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DISPERSIVE ORDERING AND MONOTONE FAILURE
RATE DISTRlBUIlONS

J. BARTOSZEWICZ,* University of WrocJaw

Abstract

Recently many authors (e.g. Shaked (1982), Deshpande and
Kochar (1983), Sathe (1984)) have established relations between the
dispersive ordering and some other partial orderings of distributions.
This note presents connections which the dispersive ordering has
with monotone failure rate distributions.

pARTIAL ORDERING

Recently many authors have studied properties of the dispersive ordering of distribu
tions defined by Lewis and Thompson (1981) and Shaked (1982). Let F and G be two
cumulative distribution functions with r > and a- l as the respective left-continuous

disp

inverses. Then F is said to be dispersed with respect to G (F < G) if and only if

p-l(/3)-F-l(a) ~G-l(/3)-a-l(a) whenever O<a < /3 < 1.

disp

Shaked (1982) has proved that F < a if and only if

(1) a-lF(x)-x is non-decreasing in x.

He has also remarked that for F and a absolutely continuous with corresponding
disp

densities f and g, F < a if and only if g(a-l(u)) ~f(F-l(U)) whenever u E (0, 1).
Deshpande and Kochar (1983) have noticed that the condition (1) had already been
used by Doksum (1969) for defining so-called tail-ordering. Thus dispersive ordering is
the same as tail-ordering.

Many authors have established connections between this ordering and other partial
orderings of distributions. Shaked (1982) has proved that if distributions F and G have

disp st
the support [0, oc] and F(O) = a(O) = 0, then F < a implies F ~ a, i.e, F(x) ~Gfx) for
all x. In reliability theory there are two well-known orderings of distributions (see for
example Barlow and Proschan (1975)). Let F and a be continuous and strictly
increasing on their supports SF and Sa being intervals and F(O) = a(O) = O. F is said to

be convex-ordered with respect to a (F'< a) if and only if a-IF is a convex function

on SF. F is said to be star-ordered with respect to G (F'< G) if and only if a-IF is a
star-shaped function on SF, i.e. G-lF(x)/x is non-decreasing on SF. It is easily seen that
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F .< G implies F ~ G. Doksum (1969) and Deshpande and Kochar (1983) have proved
that if F and G are absolutely continuous, F(O) = G(O) = 0 and the corresponding

densities are such that f(O)~ g(O)> 0, then F ~ G implies F~G. Sathe (1984) has
pointed out that limx_o+ (G-1p(x)/x)?; 1 is the only condition required to imply that

disp ... st *
F < G if F<G. From Sathe's proof it directly follows that if F~G and F<G, then

disp

F < G. Bartoszewicz (1982) has proved that if SF = [0, at], SG = [0, a2], O<al ~a2~00
c c ~

and F<G or SF =[0,00), SG=[b,OO), G(b)=O, b~O, and G<F, then F~G implies
disp

F<G.
In this note we present some connections between dispersive ordering and increasing

failure rate (IFR) and decreasing failure rate (DFR) distributions. Assume now that F and
G are continuous and strictly increasing on their support [0, 00) and F{O) = G(O) = O.
Denote by

-( I )_1-F(t+x)
Fx t- ()'1-F t

x~O, t~O,

the conditional reliability of a unit of age t if F is the life distribution of the unit.
a(x Ir) is analogously defined. F is said to be an IFR (DFR) distribution if P(x Ir) is
non-increasing (non-decreasing) in t ~ 0 for each x ~ 0 (see e.g. Barlow and Proschan
(1975)).

Under the above assumptions the following theorems hold.

Theorem 1. If P(x Ir) ~ a(x Ir) for every x ~ 0 and each t ~ 0 and F or G is DFR,
disp

then F< G.

Proof. Assume G is DFR. P(x I t) ~ a(x Ir) for x ~ 0 and t ~ 0 implies F(x) ~ G(x) for
x ~O. Hence

(2) x~O.

Since G is DFR, (2) implies

P(x It)~a(x It)~a(x IG-1F(t)), x~O, t~O

~ F(x+ t)~ G(G-1F(t)+x), x ~O, t~O

~ G-IF(x+t)-(x+t)~G-IF(t)-t, x~O, t~O

disp
¢:> G-1p(x) - x non-decreasing in x ~ 0 ¢:> F < G.

The proof runs similarly if F is assumed to be DFR.

ili~ __

Theorem 2. If F < G and P or G is IFR, then F(x Ir) ~G(x Ir) for every x ~ 0 and
each t~O.

Proof. Assume G is IFR.

disp

P < G~G-IF(x)-x non-decreasing in x

(3) ¢:> G-1F(x + r) ~ G-1F(t) + x,

¢:> F(x + r) ~ G(G-1F(t) + x)

x ~O, t~O

x ~O, t~O.
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disp

Since F < G implies (2) and G is IFR, then from (3) it follows

1-G(t+x) 1-G(G-1F (t) + x ) 1-F(t+x)
-----> >----

1- G(t) - 1- G(G-1p(t)) - 1-P(t) ,

i.e. F(x I r)~ G(x Ir), x ~ 0, t ~O.
The proof is similar when F is assumed to be IFR.
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t~O,

If the distributions F and G have corresponding densities f and g, one defines the
failure rate functions

u» g(t)
rp(t) = --(-) and rG(t) = ( ) ,

1-Ft 1-G t
t~O.

Then one can easily prove the following versions of Theorems 1 and 2.

Theorem 1'. Let F and G be absolutely continuous on their support [0, (0) and
disp

F(O) = G(O) = O. If rG(t)~ rp(t) for every t ~ 0 and F or G is DFR, then F < G.

Theorem 2'. Let P and G be absolutely continuous on their support [0, (0) and
disp

F(O) = G(O) = O. If F < G and F or G is IFR, then rG(t)~ rp(t) for every t ~ O.
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