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Dispersive charge density wave excitations in
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Experimental evidence on high-Tc cuprates reveals ubiquitous
charge density wave (CDW) modulations1–10, which coexist
with superconductivity. Although the CDWhad been predicted
by theory11–13, important questions remain about the extent
to which the CDW influences lattice and charge degrees of
freedom and its characteristics as functions of doping and
temperature. These questions are intimately connected to the
origin of the CDW and its relation to the mysterious cuprate
pseudogap10,14. Here, we use ultrahigh-resolution resonant
inelastic X-ray scattering to reveal new CDW character in
underdopedBi2.2Sr1.8Ca0.8Dy0.2Cu2O8+δ.At lowtemperature,we
observe dispersive excitations from an incommensurate CDW
that induces anomalously enhanced phonon intensity, unseen
using other techniques. Near the pseudogap temperature T∗,
the CDW persists, but the associated excitations significantly
weaken with an indication of CDW wavevector shift. The
dispersive CDW excitations, phonon anomaly, and analysis of
the CDW wavevector provide a comprehensive momentum-
space picture of complex CDW behaviour and point to a closer
relationship with the pseudogap state.

With sufficient energy resolution, resonant inelastic X-ray
scattering (RIXS) can be an ideal probe for revealing the CDW
excitations in cuprates. By tuning the incident photon energy to
the Cu L3-edge (Fig. 1a), the resonant absorption and emission
processes can leave the system in excited final states, which couple
to a variety of excitations arising from orbital, spin, charge, and
lattice degrees of freedom15. Thus, information of these elementary
excitations in energy and momentum space can be deduced from
analysing the RIXS spectra as functions of the energy loss and the
momentum transfer of the photons (Fig. 1a). This is highlighted
by the pivotal role that RIXS has recently played in revealing
orbital and magnetic excitations in cuprates16–20. In addition, RIXS
provided the first X-ray scattering evidence for an incommensurate
CDW in (Y,Nd)Ba2Cu3O6+δ (ref. 4), owing to energy resolution
that separated the quasi-elastic CDW signal (bright spot in Fig. 1b,
limited by the instrumental resolution ∼130meV) from other
intense higher-energy excitations. Notably this quasi-elastic signal
is asymmetric with respect to zero energy loss (Fig. 1c), which
indicates the possible existence of additional low-energy excitations
near the CDW wavevector (QCDW).

In this work, we exploit the newly commissioned ultrahigh-
resolution RIXS instrument at the European Synchrotron Radiation
Facility to reveal these low-energy excitations near the CDW.
We choose the double-layer cuprate Bi2.2Sr1.8Ca0.8Dy0.2Cu2O8+δ

(Bi2212), whose electronic structure has been extensively stud-
ied by surface-sensitive spectroscopy, such as scanning tunnelling
microscopy21 and angle-resolved photoemission22, and in which a
short-range CDW order was recently reported7,8. With improved
energy resolution up to 40meV, we see additional features in the
previous quasi-elastic region (Fig. 1d).

Figure 2a presents an energy–momentum RIXS intensity map of
our high-resolution data. Two excitation branches are clearly ob-
served with a momentum-dependent intensity distribution, also ev-
ident in the energy-loss spectra at representativemomenta (Fig. 2b).
The first branch centred at zero energy should contain the scattering
signal due to an underlying CDW. Indeed, as plotted in Fig. 2c, the
momentum distribution of the RIXS intensity averaged over a small
energy window exhibits a symmetric peak at a finite momentum,
with a peak-to-background ratio of∼2, unambiguously confirming
the existence of the CDW in Bi2212. The peak position is located at
QCDW ∼ 0.3 reciprocal lattice units (r.l.u.), consistent with previous
STM studies8 and with a full-width at half-maximum (FWHM)
of approximately 0.085 r.l.u., corresponding to a short correlation
length of approximately 15Å. Interestingly, despite the short correla-
tion length, the CDW strength, estimated by the integrated intensity
of the CDW peak in the quasi-elastic region, is not weaker than that
in YBa2Cu3O6+x (see Supplementary Information).

The second branch of excitations possesses an energy scale
of approximately 60meV, whose energy–momentum-dispersion
can be reliably extracted (Fig. 2d and Supplementary Fig. 2).
The extracted dispersion agrees well with that of the Cu–O
bond-stretching phonon measured by non-resonant inelastic X-ray
scattering23 (Supplementary Information). Owing to the high
momentum-resolution of our data, Fig. 2e shows mode softening
by approximately 25% atQCDW, with a corresponding broadening of
the fitted peakwidth, indicating that the short-ranged orderedCDW
unambiguously affects the lattice. This observation is reminiscent
of the bond-stretching phonon anomaly reported in the striped-
ordered cuprates24 and the acoustic phonon anomaly in YBCO25,
where CDW correlation lengths are notably longer. Curiously, the
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Figure 1 | RIXS process and a hint of lower-energy excitations near QCDW. a, Schematics of the coherent two-step RIXS process. The photon energy of the

incident X-ray (hνi) is tuned to the Cu L3-edge. Upon absorption, a core electron in the Cu 2p orbital made a transition to the unoccupied 3d valence band

near the Fermi energy EF, bringing the system to an intermediate state |m〉. Then, the emission process occurs that fills the 2p core hole by one of the

valence electrons, emits a photon (hνf), and leaves the system in an excited final state |f〉, which couples to a variety of elementary excitations. The

energy–momentum information of these elementary excitations can be deduced by tracking the peak and spectral weight in RIXS spectra as a function of

the momentum transfer Q and the energy loss of the scattering photons. The momentum of the incident and scattered photons is represented by ki and kf,

respectively. Since the electronic state in Bi2212 is quasi-two-directional (that is, almost independent along the c-axis), all data are plotted as a function of

projected momentum transfer Q‖ along the [100] direction (that is, along the Cu–O bond direction). b, RIXS intensity map of the underdoped

Nd1.2Ba1.8Cu3O6+δ (UD-NBCO) compound around the CDW position, taken with a resolution of 130meV. c, RIXS spectrum along the red dashed line

shown in b. d, A high energy-resolution (40meV) RIXS spectrum of UD-Bi2212 at Q‖ =0.31 r.l.u. An enlarged view of the black-dashed box near the elastic

peak is shown in the lower panel.
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Figure 2 | CDW and phonons at 20K. a, RIXS intensity map of the high energy-resolution data (1E∼40meV) as a function of energy loss and Q‖. The

white circles represent the fitted phonon dispersion. b, Energy-loss spectra at selected momentum values ranging from Q‖ =0.235 r.l.u. to Q‖ =0.425 r.l.u.

The fits (solid lines) are superimposed on the raw data (black circles). c, Averaged intensity in the quasi-elastic region, defined as the region between the

two white dashed lines in a. The solid line is a Lorentzian fit to the data with a background consisting of a constant plus a Lorentzian to account for the tail

of the specular reflection peak at Q‖ =0. d, Demonstration of the quality of the fit of a RIXS spectrum at a representative momentum. The fitting process is

described in the Methods section. The phonon peak is highlighted in pink. e, Position and FWHM (de-convolved) of the measured phonon peak extracted

from the fits. The red dashed lines on a and e indicate QCDW. Error bars in a and e (upper panel) are estimated by the uncertainty in determining the zero

energy loss. The error bars for the FWHM in e are two standard deviations from the fit. Those in c are determined by the noise level of the spectra.
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Figure 3 | CDW excitations in Bi2212 and calculated RIXS intensity in a 1D model. a, RIXS phonon intensity extracted from the averaged intensity over the

energy range between the two black-dashed lines in c. The black arrow highlights the intensity anomaly QA. Error bars are estimated by the noise level of

the spectra. b, Momentum-distribution curves (MDCs) at fixed energy of the raw data (Fig. 2a) from E=0 eV to E=0.1 eV. Both the raw data (markers

with dashed lines) and the smoothed curves (solid lines) are superimposed. The MDCs corresponding to the CDW and phonon energy regions are

highlighted in blue. The red ticks serve as guides to the eye for the connection between CDW and the phonon intensity anomaly. QCDW represents the

CDWwavevector. c, Elastic peak-subtracted intensity map. d–f, Calculations of RIXS phonon intensity for a 1D metallic system, with the same plotting

format and notations used in a–c. 2kF represents the perfect nesting wavevector of the 1D system. All the experimental (calculated) data are plotted as a

function of Q‖ −QCDW (Q‖ −2kF).

phonon softening occurs gradually near QCDW, unlike the Kohn
anomaly due to the reduced lattice symmetry from the CDW, which
usually occurs more abruptly in a narrow momentum window.
In addition, whereas the width of the phonon self-energy directly
measured by inelastic neutron or non-resonant inelastic X-ray
scattering is typically a few millielectronvolts23,24, the fitted width of
peak shown in Fig. 2e progressively broadens near QCDW and is not
resolution limited (∼40meV), hinting at the existence of additional
low-energy excitations.

Remarkably, the phonon intensity varies non-monotonicallywith
momentum, having a maximum near QA ∼0.37 r.l.u=0.07 r.l.u.+
QCDW (Fig. 3a). It is important to note that the RIXS phonon cross-
section directly reflects themomentumdependence of the electron–
phonon coupling strength26–28 (Supplementary Information), in
stark contrast with the phonon self-energy measured by other scat-
tering techniques. As a consequence, RIXS is also directly sensitive
to the interference between phonons and underlying charge exci-
tations (that is, the Fano effect), which can manifest as an intensity
anomaly. Thus, the intensity anomaly atQA 6=QCDW (Figs 2a and 3a)
provides evidence for the existence of dispersive CDW excitations
that cause a strong Fano interference at the intersectionQA with the
bond-stretching phonon.

Subtle but non-negligible spectral features further support
the existence of dispersive CDW excitations. Examining the
momentum-distribution curves (Fig. 3b), the peak at zero energy
disperses and broadens with increasing energy loss, smoothly con-
necting to the phonon atQA. To visualize this connection in an alter-
native way, we remove the elastic contribution from the energy-loss

spectra (Fig. 3c) to reveal a funnel-shaped RIXS intensity emanating
fromQCDW, suggesting that these excitations are associated with the
CDW. This funnel-shaped intensity essentially reflects the anoma-
lous broadening of the peak width near QCDW shown in Fig. 2e.
These CDW excitations disperse to high energy and intersect with
the phonon at QA, causing the phonon intensity anomaly due to the
strong Fano interference effect.

To demonstrate the Fano resonance in the RIXS phonon cross-
section, we calculate the RIXS intensity map for a one-dimensional
(1D) metallic system with coupling between electrons and a bond-
stretching phonon mode (Fig. 3f). Perfect Fermi surface nesting
at 2kF (that is, twice the Fermi momentum) creates a particle–
hole continuum, whose presence softens the phonon dispersion
(that is, not a Kohn-like phonon anomaly) and creates an intensity
anomaly at the intersection between the continuum and the phonon
(Fig. 3d–f). This result qualitatively agrees with our observations
in Bi2212. We also note that the strength of the Fano interfer-
ence is dictated by the electron–phonon coupling strength at the
intersecting momentum. Since the coupling strength of the bond-
stretching phonon is zero atQ=0 and increasesmonotonically with
momentum, the Fano interference is weaker at Q<QCDW than at
Q>QCDW. Finally, by connecting QCDW and QA, we deduce a char-
acteristic velocity of these CDW excitations:VCDW ∼0.6±0.2 eVÅ.
We find that VCDW is neither equivalent to the Fermi veloc-
ity seen in ARPES nor the quasi-particle-interference dispersion
seen in STM21 (Supplementary Information), indicating that the
weak-coupling fermiology may be irrelevant for describing the
observed dispersion.
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Figure 4 | Temperature dependence of the CDW and the phonon anomaly. a, RIXS intensity map taken at T=240K. The white dashed lines define the

quasi-elastic region (centred at zero energy loss) and the phonon energy region (centred at 60meV) used for calculating the averaged intensity profile

shown in b and c. b, Averaged intensity of the quasi-elastic region (indicated in a) at 240K (red) and 20K (blue). The dashed lines indicate the position of

the CDW. The RIXS intensity map taken at T=20K is presented in Supplementary Fig. 4. c, Averaged intensity of the phonon energy regions, as defined in

a, at 240K and 20K. The black arrow highlights the intensity anomaly at 20K. Error bars in b and c are estimated by the noise level of the spectra. d, Raw

energy-loss spectra (markers) and the corresponding fits (solid lines) of RIXS data taken at T=240K (top) and T=20K (bottom). The elastic peak fits

are highlighted with filled areas. The RIXS spectra where the elastic peak intensity is maximal (that is, the CDW position) are indicated by red and blue

boxes for T=240K and T=20K, respectively.

Temperature-dependent measurements were conducted on
another Bi2212 crystal with a similar Tc (40K), with results
shown in Fig. 4. We first confirm that the low-temperature
measurement at 20K reproduces all the observations shown in
Fig. 2 (Supplementary Fig. 4). Upon increasing the temperature
to 240K (near the pseudogap temperature22), we find that the
CDW signal in the quasi-elastic region persists (Fig. 4a) with
reduced peak intensity (Fig. 4b). We also observed that whereas
the phonon softening still remains (Supplementary Fig. 4), the
intensity anomaly at QA diminishes and broadens, as shown by
the momentum distribution of the phonon intensity in Fig. 4c.
This indicates that the CDW excitations still notably affect
the charge dynamics, but become poorly defined in energy–
momentum space as the CDW weakens. Interestingly, QCDW

appears to change from incommensurate 0.3 r.l.u. at 20K to nearly
commensurate ∼0.26 r.l.u. at 240K (Fig. 4b,d), which corresponds
to a real-space periodicity of approximately four lattice constants
(∼4ao), similar to the stripe-ordered cuprates1,3. This indication
of temperature-dependent CDW commensuration requires future
investigation to further confirm these findings.

Our results have several important implications. They provide
the first direct evidence for the existence of dispersive CDW
excitations in the charge–charge correlation function with a

characteristic velocity VCDW. Furthermore, these excitations persist
to high energy, at least up to ∼60meV, causing the phonon
intensity anomaly, indicating that the CDW influences the charge
and lattice degrees of freedom, despite its short correlation length.
Whether the observed CDW excitations are collective due to a
symmetry breaking29 or rather a reflection of the particle–hole
continuum remains an open question for future investigation.
Additionally, if confirmed, the surprising change of QCDW from
incommensurate at low temperature towards commensurate at high
temperature is reminiscent of the temperature dependence observed
in stripe-phased nickelates, where the charge order is strongly
coupled to a spin order, which originates from strong real-space
interactions30. These results may be consistent with the proposal
that the incommensurateQCDW forms from a discommensuration of
a universal period 4ao modulations31. Finally, the CDW signatures
survive up to at least 240K ∼ T ∗, which taken together with
the similarities to striped nickelates indicates a close relationship
between the CDW, spins, and the pseudogap.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Sample growth, preparation and characterization. The high-quality UD-Bi2212
(Bi2.2Sr1.8Ca0.8Dy0.2Cu2O8+δ) single crystals (Supplementary Fig. 1a, sample 1
and 2) were grown by floating-zone (FZ) methods and annealed in a nitrogen
atmosphere. The samples were characterized and roughly aligned using Laue
diffraction prior to RIXS measurements (Supplementary Fig. 1a). The samples were
cleaved in air immediately before loading into the high-vacuum measurement
chamber. The transition temperatures TC are 45K and 40K for samples 1 and 2,
respectively (Supplementary Fig. 1b), corresponding to doping concentration
p∼8–9%. The X-ray absorption curves for samples 1 and 2 are shown in
Supplementary Fig. 1c, showing no apparent contamination. Data shown in Figs 2
and 3 were taken on sample 1. Data in Fig. 4 were taken on sample 2.

Low-resolution RIXS measurements on UD-NBCO. The low energy-resolution
RIXS data on the UD-NBCO (Nd1.2Ba1.8Cu3O6+δ) sample were taken at the
ADRESS beamline of the Swiss Light Source at the Paul Scherrer Institut (PSI,
Switzerland) using the SAXES spectrometer32,33. The RIXS spectra were measured
at T =60K, just below Tc =65K to maximize the CDW peak intensity, and using
linear vertical (σ ) polarized incident photons. The total energy resolution
was ∼130meV, the scattering angle was 130◦. The RIXS map is obtained by
combining spectra measured every 2◦ in the rotation of the incidence angle on the
sample surface. The NBCO films, 100 nm in thickness, were deposited by
high-oxygen-pressure diode sputtering on SrTiO3 (100) single crystals. The lattice
parameters measured by X-ray diffraction are a=b=3.84Å and c=11.7 Å.

Ultrahigh-resolution RIXS measurements on UD-Bi2212. The RIXS
measurements on the UD-Bi2212 samples 1 and 2 were performed using the ERIXS
spectrometer at the ID32 beamline of the European Synchrotron Radiation Facility
(ESRF, France). The RIXS spectra were taken with the photon energy of the
incident X-rays tuned to the maximum of the absorption curve near the Cu
L3-edge (Supplementary Fig. 1c). The scattering geometry is sketched in
Supplementary Fig. 1d. The data were collected at T =20K for sample 1 and
T =20K/240K for sample 2 with a linear vertical polarization (σ -polarization) of
the incident beam. The energy resolution was approximately 1E∼40meV
(sample 1) and 1E∼45meV (sample 2). The scattering angle of the endstation
was set at 2θ =149.5◦. Since the electronic state in Bi2212 is quasi-two-directional
(that is, almost independent along the c-axis), the data shown in this report are
plotted as a function of projected momentum transfer Q‖ (that is, projection of
Q=kf −ki on the CuO2 plane). Different in-plane momentum transfers, Q‖

(projection of the scattering vector Q along [100]), were obtained by rotating the
samples around the vertical b-axis. Note that the scattering vector Q is denoted
using the pseudotetragonal unit cell with a=b=3.82Å and c=30.84Å, where the
c-axis is normal to the sample surface. In our convention, positive Q‖ corresponds
to grazing-emission geometry and negative Q‖ corresponds to grazing-incidence
geometry. Supplementary Tables 1 and 2 summarize the L values (that is, projection
of the scattering vector Q along [001]) for each momentum in the data of sample 1
and 2, respectively.

Data analysis and fitting. The ultrahigh-resolution data (UD-Bi2212) were
normalized to I0 and corrected for self-absorption effects using the formalism
described in the Supplementary Methods of ref. 34. The zero energy positions were
determined by comparing the spectrum recorded on a small amount of silver paint
(at each Q‖) near the sample surface and fine adjusted by the fitted elastic peak

position. The fitting model involves a Gaussian (elastic peak), a Lorentzian
(phonon peak) and a background that fits an anti-symmetrized Lorentzian to the
paramagnon at high energy loss. The model is convolved with the energy resolution
(Gaussian convolution) and fitted to the data. The results of these fits are presented
in Supplementary Fig. 2 for sample 1 (T =20K) and Fig. 4d and Supplementary
Fig. 3 for sample 2 (T =20K and T =240K). Please note the plotted peaks are also
already convolved with the energy resolution for ease of perceiving the fit quality.

From this analysis, we extracted the dispersion (peak position) and FWHM
(resolution de-convolved) of the phonon peak at T =20K in sample 1 (Fig. 2e) and
at T =20K and T =240K in sample 2 (Supplementary Fig. 4c,d). The dispersions
and FWHM found at T =20K for both sample 1 and sample 2 are similar, with the
presence of a softening and a broadening around the CDWwavevector (QCDW ∼0.3
r.l.u.). The reproducibility of the low-temperature data in two independent
measurements and samples confirms our observations of the CDW and the phonon
intensity anomaly due to Fano interference (Supplementary Fig. 4a). In addition,
we note that the phonon intensity extracted from the fitting procedure agrees with
the averaged intensity around the phonon energy (Supplementary Fig. 5b).

Theory. The calculations in Fig. 3d–f were carried out using a recent framework for
phonon contributions to RIXS given in ref. 28. Details are given in that reference.
The theory developed in ref. 28 considered lowest-order diagrams for RIXS in the
weak electron–phonon limit, giving the first contribution to RIXS coming from the
emission of one phonon. The strength of the signal is directly tied to the
momentum-dependent electron–phonon coupling. In the limit of small coupling,
the intensity smoothly varies in momentum space, with a position that closely
follows the bare phonon dispersion. However, if the phonon dispersion crosses the
electron–hole continuum, a Fano effect occurs, leading to a strong interference
between the dispersions of the two excitations, as shown in Fig. 3d–f.

Since we have used a simple 1D metallic model having a Peierls instability at
2kF, the particle–hole excitations disperse in energy and momentum in a cone from
zero energy, with a dispersion set by the Fermi velocity. When the cone of charge
excitations crosses the phonon line, an interference occurs that exploits the
momentum-dependent electron–phonon coupling g (q). For the case of the
bond-stretching phonon, g (q) determined from the nature of deformation
coupling between Cu and O in-plane displacements is largest for large momentum
transfers. Therefore, the intensity is stronger on the higher-momentum side of the
intersection of the phonon line with the charge excitations. This effect reproduces
the experimental observations well.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding authors upon
reasonable request.
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