J − (−1)J Ct|u
∆,J

∣∣∣
2↔3

= 2Πt
(−1)J+1

[
Ct|u

∆,J

]
, (E.21)

where Πt
±[·] denotes projection onto spin parity ± in the t-channel. To summarize, to

compute the action of s-channel functionals on t-channel blocks, one can use the above

recursion relations (or some other method) to obtain the contact diagram Ct|u
∆,J , which can

then be decomposed into double-traces. Because Ct|u
∆,J has spin less than J in all channels,

it only contributes to αs
n,ℓ[G

t
∆,J ] and βs

n,ℓ[G
t
∆,J ] for ℓ < J . The remaining contribution to

αs
n,ℓ[G

t
∆,J ] and βs

n,ℓ[G
t
∆,J ] is given by (E.18).

F Numerical implementation of the twist gap problem

In this appendix, we describe details of our numerical implementation of the twist-gap

problem for section 6.5. To test a spin-2 gap ∆2 for feasibility, we solve the following
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problem:
maximize ω[Gs

0,0] such that

ω ∈ Span{ωderiv
m,n with m + n odd and m + n ≤ Λ},

ω[Gs
∆,J ] ≥ 0 for J 6= 2 even and ∆, J satisfying unitarity,

ω[Gs
∆,2] ≥ 0 for ∆ > ∆2,

ω[∂∆Gs
∆,2]

∣∣∣
∆=∆2

= 1.

(F.1)

The gap ∆2 is disallowed if maxω ω[Gs
0,0] is positive, and allowed (at derivative order Λ)

if maxω ω[Gs
0,0] is negative. For Λ = 15, 19, 23, 27, 35, we perform bisection in ∆2 to find

the threshold between allowed and disallowed to an accuracy of 10−10, and determine the

functional ω at that threshold. (We use less accuracy at higher Λ, see below.) We use

the program scalar_blocks48 to compute conformal blocks and the semidefinite program

solver SDPB [93, 94] to solve the optimization problem.

When testing feasibility, an alternative approach is to include ω[Gs
0,0] ≥ 0 among the

positivity constraints and use 0 as the objective function. This approach can be faster when

one simply wants to know the existence or nonexistence of a functional and isn’t interested

in the specific functional. By contrast, an optimization problem with nonzero objective

function generically has a unique solution, and leads to more stable results. Furthermore,

we found that the shape of the optimal functional ω did not change much as ∆2 was varied

close to the threshold between allowed and disallowed. Even for high derivative orders

Λ = 43, 51, 59, we checked that bisecting to within 10−4 of the threshold was sufficient to

plot the extremal functional to higher resolution than the plots in this paper.
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