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Abstract. We present the results of theoretical and experimental studies of

dispersively coupled (or ‘membrane in the middle’) optomechanical systems.

We calculate the linear optical properties of a high finesse cavity containing a

thin dielectric membrane. We focus on the cavity’s transmission, reflection and

finesse as a function of the membrane’s position along the cavity axis and as a

function of its optical loss. We compare these calculations with measurements

and find excellent agreement in cavities with empty-cavity finesses in the

range 104–105. The imaginary part of the membrane’s index of refraction

is found to be ∼10−4. We calculate the laser cooling performance of this

system, with a particular focus on the less-intuitive regime in which photons

‘tunnel’ through the membrane on a timescale comparable to the membrane’s

period of oscillation. Lastly, we present calculations of quantum non-demolition

measurements of the membrane’s phonon number in the low signal-to-noise

regime where the phonon lifetime is comparable to the QND readout time.
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1. Introduction

Nearly all the optomechanical systems which have been studied to date consist of an optical

cavity whose detuning is proportional to the displacement of some mechanical degree-of-

freedom. The mechanical degree-of-freedom is most commonly the position of the end mirror

of a Fabry–Perot cavity [1]–[14] or the elongation of a waveguide [15]–[18]. In these systems,

the radiation pressure has a physically intuitive form: it is a force which acts on the mechanical

degree-of-freedom and is proportional to the instantaneous intracavity optical power.

Recently, a new type of optomechanical system has been described in which the mechanical

degree-of-freedom is a flexible, partially transparent object (such as a dielectric membrane)

placed inside a Fabry–Perot cavity [19]–[24]. In this type of system, the cavity detuning (and

hence the radiation pressure) is periodic in the membrane displacement.

Here, we analyze several aspects of such a ‘dispersive’ optomechanical device. We

calculate its linear optical properties (transmission, reflection and finesse) as a function

of experimentally relevant parameters, and compare these calculations with experiments.

We demonstrate a dispersive optomechanical device with a finesse F = 150 000, and argue that

it should be possible to realize F = 500 000 using present-day technology.

We also present calculations of the radiation pressure-induced cooling and heating in these

systems. Because dispersive optomechanical systems consist of a compound optical cavity,

their laser cooling is more complicated than in the more familiar ‘reflective’ optomechanical

devices described, e.g. in [1]–[18]. Lastly, we consider phonon quantum non-demolition (QND)

measurements in dispersive optomechanical systems [19, 25]. We focus in particular on phonon

QND measurements with low signal-to-noise ratios (SNRs), and consider how quantum effects

might be manifest in such non-ideal experiments.
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Figure 1. Schematic illustration of the dispersive optomechanical system. The

membrane is represented as a mass on a pendulum. Enclosing the membrane are

the end mirrors that define a high-finesse cavity. Ain, Aref, Atran, A1, A2, A3, A4

are the incident, reflected, transmitted and circulating fields.

2. Linear optical properties: calculations

The geometry of the dispersive optomechanical devices considered in this paper is shown in

figure 1. Our one-dimensional model consists of two cavity end mirrors with electric field

reflectivity r and transmission t (the two cavity mirrors are assumed identical in this paper, but

the extension to unequal mirrors is straightforward). The dielectric membrane placed between

the two end mirrors has a thickness Ld and index of refraction n. The membrane’s electric field

reflectivity rd and transmission td are then given by [26]

rd = (n2 − 1) sin knLd

2in cos knLd + (n2 + 1) sin knLd

, (1)

td = 2n

2in cos knLd + (n2 + 1) sin knLd

, (2)

where k is the wavenumber of the light incident on the membrane.

Note that rd and td are in general complex (reflecting the phase shift acquired by light

reflected from or transmitted through a dielectric slab). If n is real, then |rd|2 + |td|2 = 1.

However, in general n will be complex, with the imaginary part determining the membrane’s

optical absorption.

To find the transmission and reflectivity of the cavity as a whole, we solve the following

system of equations:

A1 = it Ain + r A2 eikL1, (3a)

A2 = rd A1 eikL1 + itd A4 eikL2, (3b)

A3 = itd A1 eikL1 + rd A4 eikL2, (3c)

A4 = r A3 eikL2, (3d)

Arefl = it A2 eikL1 + r Ain, (3e)

Atran = it A3 eikL2 . (3 f )

Here, A1 through A4 are the electric field amplitudes of traveling waves in the cavity (as shown

in figure 1), and Ain, Arefl and Atrans are the amplitudes of the incident, reflected and transmitted
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Figure 2. Cavity detuning as a function of membrane position. The resonant

frequencies of three of the cavity’s longitudinal modes are plotted (in units of

the cavity free spectral range) for several values of the membrane reflectivity.

The membrane’s power reflectivities |rd|2 are the following: red: 0.000, orange:

0.080, yellow: 0.450, green: 0.773, blue: 0.982 and black: 0.999. For this

calculation, the various reflectivites were realized by fixing the membrane

thickness and varying the index of refraction.

waves. L1 and L2 are the lengths of the left- and right-hand halves of the cavity shown in

figure 1 [27].

Since we are primarily interested in cases where the cavity finesse is high and the

membrane absorption is low, we find the cavity resonance frequencies by solving for the

eigenfrequencies of the closed lossless cavity (i.e. assuming r = 1 and Im(n) = 0). The solution

gives:

δ
(0)

T = 2φr + 2 cos−1(|rd| cos δ), (4)

where δ
(0)

T is the cavity’s resonance frequency scaled by 2π/ fFSR and fFSR is the cavity’s free

spectral range. The scaled membrane position is δ ≡ 2k1x . φr is the complex phase of rd. From

this expression it is clear that the magnitude of the membrane’s reflectivity |rd| determines the

strength of the dependence of resonant frequency on the membrane position. The complex phase

of rd, φr, sets an overall offset to the resonant frequency.

The cavity detuning versus membrane position is shown for several membrane reflectivities

in figure 2. For illustrative purposes, the membrane reflectivity was varied by setting the

membrane thickness to be unphysically small (Ld = 0.01 nm) and varying n.

The analytic expressions for the transmission through the cavity and reflection from the

cavity are also straightforward, but are too cumbersome to display here. We have not found a

simple expression for the cavity finesse; instead we estimate it numerically from the linewidth

of the transmission resonances.

Figure 3 shows the finesse, resonant transmission (i.e. the transmission when the laser is

resonant with the cavity), and the resonant reflection as a function of membrane position. These

plots assume Ld = 50 nm, 2π

k
= 1064 nm, r = 0.99991 and t = 5.28 × 10−3 (i.e. the power
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Figure 3. Calculated finesse (a), resonant transmission (b) and resonant reflection

(c) of the dispersive optomechanical cavity as a function of membrane position.

The blue curves correspond to a lossless membrane, whereas the red curves

correspond to a lossy membrane. Note that all the calculations assume the same

(nonzero) loss in the end mirrors. This leads to a reflection and transmission

which do not add to unity, and which depend differently upon the membrane

position. The parameters used in this calculation are given in the text.

transmission of each end mirror is 16% of what it would be if it were lossless) corresponding

to an empty-cavity finesse of 18 000. In each plot the blue curve corresponds to n = 2.2

(i.e. a lossless membrane), whereas the red curve corresponds to n = 2.2 + 1.5 × 10−4i (i.e.

a membrane with some optical loss).

The differences between the curves for the lossless membrane (blue) and the lossy

membrane (red) can be understood qualitatively. Placing a lossless membrane inside a cavity

does not alter the rate at which photons leak out of the cavity; as a result the blue curve in

figure 3(a) is flat. However, the position of a lossless membrane does modulate the resonant

transmission (figure 3(b)) because the cavity eigenmodes will be modified by the membrane.

Cavity modes primarily localized on the right-hand side of the cavity in figure 1 will leak

primarily out of the right-hand mirror, leading to an increased transmission coefficient for the

cavity as a whole. Likewise, modes localized predominantly on the left-hand side of the cavity

will couple primarily to external modes to the left of the cavity, leading to an increased reflection

coefficient (figure 3(c)).

When n is complex, intracavity photons can be lost to the membrane absorption. This

additional loss process lowers the cavity finesse by an amount proportional to the overlap of

the cavity mode with the membrane, giving rise to the dips in the red curve of figure 3(a) when

the membrane is positioned at an antinode of the cavity mode. Note that for the parameters

used in this calculation, the finesse is not appreciably reduced from its empty-cavity value if

the membrane is placed at a node of the optical field (i.e. corresponding to the peaks in the red

curve of figure 3(a)).

The loss of photons due to absorption in the membrane also prevents photons from

transiting the cavity. As a result the resonant transmission has pronounced dips when the

membrane is at an antinode (red curve in figure 3(b)). The reflection signal (figure 3(c)) arises

from interference between intracavity light leaking out through the left-hand end mirror (which

is affected by the membrane’s absorption) and light promptly reflected from the left-hand end

mirror (which is not). As a result its form is less intuitive, with membrane absorption leading to

an asymmetric dependence on membrane position.
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Figure 4. Illustration of the optical cavity. The Invar cavity support (A) is

mounted to the inside of the vacuum chamber. A series of alumina spheres (B)

are mounted in cone-shaped recesses to provide kinematic mounting between the

support and the Invar cavity spacer (C). The end mirrors (D) define the optical

cavity. The membrane and piezoelectric elements are mounted to the Invar arm

(E) which is in turn mounted to the tilt stage (F). The tilt stage can be adjusted

in situ by two motorized actuators (G).

3. Linear optical properties: measurements

3.1. Experimental setup

Schematic illustrations of our experiment are shown in figures 4 and 5. Laser light is produced

by a Nd : YAG laser (Innolight, Hannover, Germany) with wavelength λ = 1064 nm. The light

passes through an acousto-optic modulator (AOM), and the first-order beam is sent to the

optomechanical cavity via the steering mirrors M1 and M2. The cavity is formed by two

dielectric mirrors each with a 5 cm radius of curvature (coated by Advanced Thin Films,

Longmont, CO, USA). The mirrors are mounted to a cylindrical Invar spacer 6.7 cm long with

a hole drilled along its axis to accomodate the cavity mode.

The Invar spacer has a second hole drilled perpendicular to the cavity axis, allowing us to

introduce the dielectric membrane into the waist of the cavity mode. The membrane is mounted

on two piezoelectric elements. The first allows us to apply high frequency (≃300 kHz), small

amplitude (∼1 nm) oscillations to the membrane (e.g. to excite its mechanical eigenmodes).

The second piezo allows us to translate the membrane by roughly 2 µm along the cavity

axis. The piezo elements are in turn mounted to a tilt stage (Thorlabs, Newton, NJ, USA

KM05) which is rigidly attached to the Invar spacer. The tilt stage includes vacuum-compatible

motorized actuators (Thorlabs, Newton, NJ, USA Z612V) allowing us to adjust in situ the

angular alignment of the membrane relative to the cavity axis. In practice, we have found that the

membrane needs to be aligned to roughly 5 arcs in order to achieve the highest finesse described

below.
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Figure 5. A schematic of the experimental setup. The membrane is depicted

in grey between the two high finesse cavity end mirrors. The transmission and

reflection are monitored with photodetectors (PD) and the signals are sent to a

data acquisition (DAQ) card.

The membrane used in these experiments is a commercial, 50 nm thick, 1 mm × 1 mm SiN

x-ray window (Norcada, Edmonton, AB, Canada). The membrane is supported by a 200 µm

thick Si frame. The exceptional mechanical properties of these membranes have been described

elsewhere [28].

In practice, we first align the cavity with the membrane removed. Then the membrane is

inserted and its tilt and transverse position are adjusted until good transmission through the

cavity is achieved.

For most of the measurements presented here, the cavity is mounted inside a vacuum

chamber which is pumped down to ∼10−6 torr by an ion pump. Good vacuum is crucial to

maintaining the membrane’s high mechanical quality factor.

3.2. Measurements

We monitor the optical power reflected from and transmitted through the cavity using the

photodiodes shown in figure 5. We can also determine the transverse profile of the cavity mode

by imaging the transmitted beam with a video camera.

Figure 6(a) shows the optical power transmitted through the cavity as a function of the laser

frequency and the membrane position when the laser is mode-matched to the cavity’s TEM0,0
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Figure 6. Measured transmission (on a linear scale) as a function of laser

frequency (in units of the cavity free spectral range) and the membrane position.

In (a) the input beam is coupled almost exclusively to the cavity’s TEM00

(transverse Gaussian) mode. In (b) the input beam is coupled to both the TEM00

and the TEMm+n=1 transverse modes. In (c) the input beam is coupled to several

transverse modes, including the Gaussian.

modes. The dark bands (indicating high transmission) correspond to the cavity’s resonant

frequencies. Comparison of these resonant bands with (4) gives a value of |rd| = 0.35. As with

all the data in this paper, the calibration of the membrane position is taken from the assumption

that the features in the data are periodic in the membrane displacement with period π/k.

Figure 6(b) shows similar data, but taken with the input beam aligned in such a way as to

couple to the TEM0,0 mode and the nominally degenerate doublet consisting of the TEM0,1 and

TEM1,0 modes [29]. In figure 6(c), the input is realigned to couple into still more of the cavity’s

modes. The cavity spectra shown in these figures can be easily explained using the standard

description of higher order transverse modes in optical cavities [30], and a detailed description

will be given in a future publication.
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Figure 7. Measurements and fits of the cavity’s finesse (a), resonant transmission

(b) and resonant reflection (c) as a function of membrane position. The solid

curves are fits to the data. These fits assume an empty-cavity finesse of 16 500

and give an imaginary part of the membrane’s index of refraction of 1.5 × 10−4.

The cavity finesse is determined from cavity ringdown measurements. In these, the laser

frequency is swept slowly while the optical power transmitted through the cavity is monitored.

When the transmitted signal exceeds a predetermined threshold (indicating that the laser is

coming into resonance with the cavity) the AOM switches off the input beam and the transient

leakage of light out of the cavity is monitored. This decay has a single exponential form [19, 28]

whose time constant, τ , is related to the cavity finesse, F , via F = 2π fFSRτ . Figure 7(a) shows

the finesse of the cavity’s TEM0,0 mode as a function of membrane position. The solid line in

figure 7(a) is a fit to the calculation described above and shown in figure 3(a).

Figures 7(b) and (c) show the cavity transmission and reflection on the TEM0,0 resonance

as a function of the membrane position. The solid lines are fits to the data using the calculations

described above. The data in figure 7 were taken with the device in vacuum.

The fits in figure 7 assume Ld = 50 nm, that the empty-cavity finesse is 16 500,

and that the end mirrors’ transmission and reflection coefficients are t = 5.52 × 10−3, and

r = 0.99991 (consistent with measurements of the cavity when the membrane was removed).

Given these constraints, the fits yield n = 2.2 + 1.5 × 10−4i. The agreement between the data

and fits indicates that our simple model does a reasonable job of describing the system. The

few anomalous data points in figures 7(a)–(c) correspond to membrane positions in which

the TEM0,0 mode becomes degenerate with other cavity modes (see, e.g. figure 6(c)). Such

degeneracies are not accounted for in our simple one-dimensional model. Coupling of the input

laser beam to the higher order modes was 6 5% of the power in the TEM0,0 mode.

3.3. Discussion

The loss in the membrane places limits on the maximum obtainable finesse. However, the data in

figure 7(a) indicates that this limit depends strongly upon where the membrane is placed relative

to the cavity nodes and antinodes. In order to determine this limit quantitatively, we use the

value of Im(n) = (1.5 ± 0.1) × 10−4 extracted from the data and fits in figure 7(a) to calculate

the finesse of hypothetical devices which are identical to the ones measured here but with higher

reflectivity end mirrors. The result is shown in figure 8, and indicates that for experiments in

which the membrane can be placed at a node, it should be possible to achieve F ≃ 500 000 with

state-of-the-art end mirrors (i.e. those corresponding to an empty-cavity finesse of 1 000 000).

For experiments where the membrane is away from a node, figure 8 indicates better end mirrors

can only lead to modest improvements in finesse.
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Figure 8. A plot of the calculated finesse as a function of membrane position

for different cavity end mirrors. All three curves assume the membrane’s index

of refraction is n = 2.15 + 1.5 × 10−4i. The empty-cavity finesse is taken to

be 100 000 (lowest curve), 314 000 (middle curve) and 1 000 000 (uppermost

curve). When the membrane is positioned at a node, the device’s finesse can be

>500 000.
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Figure 9. Finesse as a function of membrane position in a higher-finesse cavity.

Similar to figure 3(a), but taken with end mirrors giving an empty-cavity finesse

≈205 000. The fit assumes an empty-cavity finesse of 205 000 and gives Im(n) =
2.3 × 10−4.

To test the prediction shown in figure 8, we replaced the end mirrors used in the

measurements described above with end mirrors giving a measured empty-cavity finesse

205 000 ± 10 000. Figure 9 shows the resulting finesse (measured in air) as a function of

membrane position, along with a fit which gives Im(n) = (2.3 ± 0.06) × 10−4 (the empty-cavity

finesse is set to 205 000). Although these fits indicate that there may be some sample-to-sample

variation in the membranes’ absorption, the overall level of agreement between the four sets of

data (in figures 7 and 9) and the theory indicates that extrapolation to still higher reflectivity
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end mirrors is justified, and that it should be possible to realize a dispersive optomechanical

system with a cavity finesse ≈500 000 (see figure 8). We have assumed Ld = 50 nm throughout

this discussion; still higher finesse could be achieved with thinner membranes, albeit with a

decrease in optomechanical coupling.

This high finesse is realized when the membrane is positioned at a node of the intracavity

field. This arrangement is ideal for the phonon QND measurements described in [19] and below.

However, it also corresponds to a point at which the radiation pressure is identically zero, and

so may seem to preclude the realization of more familiar optomechanical effects such as laser

cooling. In fact, the situation is somewhat more complicated, as described in the following

section.

4. Optomechanical cooling and heating

In this section, we obtain the optomechanical cooling and heating rates (as well as the

optomechanical spring effect) in a membrane-in-the-middle (MIM) setup. We do so by solving

the linearized coupled classical equations of motion for the membrane coordinate x and the

amplitudes αL,R of two optical modes in the left and the right halves of the cavity. This means

we are assuming that the membrane reflectivity |rd| → 1 (corresponding, e.g. to the black curve

in figure 2), and that the left- and right-half cavities are nearly degenerate (corresponding to

membrane positions near the avoided crossings in figure 2). Although this regime has not been

achieved experimentally, it is in this situation that the most striking deviations from the usual

(i.e. ‘reflective’) setup are to be expected and indeed are realized. Note that modeling a device in

which |rd| ≪ 1 (corresponding to an approximately sinusoidal relationship between δ
(0)

T and 1x)

would require including the contributions from many more than just two different longitudinal

modes, to form the new eigenmodes of the whole cavity.

To set the scene, we first review the calculation of the linearized optomechanical dynamics

for the simpler, well-understood case of a single cavity mode in a ‘reflective’ optomechanical

device [31, 32]. We will present it in a way that prepares us for the derivation involving the

‘dispersive’ optomechanical device.

4.1. Linearized dynamics of standard optomechanical systems

We have the following equations of motion for the membrane coordinate x and the complex

light amplitude α (rescaled such that α = 1 at resonance, and taken in a frame rotating at the

laser frequency ωL):

α̇ = i(1 − ω′x)α +
κ

2
(1 − α), (5)

ẍ = −ω2
M(x − x0) − ŴM ẋ +P|α|2. (6)

Here 1 = ωL − ωcav[x = 0] is the frequency detuning of the incoming laser radiation with

respect to the optical cavity mode frequency, ω′ = ∂ωcav/∂x is the derivative with respect

to the coordinate (ω′ = −ωL/L in the usual setup, with L being the cavity length), κ is the

cavity’s intensity ringdown-rate, ωM the membrane’s mechanical frequency, x0 its equilibrium

position in the absence of light and ŴM its damping constant. The radiation pressure constant

P introduced here has dimensions of frequency squared, and is given by P = −(ω′/ωL)Eres/m,
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where m is the membrane’s effective mass and Eres is the light energy stored inside the cavity at

resonance (proportional to the input intensity, Eres = 4Iin/κ for a single-sided cavity).

The steady-state solution (x̄, ᾱ) can be obtained by setting x(t) = x̄ and α(t) = ᾱ and

solving the resulting set of nonlinear equations. Note that for strong radiation pressure effects,

more than one stable solution appears (two in the case discussed here). This is the static

bistability that was found experimentally by Dorsel et al [33]. We now assume this solution

has been found and linearize the equations of motion around it, using |α|2 ≈ |ᾱ|2 + ᾱ∗δα + c.c.

δα̇ = −iω′(x̄δα + δx ᾱ) + i1δα − κ

2
δα, (7)

δ ẍ = −ω2
Mδx − ŴM ẋ +P(ᾱ∗δα + c.c.) + f (t). (8)

Here, we have added a test force leading to an acceleration f . The response to this force

will reveal the change in the membrane’s damping rate and spring constant brought about by

the radiation field. At a given driving frequency ω, we decompose into positive and negative

frequency components: δα(t) = δα−e−iωt + δα+ e+iωt , and likewise for δx (where δx− = δx+∗
due to δx(t) being real-valued). This leads to

±iωδα± = −iω′(x̄δα± + δx±ᾱ) + i1δα± − κ

2
δα± (9)

and therefore δα± = χα(±ω)δx±, with the susceptibility χα relating the light response to the

membrane motion:

χα(ω) = ᾱ

(1 − ω + i(κ/2)/ω′ − x̄
. (10)

Equation (8) leads to

−ω2δx± = −ω2
Mδx± ∓ iωŴMδx± +P(ᾱ∗δα± + ᾱδα∗

∓) + f±. (11)

After inserting δα± and using δx± = δx∓∗, we find the mechanical response

δx± = χ(±ω) f±, (12)

where the mechanical susceptibility of the membrane has been modified due to the

optomechanical coupling:

χ−1(ω) = ω2
M − ω2 + iωŴM + 6(ω). (13)

All the novel effects are contained in the optomechanical ‘self-energy’

6(ω) = −P(ᾱ∗χα(ω) + ᾱχ∗
α(−ω)) . (14)

The optomechanical damping rate may now be read off from the imaginary part of the

susceptibility, evaluated at the membrane’s resonance frequency:

Ŵopt = Im[6(ωM)]/ωM, (15)

which yields the known result for optical damping:

Ŵopt = ω′ P

2ωM

|ᾱ|2 κ

2

{

1

[ωM − 1 + x̄ω′]2 + (κ/2)2
− 1

[−ωM − 1 + x̄ω′]2 + (κ/2)2

}

, (16)

which is the difference between the rate of Stokes and anti-Stokes transitions.
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The prefactor is equal to −x2
ZPFω

2
Rn̄κ/L2, where x2

ZPF = h̄/(2mωM). Therefore, the optical

damping rate is seen to obey the simple formula (see [31])

Ŵopt =
x2

ZPF

h̄2
[SFF(ωM) − SFF(−ωM)], (17)

where SFF is the spectrum of radiation pressure force fluctuations.

The damping rate is positive at negative detuning (1 − ω′ x̄ < 0), corresponding to cooling,

whereas it is negative at positive detuning, leading to an increase in the mechanical quality

factor, parametric amplification, and, potentially, the onset of self-induced oscillations (once

Ŵopt + ŴM < 0) [34].

Likewise, the shift of the mechanical resonance frequency (optical spring effect) is obtained

from the real part:

δωM = Re[6(ωM)]/(2ωM) . (18)

4.2. Linearized dynamics of dispersively coupled optomechanical systems

We now turn to the ‘dispersive’ optomechanical device. We model it by considering only two

modes, residing to the left and to the right of the membrane. This is the correct description in

the limit of a completely reflecting membrane. We consider the first deviation from that limit,

i.e. the mode amplitudes αL and αR are coupled by photon tunneling through the membrane, at

a frequency g (the tunneling amplitude). When the membrane moves to the right, the frequency

of the right mode increases, while that of the left mode decreases. They are degenerate at x = 0,

but the tunneling introduces a splitting and leads to new eigenmodes that are symmetric and

antisymmetric combinations, as expected for any level anticrossing.

These features are incorporated into the following equations of motion:

Ėα =MEα +

[ κL

2

0

]

, (19)

where

Eα =
[

αL

αR

]

; M=
[

i(1 − ω′x) − κL

2
−ig

−ig i(1 + ω′x) − κR

2

]

. (20)

Again, αL/R have been rescaled such that in the absence of coupling they would reach a value of

1 at resonance for illumination of the left/right cavity (though in the situation assumed here, the

illumination is only from the left side, as displayed by the inhomogeneous term in (19)). Here,

1 is the detuning of the laser from the (uncoupled) resonance at x = 0. We have assumed a

real-valued tunnel coupling amplitude g. Note that the phase of an arbitrary complex amplitude

g could be eliminated by incorporating these phases into the definition of αL and αR. The

optical resonances in the presence of coupling can be found by setting detM(1) = 0 (with

κL = κR = 0):

ωcav,±(x) = ±
√

g2 + (ω′x)2. (21)

Comparing this with the general expression for the dispersion, ωcav(x) =
(c/L)cos−1(rd cos(4πx/λ)), near the degeneracy point and for rd → 1, we find the fol-

lowing relations to the dispersive device’s parameters:

g = (c/L)
√

2(1 − rd) and ω′ = −ωL/(L/2), (22)
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where it should be noted that L is the full cavity length (comprising both halves), and√
2(1 − rd) ≈ |td| is the transmission amplitude of the membrane. Note that in expressions of

this kind (like the one for ω′), the optical frequency ωL is assumed to be that of the original

modes at the degeneracy point (small deviations do not matter here). The membrane’s equation

of motion is of the form

ẍ = −ω2
M(x − x0) − ŴM ẋ +P(|αL|2 − |αR|2). (23)

For simplicity, we have assumed the two halves of the cavity to be of the same length, which is

the situation realized in the experiment (otherwise one would need to distinguish between ω′
L

and ω′
R as well as PL and PR).

Once again, first the steady state solution is found from the system of equations

Ēα = −κL

2
M

−1

[

1

0

]

, (24)

0 = −ω2
M(x̄ − x0) − ŴM ẋ +P(|ᾱL|2 − |ᾱR|2). (25)

Linearization around this solution and splitting into positive and negative frequency components

as before leads to

±iωδEα± = −iω′σz Ēαδx± +M̄δα±, (26)

where M̄ contains x̄ and σz is the Pauli matrix. Thus, we find δEα± = Eχα(±ω)δx±, with

Eχα(ω) = −ω′[iω −M̄]−1iσz Ēα . (27)

The mechanical susceptibility, obtained by solving the linearized equation for δx , is analogous

to that found for the standard setup, see (13), except for containing radiation pressure terms

from both the left and the right half-cavity:

6(ω) = −P(ᾱ∗
Lχ

L
α (ω) + ᾱLχ

L∗
α (−ω)) +P(ᾱ∗

RχR
α (ω) + ᾱRχR∗

α (−ω)), (28)

where χL/R
α refer to the two components of the vector Eχα The optomechanical damping rate (and

the spring effect) can now be obtained as before, from (15) and (18), by inserting (28). There

is little point in displaying these lengthy expressions explicitly, so we will instead discuss the

results in terms of plots, for the case of κL = κR = κ .

4.3. Discussion

The diagram of damping rate Ŵopt versus membrane position x̄ and detuning 1 (both measured

in units of the optical resonance width) is shown in figure 10. Ŵopt is determined by only two

dimensionless parameters. These are the ratio of the membrane frequency ωM to the cavity

ringdown rate κ and the ratio of the photon ‘tunneling’ rate g to κ:

ωM

κ
and

g

κ
.

As long as the two optical resonances (i.e. the upper and the lower parts of the hyperbolic

detuning curve) are separated by more than max(ωM, κ), they can essentially be treated

individually. In that case, the behavior of the damping rate Ŵopt in the vicinity of each resonance

is qualitatively the same as for a standard ‘reflective’ setup. That means Ŵopt is positive

(negative) for laser light red-detuned (blue-detuned) with respect to the resonance, i.e. one

has cooling (or amplification) for ωL < ωres (ωL > ωres). When ωM/κ is small, the maximum
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Figure 10. (a) The cooling rate Ŵopt for the MIM setup, as a function

of laser frequency detuning (with respect to the degeneracy point) and

membrane displacement. Blue (red) corresponds to cooling (amplification).

Parameters are g/κ = 2 and ωM/κ = 1. (b) Cross-sections of the preceding

plot, taken for several membrane positions: x̄ · |ω′|/κ = 0, 0.5, 1, 1.5, 2, 4, 8.

(c) Maximizing the cooling rate, as a function of membrane position, for various

coupling strengths g. Note that the position has been rescaled by g, and the

curves coincide for large g ≫ ωM, κ . They saturate towards large displacements

x̄ , to the value given by the simple theory for the standard setup, while Ŵopt

vanishes at x̄ = 0 (see text) for large g. For small g, the maximum cooling rate

can even become larger than the standard limit (see curve labeled g/κ = 0.5).

Note that Ŵopt was maximized over the half-plane 16 0, where the global

maximum of Ŵopt is located when x̄ > 0 (the plot would be inverted with respect

to x̄ < 0 if we were to maximize over 1> 0).

|Ŵopt| is reached for a detuning of ±κ/2 (the point of maximum slope in the intensity-versus-

detuning curve). In the resolved-sideband regime ωM ≫ κ , the maximum is reached at ±ωM.

The only quantitative difference is brought about by the change in the slope ∂ωres/∂x , which is

directly proportional to the net radiation pressure force acting on the membrane. As the slope

goes to zero near the avoided crossing, so does Ŵopt ∝ (∂ωres/∂x)2. Note that this is a result

of our weak coupling approximation and linearization of the equations of motion. Inclusion of

higher order terms would permit two-phonon Raman processes which can lead to cooling for

red detunings of 2ωM. In addition, the circulating power is smaller when most of the light is

stored in the right half of the cavity (since we assume illumination from the left), and therefore

the cooling rate is correspondingly reduced on that branch (with positive slope ∂ωres/∂x), as can

be seen in figure 11. On the amplification side (Ŵopt < 0), the membrane may settle into a state

of self-sustained oscillations when Ŵopt + ŴM becomes negative. Those regions of instability can

therefore directly be read off diagrams such as those in figure 11, once the mechanical damping

rate ŴM is given.

When the resonances touch, i.e. when they get closer than max(ωM, κ), the regions of

cooling and amplification become visibly distorted, with intricate patterns as a result. In any

case however, the diagrams remain inversion symmetric around the degeneracy point (upon

simultaneous change of the sign of Ŵopt).
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Figure 11. The optomechanical cooling rate in the MIM setup near a degeneracy

point. These plots show Ŵopt as a function of membrane position |ω′|x̄/κ (horiz.)

and detuning 1/κ (vert.), for various values of ωM/κ and g/κ . Blue refers to

cooling (Ŵopt > 0) and red refers to heating or amplification (Ŵopt < 0).

The physics of this regime can best be understood by analyzing the cases where the

mechanical frequency ωM becomes comparable to or even larger than the splitting 2g of the

dispersion relation, while the ring-down rate remains small. For the following discussion, we

therefore refer the reader to the lower right panel of figure 11 (g/κ = 1 and ωM/κ = 4). As seen

in that figure, the cooling or heating rate is apparently maximal at places where the incoming

radiation is in resonance either with the optical eigenfrequencies ωcav,±(x), or with their

sidebands ωcav,±(x) ± ωM (full and dashed lines in that panel). The rate becomes particularly

pronounced when these dispersion curves cross. At these places, there is interference between

the eigenmode that is nearby in frequency, and the excitation of the other eigenmode via Raman

scattering. Indeed, this interference is necessary to explain the remarkable fact that there can be
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some cooling or heating even at x = 0, particularly when 2g becomes smaller than ωM: At the

degeneracy point x = 0, we have the eigenmodes as symmetric and antisymmetric combinations

of the basis modes, α± = (αL ± αR)/
√

2. Consequently, the radation pressure force

Frad ∝ |αL|2 − |αR|2 ∝ |α+ + α−|2 − |α+ − α−|2 (29)

vanishes identically, unless there is interference between α+ and α−. This can happen at the

points where the dispersions ω±,cav(x) and ω±,cav(x) ± ωM cross. It also happens elsewhere, to

a lesser extent, due to the finite cavity ring-down rates κL,R, which broaden the resonances.

The strongest effect is observed when ωM = 2g, where the resonance conditions are fulfilled

simultaneously right at the degeneracy point (see figure 11, panel with g/κ = 2, ωM/κ = 4;

and figure 10(c), g/κ = 0.5, ωM/κ = 1). On the other hand, the effect vanishes in the limit

ωM/g → 0. In that limit, the standard picture is sufficient, when taking into account the

suppression of the slope ∂ωcav(x)/∂x at the degeneracy point, which reduces the cooling and

heating rates to zero.

In summary, in a certain regime it is possible to cool the membrane even at x = 0 (i.e. where

the bands are flat). This discussion may be important for experiments in which the membrane is

kept at x = 0 to realize a phonon QND measurement, as described in [19]. Indeed, as is evident

in figure 10(b), for a highly reflective membrane (i.e. g/κ = 2 in the figure), the cooling rate with

the membrane placed at the degeneracy point can reach up to a few percent of the rate in the

standard regime (with the linear slope of the optical dispersion). In principle, it is thus feasible

to have both cooling and phonon-counting at the same membrane position. However, we note

that during phonon-counting it is advantageous to have the lifetime of membrane phonons as

long as possible, to get a good SNR. This would be compromised to some degree when the extra

optomechanical damping is introduced.

5. Signatures of quantum behavior in a weak energy measurement

As has been discussed above and elsewhere [19], a dispersive optomechanical device can be

operated in a regime where the cavity frequency depends directly on x2, the position-squared

of a macroscopic mechanical oscillator. As a result, one can make a direct measurement of the

oscillator’s energy E = h̄ωM(n + 1/2), where n is the number of phonons in the membrane [19].

One drives the cavity on resonance and measures the phase of the transmitted beam; this phase

is proportional to E . We thus have the possibility to detect a truly quantum aspect of the

oscillator: the quantization of its energy. Note that this is impossible to do with a linear position

detector (e.g. a cavity whose frequency depends directly on x), as in this case one measures

both the energy and phase of the oscillator, and is thus subject to the usual limitations imposed

by quantum backaction [35]. All recent experiments in optomechanics and electromechanical

systems have (to the best of our knowledge) employed linear position detectors, and are hence

subject to these limitations.

While having a nonlinear coupling to the oscillator is certainly a prerequisite to detecting

the quantum nature of its energy, it is not in itself enough: one also needs to consider the

output noise of the detector. Here, this output noise consists of the shot noise in the transmitted

beam through the cavity, plus any additional technical noise associated with determining the

phase of this beam. If this measurement was truly QND, this output noise would not be

a problem: one could achieve any desired sensitivity by simply averaging the output signal

for a sufficiently long time [35]. The backaction of a perfect QND measurement does not

affect the measured observable, and thus the oscillator’s energy would not fluctuate during the
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measurement. However, this is not the case for any real experiment, which is performed at some

small but nonzero temperature. Because of this small temperature and the nonzero oscillator

damping, the oscillator’s energy will indeed fluctuate if one waits long enough. There is thus a

limit to how long one can average, and thus to how well one can resolve the quantum nature of

the oscillator’s energy.

In this section, we will address quantitatively the limitations on detecting quantum behavior

arising from the combination of the weak nature of the measurement and the unavoidable

(thermal) fluctuations in the oscillator energy. We will focus on the realistic case where one

can only obtain an energy resolution corresponding to a single quanta after averaging for a

time comparable to (or longer than) the lifetime of a phonon Fock state. As such, one is no

longer truly measuring the instantaneous energy of the oscillator; instead, one is measuring the

time-integrated energy fluctuations of the oscillator. We will calculate this quantity for both a

classical and a quantum dissipative oscillator, and will discuss whether differences between the

two are experimentally resolvable. We will focus throughout on the experimental conditions

proposed in [19]. In particular, we assume a situation where the oscillator is initially near its

ground state, but is coupled to a dissipative bath with a temperature Tbath ≫ h̄ωM/kB. In the

proposed experiment this is realized by laser-cooling the membrane to its ground state and then

shutting off the cooling beam while an energy measurement is made. Note that the somewhat

related situation of QND measurement of qubit energy was studied theoretically in [36].

5.1. Model and measurement sensitivity in the zero-damping limit

The quantity measured in the experiment is the phase shift of the transmitted beam through

the cavity (or, equivalently, the error signal in a Pound–Drever–Hall setup); by dividing out

a proportionality factor (the ‘gain’ of the measurement), one can refer this signal back to the

mechanical oscillator, expressing it as a number of quanta ñ(t):

ñ(t) = n(t) + ξ(t), (30)

where n(t) is the actual number of oscillator quanta, and ξ(t) is the added noise of the

measurement. We take ξ(t) to be Gaussian white noise with a (two-sided) spectral density Snn,

i.e.:

〈ξ(t1)ξ(t2)〉 = Snnδ(t1 − t2). (31)

For the cavity system and a shot-noise limited Pound–Drever–Hall measurement, one has:

Snn = h̄cλ3(1 − rc)

4096π F2 Pinx4
m

. (32)

Note that Snn depends both on the amount of output noise in the measurement, and on the

strength of the cavity–oscillator coupling.

We will be interested throughout in the case of a weak measurement, where one must time-

average the output signal to counteract the effects of the added noise. We are thus led to the

quantity m̃(t), the time-integral of the inferred number of quanta ñ(t):

m̃(tavg) =
∫ tavg

0

dt ′ñ(t ′) =
∫ tavg

0

dt ′n(t ′) +

∫ tavg

0

ξ(t ′)

≡ m(tavg) +

∫ tavg

0

ξ(t ′). (33)
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As the added noise is white, the probability distribution Pmeas(m̃, tavg) for the measured quantity

m̃ is a simple convolution of a Gaussian and the probability distribution P(m) of the true

oscillator energy fluctuations m:

Pmeas(m̃, tavg) =
∫

dm ′



P(m̃ − m ′, tavg) · 1
√

2π
(

σntavg

)2
exp

(

−(m ′/tavg)
2

2σ 2
n

)



 (34)

with

σn(tavg) =
√

Snn

tavg

. (35)

Consider first the ideal case where the measurement is competely backaction free, and

where the oscillator damping γ → 0, meaning that there are no thermal energy fluctuations.

In this case, if the oscillator starts with n0 quanta, it will always have n0 quanta: P(m, tavg) =
δ(m − n0tavg). The distribution of m̃ is then just a Gaussian:

Pmeas(m̃, tavg) = 1
√

2π
(

σntavg

)2
exp

(

−(m̃/tavg − n0)
2

2σ 2
n

)

. (36)

To see evidence of the oscillator’s quantum nature, we would like to be able to resolve Fock

states that differ by a single quanta. For γ = 0, these two states will each give Gaussian

distributions of m̃ having means separated by tavg. As is standard, we can describe the

distinguishability of these two Gaussians by a SNR RSNR(tavg). This is simply the ratio of the

signal power to the noise power:

RSNR(tavg) =
[

〈m̃〉1 − 〈m̃〉2

]2

(1m̃1 + 1m̃2)
2

=
t2
avg

(

2tavgσn

)2
= tavg

4Snn

, (37)

where 1m̃1 denotes the standard deviation of m̃ for the first Gaussian distribution, etc.

As expected, RSNR(tavg) can be made arbitrarily large by increasing the averaging time tavg.

In particular, the two Gaussians become resolvable (i.e. the averaged distribution has two

as opposed to one maximum) when RSNR(tavg)> 1.6

5.2. Distinguishing quantum from classical when γ > 0

The story becomes somewhat more complicated when we now include the unavoidable

fluctuations of n(t). We will consider the experimentally relevant case where these fluctuations

are only due to the dissipative bath coupled to the oscillator, and not to the backaction of the

measurement. As discussed in [19], there is a small backaction effect associated with the fact

that the cavity is coupled to x2 and not the oscillator energy; this however is a much weaker

effect than the thermal fluctuations we consider. The thermal bath coupled to the oscillator will

cause a given oscillator Fock state |n〉 to decay at a rate Ŵn. A simple golden rule calculation

yields:

Ŵn = γ
[

neq + n(2neq + 1)
]

, (38)

6 Note that our definition of the SNR is smaller by a factor of two than the SNR 6 used in [19].
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where γ is the damping rate of the oscillator,

neq =
(

exp

[

h̄ωM

kBTbath

]

− 1

)−1

, (39)

and Tbath is the bath temperature.

Due to these thermal fluctuations, the distribution of the measured quantity m̃ will not

be Gaussian. To obtain a very rough estimate of whether our measurement can still resolve

quantum energy behavior, we could still attempt to use the SNR derived above; this was the

approach taken in [19]. We assume that we start in the ground state (to maximize the Fock state

lifetime 1/Ŵn), and use an averaging time equal to the lifetime of this state. Letting τ = 1/Ŵ0

represent the lifetime of the ground state, we thus have as an approximate figure of merit:

R ≡ RSNR(tavg = τ) = τ

4Snn

= 1

4γ neqSnn

. (40)

One might guess that if R > 1, one can resolve quantum aspects of the oscillator’s energy;

in [19], it was shown that achieving R ∼ 1 could be possible in the next generation of

experiments. However, the condition R > 1 is clearly an approximate one, as it neglects all the

complexities arising from the fluctuations of the oscillator. In particular, the two distributions

one is trying to distinguish are not Gaussian, and thus it is by no means clear that the SNR R

will remain a good measure of distinguishability.

We will now assess more accurately the conditions required to resolve quantum–classical

differences. The first step will be to ignore the added noise of the detector, and focus on the

probability distribution of the ‘true’ time-integrated oscillator energy m. We will do this in

both the cases of a classical oscillator and a quantum oscillator; the respective distributions

will be denoted Pcl(m, tavg) and Pq(m, tavg). Having these distributions, we will then add the

effects of the added noise Snn, and ask whether the corresponding measured distributions

Pmeas,cl(m, tavg) and Pmeas,q(m, tavg) (as given by (34)) are distinguishable for a given level of

noise and averaging time. As the distributions involved will be non-Gaussian, we will need to

use a more sophisticated measure of distinguishability than the SNR R used in the Gaussian

case. We will make use of an information theoretic measure, the accessible information I.

We start with the first step of our program: what are the probability distributions of the true

integrated oscillator energy fluctuations m? Given the relative weakness of cavity–oscillator

couplings, we will necessarily need to use averaging times comparable to or even longer

than the lifetimes of oscillator Fock states. As a result, the experiment is no longer about

measuring the instantaneous energy of the oscillator. Rather, we are asking whether one can see

quantum behavior in the energy fluctuations of the oscillator. The quantities we wish to calculate

(Pq(m, tavg) and Pcl(m, tavg)) are thus formally analogous to the well-studied full counting

statistics of charge in mesoscopic electron systems [37]; there, one wishes to calculate the

statistics of the time-integrated current through a mesoscopic conductor. Given this similarity,

we can employ a similar calculational technique in our problem. This was essentially done

in [38], where the motivation was to describe an experiment where a qubit is used to detect

Fock states in a nanoresonator. One calculates the dephasing of a qubit whose energy is directly

proportional to the energy of a dissipative oscillator; this immediately yields the generating

function of Pq(m, tavg), P̃q(λ, tavg), defined by:

P̃q(λ, tavg) =
∫ ∞

−∞
dme−iλm Pq(m, tavg). (41)
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In [38], the focus was to understand the time dependence of P̃q(λ, tavg), and hence the dephasing

spectrum of the qubit. Here, the focus will instead be on its λ dependence, as the Fourier

transform of P̃q(λ, tavg) will yield the desired distribution Pq(m, tavg).

Consider the initial condition corresponding to the proposed experiment: the oscillator

is initially in a thermal state corresponding to a temperature Tinit which differs from the bath

temperature Tbath. Using the method of [38], one finds that the corresponding generating function

for a quantum oscillator is given by:

P̃q(λ, t) = eγ t/2 e−i(α−λ)t/2 1 − M

1 − M e−iαt
(42)

with

α =
√

(λ − iγ )2 − 4iλγ neq, (43a)

M = 2λninit − (α − λ + iγ )

2λninit + (α + λ − iγ )
. (43b)

Here, neq is the Bose–Einstein factor associated with the bath temperature (cf (39)), while ninit

is the Bose–Einstein factor associated with the inital oscillator temperature Tinit.

For comparison purposes, we also require Pcl(m, tavg), the distribution of m for a classical

dissipative oscillator. To obtain this, we use P̃q(λ, tavg) in (42) to find PE,q(s, tavg) the distribution

of integrated oscillator energy fluctuations s = h̄ω(m + tavg/2); this involves a simple change of

variables. It is then straightforward to take the classical h̄ → 0 limit to find PE,cl(s, tavg). Defining

the corresponding generating function via:

P̃E,cl(χ, tavg) =
∫

dse−iχs PE,cl(s, tavg), (44)

we find:

P̃E,cl(χ, t) = eγ t/2 e−iαclt/2 1 − Mcl

1 − Mcl e−iαt
(45)

with
αcl =

√

−γ 2 − 4ikBTbathχγ , (46)

Mcl =
2kBTinitχ − (αcl + iγ )

2kBTinitχ + (αcl − iγ )
. (47)

The corresponding classical distribution of m, Pcl(m, t), follows from:

P̃cl(λ, t) = PE,cl

(

χ = λ

h̄ωM

, t

)

eiλt/2. (48)

While the form of the classical generating function P̃E,cl(χ, t) may seem unfamiliar, it is

easy to check its behavior in some simple limits. For example, consider the limit where γ → 0.

Equation (44) then yields:

P̃E,cl(χ) → 1

iχkBTinit + 1
, (49)

which corresponds to a simple Boltzman distribution as expected:

PE,cl(s, t) = 1

kBTinitt
exp

(

− (s/t)

kBTinit

)

. (50)
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We now have analytic expressions for the distribution of time-integrated energy

fluctuations of both a classical oscillator (Pcl(m, t), cf (48)) and a quantum oscillator (Pq(m, t),

cf (41)). The corresponding distributions of the measured quantity m̃ can be easily found by

including the effects of the added noise Snn via (34); we denote these (respectively) as Pmeas,cl(m)

and Pmeas,q(m). To assess how different these two (non-Gaussian) distributions are from one

another, we will consider their mutual information I. This measure of distinguishability is

defined as [39]:

I[P1, P2] = H [(P1 + P2)/2] − 1

2
(H [P1] + H [P2]) , (51)

where H [P] is the Shannon entropy of the distribution P:

H [P] :=
∫

dm P(m) log2 P(m). (52)

We can interpret the first term in equation (51) as the information in a signal in which each

instance is drawn randomly from either P1 or P2. The second term is the average information

under the same circumstances except that we are told from which distribution the signal is

drawn. If telling us which distribution was used makes no difference then the two distributions

are identical and the mutual information is zero. The larger the value of the mutual information

I[P1, P2], the more distinguishable are the two distributions P1 and P2. I is a convenient

measure both because it is applicable to arbitrary distributions P1 and P2, and because it has

a direct information-theoretic interpretation in terms of information transmission rates down

noisy communication channels [39]. We note for two Gaussians distributions with identical

standard deviations, I ≃ 0.49 when RSNR = 1, while I→ 1 for RSNR ≫ 1.

5.3. Results

Equations (34), (42) and (48) can now be used to quantitatively assess whether quantum

versus classical differences can be resolved under a variety of different experimental conditions.

In what follows, we will present only a few selected results relevant to the experiment proposed

in [19].

5.3.1. Measurement runs starting in the oscillator ground state. We first consider the ideal

situation where the oscillator has been cooled to its ground state: Tinit = ninit = 0. The cooling

beam is then shut off, and the number-state measurement is made. During this time, the oscillator

rapidly heats up due to its coupling to the equilibrium heat bath at temperature Tbath. We will

focus on the experimentally relevant case where γ ≪ ωM, neq ≫ 1, and on averaging times small

enough that the average number of quanta in the oscillator remains much smaller than neq. In

this regime, the oscillator damping γ and the bath temperature Tbath essentially only enter via

the timescale τ , the lifetime of the n = 0 Fock state. It is this timescale which determines the

initial heating-up of the oscillator:

〈n̂(t)〉 = neq(1 − e−γ t) (53)

≃ γ neqt = t/τ. (54)

Given these conditions, there are two relevant questions. Firstly, given a certain noise level Snn,

what is the optimal averaging time? Secondly, given that we have optimized the averaging time,

how does the distinguishability depend on Snn?
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Figure 12. Quantum jump traces in the presence of noise and temporal averaging,

for different noise strengths ((a) and (b)) and increasing averaging time (top to

bottom). The plots show the traces 〈ñ(t)〉t that would be observed by doing a

sliding time-average of n(t), including the noise ξ(t). Here, the time-average

was done by convoluting with a Gaussian whose width is set by t̃avg, in such

a way as to have the simple relation
〈〈ξ〉2

t

〉

= Snn/t̃avg. The noise strength has

been chosen as Snn/τ = 0.001 and Snn/τ = 0.004 in (a) and (b), respectively.

The time-interval displayed in each curve is 2τ , where τ is the ground state

lifetime. From top to bottom, successive curves arise from the same trace by

averaging over increasing time-intervals: t̃avg/τ = 0.01, 0.05, 0.1, 0.2, 0.5, 1.0.

Curves have been displaced horizontally and vertically for clarity. The values

of a SNR, defined in correspondence to the discussion in the main text,

are (from top to bottom): (a) t̃avg/(4Snn) = 2.5, 12.5, 25, 50, 125, 250 and

(b) 0.625, 3.125, 6.25, 12.5, 31.25, 62.5.

To illustrate this process, we show a series of calculated time traces corresponding to such

a scenario in figure 12 for various values of the averaging time. In the left panel of figure 13, we

show how the measurable distinguishability between the classical and quantum distributions

depends on the noise level Snn, as parameterized by R (cf(40)). The distinguishability is

measured by the mutual information I between the expected experimental distributions for a

classical and quantum oscillator (Pmeas,cl(m) and Pmeas,q(m), respectively). Each run corresponds

to starting the oscillator in the ground state and using an averaging time which maximizes I; the

value of the averaging time is shown in the right panel of figure 13. Note that before computing

the mutual information I, we have shifted the quantum distribution to remove the zero-point

energy contribution (as resolving this difference in an experiment would be very difficult);

the result is that both the classical and quantum distributions have identical means. We see

that in general, one needs a noise level small enough that R ≫ 1 to unambiguously resolve

classical–quantum differences: the simple Gaussian estimate which suggests R ∼ 1 is sufficient

is too optimistic. Classical and quantum distributions of m for different values of R are shown

in figure 14.

5.3.2. Starting at a finite temperature. It is also interesting to ask what happens if the

oscillator does not start in the ground state (i.e. ninit > 0). In practice, one might not be able
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Figure 13. Left: distinguishability of quantum versus classical energy

fluctuations, as measured by the mutual information I[Pmeas,q, Pmeas,cl], versus

the inverse added noise R = 1/(4Snnτ). In each case, we have used an optimal

averaging time tavg which maximizes I and have started the oscillator in the

ground state ninit = 0. Following [19], we have taken ωM/2π = 105 Hz, γ /ωM =
1.2 × 10−7 and Tbath = 300 mK. Finally, we have shifted the quantum distribution

so that both the quantum and classical distributions have the same mean, as in

experiment, this shift of the mean would be hard to detect. Note that an SNR of

R = 1 in the Gaussian case corresponds to I ≃ 0.49. Right: optimal averaging

time versus R, same parameters.

Figure 14. Distributions of the integrated output of the experiment, for both the

cases of a classical oscillator (Pmeas,cl(m), dashed blue) and a quantum oscillator

(Pmeas,q(m), solid red) oscillator. Following [19], we have taken ωM/2π =
105 Hz, γ /ωM = 1.2 × 10−7 and Tbath = 300 mK. In each case, the oscillator

starts in the ground state, and an optimal averaging time has been used; we have

also shifted the quantum distribution in each case to remove the zero-point shift

in the average. The four panels correspond to different levels of added noise Snn:

R = 200 (top left), R = 61 (top right), R = 11 (bottom left) and R = 1 (bottom

right). In each plot, the range of m has been chosen to display 90% of the area of

the quantum curve.
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τ

Figure 15. Left: distinguishability of quantum versus classical energy

fluctuations (as measured by I[Pmeas,q, Pmeas,cl]), versus initial oscillator

temperature, and for a fixed noise strength corresponding to R = 11.

Following [19], we have taken ωM/2π = 105 Hz, γ /ωM = 1.2 × 10−7 and Tbath =
300 mK. In each case, we have used an optimal averaging time, and have shifted

each quantum distribution so that both the quantum and classical distributions

have the same mean. Right: optimal averaging time as a function of ninitial for the

same choice of parameters.

Figure 16. Distributions of the integrated output of the experiment, for both the

cases of a classical oscillator (Pmeas,cl(m), dashed blue) and a quantum oscillator

(Pmeas,q(m), solid red). Following [19], we have taken ωM/2π = 105 Hz, γ /ωM =
1.2 × 10−7 and Tbath = 300 mK. In each case, we have assumed a noise level

corresponding to R = 11, used an optimal averaging time, and have removed

the zero-point shift in the average of the quantum distributions. The panels

correspond to initial oscillator temperatures of ninit = 0 (top left), ninit = 1 (top

right), ninit = 2 (bottom left) and ninit = 4 (bottom right). In each plot, the range

of m has been chosen to display 90% of the area of the quantum curve. At higher

temperatures, multiple peaks are visible, however, the overall distinguishability

from the classical distribution is reduced.
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to cool the oscillator all the way to the ground state. Even if one could cool to the ground state, it

would be very useful experimentally to extract as much information as possible in one run of the

experiment. We saw above that if the oscillator starts in the ground state, the optimal averaging

time is on the order of τ . After this initial averaging time, the average number of quanta in the

oscillator will be ∼1. One could imagine starting a second averaging period at this point; the

question is whether the initial temperature of the oscillator will make quantum versus classical

differences even harder to see.

In the left panel of figure 15, we consider a situation where the added noise corresponds

to R = 11, and plot the distinguishability between Pmeas,q and Pmeas,cl (measured via I) as a

function of the initial oscillator temperature ninit. For each point, we have used an optimal

averaging time; the dependence of this optimal time on ninit is shown in the right panel.

As in previous plots, we have also shifted the quantum distributions so that they have the

same means as the corresponding classical distributions. As could be expected, as the initial

temperature increases, the distinguishability between classical and quantum distributions does

indeed decrease. However, this decrease is slow enough that one could obtain useful information

even if the oscillator starts at low but nonzero temperature. It is also interesting to note that

while the overall distinguishability between the classical and quantum distributions decreases

with initial temperature, the quantum distribution will develop multiple peaks; this is shown in

figure 16.
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