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Abstract

The dispersive behaviour of high order Nédélec element approxima-
tion of the time harmonic Maxwell equations at a prescribed temporal
frequency ω on tensor product meshes of size h is analysed. A simple ar-
gument is presented showing that the discrete dispersion relation may be
expressed in terms of the discrete dispersion relation for the approximation
of the scalar Helmholtz equation in one dimension. An explicit form for
the one dimensional dispersion relation is given, valid for arbitrary order
of approximation. Explicit expressions for the leading term in the error
in the regimes where (a) ωh is small, showing that the dispersion relation
is accurate to order 2p for a p-th order method; and (b) in the high wave
number limit where 1 ≪ ωh, showing that in this case the error reduces at
a super-exponential rate once the order of approximation exceeds a certain
threshold which is given explicitly.

1 Introduction

Many physical applications of practical interest involve propagation of waves
at high wave number. While there are many satisfactory schemes available for
low wave number analysis, the development and analysis of good schemes for
high wave number applications poses a significant challenge. The use of high
order finite element and spectral element schemes for the approximation of
Maxwell’s equations has recently attracted much interest [13, 14]. Many of the
difficulties in the use of finite element schemes can be traced to the dispersive
properties, where the accumulation of phase-lag over many wavelengths leads to
completely unsatisfactory results and effectively limits the range of applicability
of the scheme [16]. Despite this fact, the dispersive properties of finite element
schemes are relatively poorly understood. This is especially true for p-version
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and spectral element schemes where the order of the scheme is increased using
relatively coarse, or even fixed, meshes.

A clear understanding of the dispersive properties of a scheme is not only
valuable theoretically, but may also serve as a guideline for the construction
of an initial mesh and initial order of the scheme. It is desirable, particularly
if adaptive refinements are to be performed, that the initial mesh and scheme
provides sufficient resolution for the dispersive effects to be controlled to an
extent that the approximation at least exhibits the correct qualitative behaviour
of the true solution. Equally well, information on the dispersive behaviour may
be used as a basis for an a priori assessment of the anticipated level of resources
needed to resolve a problem.

The goal of the present work is to analyse the dispersive properties of high
order Nédélec, or edge, finite element schemes for the time-harmonic Maxwell
equations. Specific attention is paid to the problem of identifying the threshold
on the order of the method at which the scheme begins to accurately reproduce
the correct dispersive behaviour of the continuous Maxwell equations.

Several authors have considered the dispersive behaviour of finite element
schemes of which the following are most pertinent to the present work. Chris-
ton [7] considered the dispersive behaviour of a variety of finite element schemes
for the second-order wave equation and presented numerical comparisons be-
tween the discrete phase and group velocities and the exact values. Monk and
Parrott [20] have considered the dispersive behaviour of lower order finite ele-
ment methods on triangular elements for Maxwell’s equations as the mesh size is
reduced. Cohen and Monk [9, 10, 11] performed a dispersion analysis of Nédélec
type elements for the time-dependent Maxwell equations used in conjunction
with lumping of the mass matrix on tensor product meshes in two and three
dimensions. One interesting conclusion was that the discrete dispersion relation
could be obtained in terms of the discrete dispersion relation for approximation
of the scalar Helmholtz equation in one dimension, and this was exploited to
analyse the dispersive properties for methods of up to third order as the mesh
size h is reduced. Here, we present a simple proof demonstrating that a sim-
ilar reduction to a one dimensional analysis holds for consistent higher order
Nédélec finite element schemes on tensor product meshes.

The dispersive and attenuation properties of higher order finite elements for
the scalar Helmholtz equation in one dimension are considered by Thompson
and Pinsky [24] for methods of up to fifth order. Numerical evidence is presented
leading to the conjecture that the order p elements provide an order 2p accurate
approximation of the dispersion relation as the mesh size h → 0. Here, we
give an explicit, closed form for the discrete dispersion relation along with an
explicit expression for the leading term in the error as h → 0, which confirms
the conjecture of Thompson and Pinsky [24].

Babuška and Ihlenburg [5, 15, 17, 18] studied the dispersive properties of
higher order finite elements for the Helmholtz equation in one dimension, and
obtained estimates for the accuracy in the regime where ωh < 1. The estimates
provide bounds involving generic constants. Here, we shall present an estimate
for this error which is, of course, consistent with the bound derived by Babuška
and Ihlenburg, but which is sharp in the sense that the leading term in the
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expansion of the error is given explicitly.

2 Time-Harmonic Maxwell Equations

Ampére’s and Faraday’s equations relating the electric and magnetic fields in
free space, with appropriate units, take the form

∂E

∂t
− curlB = 0;

∂B

∂t
+ curlE = 0. (1)

If, for a given temporal frequency ω, we seek a time-harmonic solution of the
form

E(x, t) = eiωtE0(x); B(x, t) = eiωtB0(x), (2)

then the fields E0 and B0 satisfy the time-harmonic Maxwell equations

iωE0 − curlB0 = 0

iωB0 + curlE0 = 0.
(3)

Eliminating the magnetic field B0 (or the electric field) leads to the following
equation for the electric field E0 (or the magnetic field):

−ω2E0 + curl curlE0 = 0. (4)

The dispersion relation for this equation can be derived by seeking a non-trivial
plane wave solution of the form

E0(x) = eiξ·xα, (5)

giving the condition
ω2α + ξ × (ξ × α) = 0.

Expanding the vector products gives
(
ξξ⊤ + (ω2 − |ξ|2)I

)
α = 0

where I denotes the identity matrix, and so, for a non-trivial solution α, we
require that the determinant vanishes,

∣∣∣∣∣∣

ω2 − ξ2
2 − ξ2

3 ξ1ξ2 ξ1ξ3

ξ1ξ2 ω2 − ξ2
1 − ξ2

3 ξ2ξ3

ξ1ξ3 ξ2ξ3 ω2 − ξ2
1 − ξ2

2

∣∣∣∣∣∣
= 0,

which simplifies to give

ω2(ω2 − ξ2
1 − ξ2

2 − ξ2
3)

2 = 0. (6)

Hence, if ω is non-zero, we obtain the dispersion relation,

ω2 = |ξ|2 . (7)

The plane wave solutions (5) correspond to the propagation of a monochromatic
wave, and have the Bloch wave property [22]:

E0(x + hn) = eihξ·nE0(x) (8)

for any choice of vector n and scalar h.
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3 Higher Order Nédélec (Edge) Elements

The ability of a numerical scheme to propagate discrete plane wave type solu-
tions, discussed in the previous section, correctly has a significant impact on
the quality of the approximation that will be obtained [4, 6]. One of the aims
of the present work is to study this question for certain types of finite element
schemes for Maxwell’s equation. Before pursuing the dispersion analysis, we
first describe the type of scheme we have in mind and illustrate the behaviour
of the method for a model problem.

Let Ω ⊂ Rd, d = 2 or 3 be a polyhedral domain. The appropriate function
space setting for the Maxwell equations is denoted by H(curl; Ω) and is defined
by

H(curl; Ω) =
{

v ∈ L2(Ω)d : curlv ∈ L2(Ω)
}

. (9)

One of the main features of this space that impacts the choice of a finite ele-
ment discretisation is that it is only necessary for the tangential components
of a field v to be continuous across element interfaces. That is to say, there
is no obligation for the normal components to be continuous. In fact, it is
known that if standard conforming finite elements are used to discretise the
problem, then it is possible for the sequence of approximations to converge to
an incorrect solution of the problem unless a regularised variational formula-
tion is employed [12]. Consequently, finite elements have been derived that
respect the minimal conformity conditions imposed by the underlying space
H(curl; Ω). One particular variant is due to Nédélec [21] and is often dubbed
as ‘edge’ elements in the engineering literature.

Let M be a partitioning of Ω into curvilinear quadrilaterals or hexahedra [8],
such that the non-empty intersection of distinct elements is either a single
common face, edge or vertex of both elements. Each element K ∈ M is the
image of a reference element K̂ = (−1, 1)d under a differentiable bijection F K :
K̂ → K. A finite element in the sense of Ciarlet [8] is represented by a triple
(P, K,Σ). The space P̂ associated with the Nédélec element of order p on the
reference element is given by

P̂ =

{
Qp,p+1 × Qp+1,p, d = 2

Qp,p+1,p+1 × Qp+1,p,p+1 × Qp+1,p+1,p d = 3

where
Qp,q =

{
xiyj : 0 ≤ i ≤ p, 0 ≤ j ≤ q

}

and
Qp,q,r =

{
xiyjzk : 0 ≤ i ≤ p, 0 ≤ j ≤ q, 0 ≤ k ≤ r

}
.

The set of degrees of freedom Σ̂ is specified implicitly by the choice of basis.
Let {Li}

p
i=0 denote normalised Legendre polynomials, so that ‖Li‖(−1,1) = 1,

and define the set {ℓi}
p+1
i=0 as follows

ℓ0(s) =
1

2
(1 − s); ℓ1(s) =

1

2
(1 + s)
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and

ℓi(s) =

∫ s

−1
Li−1(t) dt, i = 2, . . . , p + 1.

The basis functions on the quadrilateral reference element K̂ = (−1, 1)2 are
chosen to be

Li(ξ1)ℓj(ξ2)e1

ℓj(ξ1)Li(ξ2)e2

}
i = 0, . . . , p; j = 0, . . . , p + 1 (10)

whilst for the hexahedral reference element K̂ = (−1, 1)3, the basis functions
are given by

Li(ξ1)ℓj(ξ2)ℓk(ξ3)e1

ℓj(ξ1)Li(ξ2)ℓk(ξ3)e2

ℓj(ξ1)ℓk(ξ2)Li(ξ3)e3





i = 0, . . . , p; j, k = 0, . . . , p + 1 (11)

where e1, . . . ,e3 denote the unit Cartesian vectors. The dimensions of P̂ are
given by d(p + 1)(p + 2)d−1 for d = 2, 3.

The Nédélec element (P,K,Σ) on a physical domain K is constructed from
the reference element as follows. First, observe that the electric field Ê on
a reference element is related to the field E on the physical element by the
covariant transformation [19],

E(x)|K = J−⊤

K Ê(ξ), x = F K(ξ). (12)

Consequently, the global basis function φ corresponding to the local basis func-
tion φ̂ on the reference element is defined by

φ(x)|K = J−⊤

K φ̂(ξ). (13)

The degrees of freedom Σ on the global element are implicit in the choice of
basis. The degrees of freedom shared by more than one element may be shown
to correspond to tangential moments of the field on the edges and faces of the
element [21].

One feature of the basis presented above that is important for efficient prac-
tical implementation is that it is hierarchical. An alternative hierarchical basis
will be found in [23]. However, numerical evidence presented in [2] indicates
that the latter choice leads to extremely poorly conditioned matrices. In fact,
numerical evidence suggests that the condition number degenerates exponen-
tially fast with the polynomial order p. The conditioning of the basis described
above is analysed in [3].

In order to illustrate the performance of higher order elements, we consider
the simple problem of the numerical propagation of a plane wave across a square
domain Ω = (0, 1)2. Let ω be fixed, then for given sufficiently smooth data g,
we wish to approximate: E ∈ H(curl; Ω) such that

(curlE, curlv) − ω2 (E,v) = 0 (14)
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for all v ∈ H0(curl; Ω), subject to the essential boundary conditions

t · E = g on ∂Ω, (15)

where t is the unit tangent on the boundary ∂Ω. Here, we adopt the usual
convention in two dimensions and denote

curlψ =

(
∂ψ

∂y
,
∂ψ

∂x

)
; curlv =

∂v2

∂x
−

∂v1

∂y
.

Let Ẽ = i curl(exp(ik ·x)) denote the plane wave propagating in the direction
k = 4π(1, 1). If the data are chosen so that g = t · Ẽ and ω2 = 8π2, then Ẽ is
the exact solution of the problem.

The domain is subdivided into a uniform mesh of square elements of size h,
and Nédélec elements of uniform order p are used to define the finite element
space V hp. The finite element approximation Ehp ∈ V hp is sought such that

(curlEhp, curlv) − ω2 (Ehp, v) = 0 (16)

for all v ∈ V hp ∩ H0(curl; Ω). The essential boundary conditions are applied
by requiring that on every element edge γ ⊂ ∂Ω:

∫

γ

(t · Ehp − g) v ds = 0 (17)

for all v ∈ Pp(γ), where Pp denotes polynomials of degree at most p in the
arc-length.

The problem is approximated using two alternative approaches: either the
h-version finite element method where uniform mesh refinement is performed in
conjunction with the low order Nédélec elements, or, the p-version finite element
method where a single element is used in conjunction with uniform increase in
the order p of the elements.

Fig. 1 shows the second component of the approximation to the electric
field obtained using first order Nédélec elements. Recall that for an H(curl)-
conforming approximation only the continuity of the tangential component of
the electric field is enforced, whilst the normal component of the field may be
discontinuous, as shown in Fig. 1.

In order to study the dispersive behaviour of each type of scheme, the vari-
ation of the component of the true and approximate solutions in the direction
(1, 1) along the leading diagonal is shown for both h-version and p-version ap-
proximation.

Fig. 2 shows the results obtained using lowest order Nédélec elements and
h-refinement on a sequence of uniform meshes. A mesh of 32x32 elements (i.e.
2112 degrees of freedom) is needed to provide an accurate resolution of the
wave.

Fig. 3 shows the results obtained by increasing the order of the scheme to
first order Nédélec elements and h-refinement on a sequence of uniform meshes.
Here, a coarser mesh of 16x16 elements, again requiring 2112 degrees of freedom,
provides good resolution of the wave.
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Figure 1: Second component, Ey, of electric field obtained using a 10x10 grid
and first order Nédélec elements.
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Figure 2: Variation of (1, 1) component of true (solid line) and approximate
(dashed line) solutions along leading diagonal for h-version approximation using
zeroth order Nédélec elements. (a) h = 1/4. (b) h = 1/8. (c) h = 1/16. (d)
h = 1/32.
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Figure 3: Variation of (1, 1) component of true (solid line) and approximate
(dashed line) solutions along leading diagonal for h-version approximation using
first order Nédélec elements. (a) h = 1/2. (b) h = 1/4. (c) h = 1/8. (d)
h = 1/16.
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Figure 4: Variation of (1, 1) component of true (solid line) and approximate
(dashed line) solutions along leading diagonal for h-version approximation using
second order Nédélec elements. (a) h = 1. (b) h = 1/2. (c) h = 1/4. (d)
h = 1/8.
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Figure 5: Variation of (1, 1) component of true and approximate solutions along
leading diagonal for p-version approximation on a single element. (a) p = 2.
(b) p = 4. (c) p = 5. (d) p = 6. (e) p = 7. (f) p = 8.

Fig. 4 shows the results obtained by further increasing the order of the
scheme to second order Nédélec elements. Once again, a coarser mesh of 8x8
elements (i.e. 1200 degrees of freedom) gives good resolution of the wave.

These results suggest an alternative strategy whereby the mesh is fixed,
and the order p of the scheme is increased. Fig. 5 shows the results obtained
using the p-version on a single element. The initial second order approximation
provides poor resolution, but this rapidly improves as the order is increased.
The number of degrees of freedom needed for p-th order approximation on a
single element is given by 2(p + 1)(p + 2), meaning that only 180 degrees of
freedom are needed for p = 8.

For comparison, the results of using a p-version on a 2x2 mesh are shown
Fig. 6. Once again, the initial zeroth order approximation provides poor reso-
lution, but this rapidly improves as the order is increased.

The numerical example considered above compares the effect of mesh refine-
ment versus p-refinement for the resolution of a simple plane wave. It is found
that the p-version gives very rapid convergence once the order is sufficiently
high to resolve the wave, and involves significantly fewer degrees of freedom. In
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Figure 6: Variation of (1, 1) component of true and approximate solutions along
leading diagonal for p-version approximation on a 2x2 mesh. (a) p = 0. (b)
p = 1. (c) p = 2. (d) p = 3. (e) p = 4. (f) p = 5.
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Figure 7: Notation used to describe edges relative to vertices for a typical
element drawn from an infinite mesh of uniform, cubic elements of size h. The
orientation associated with the degrees of freedom for the lowest order Nédélec
elements is indicated by arrows.

subsequent sections, we shall investigate this behaviour analytically.

4 Discrete Dispersion for Lowest Order Nédélec El-
ements

For ease of exposition, we begin by discussing the dispersive properties of lowest
order Nédélec elements. Suppose that free space is partitioned into an infinite,
uniform mesh consisting of cubes of size h, with Cartesian coordinate axes cho-
sen to coincide with the directions of edges of the cubes. A typical element is
shown in Fig. 7. Let V h denote the lowest order Nédélec elements constructed
on this mesh. Any function Eh ∈ V h may be assumed, without loss of gener-
ality, to have d-th spatial component of the form

E
(d)
h =

∑

n∈Z3

α
(d)
n φ

(d)
n (18)

where

φ
(1)
n =




χn1(x1) θn2(x2) θn3(x3)
0
0


 (19)

with analogous expressions for the remaining components. Here, χn is the
(discontinuous) characteristic function for the interval (n, n + 1)h given by

χn(s) =

{
1, if s ∈ (nh, nh + h)

0, otherwise
(20)
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while θn is the familiar continuous, piecewise linear hat function given by

θn(s) =





1 − (n − s/h), s ∈ (nh − h, nh]

1 + (n − s/h), s ∈ (nh, nh + 1)

0, otherwise.

(21)

The line integral of a typical basis function, φ
(d)
n ∈ V h, taken along element

edges has the following simple form:

∫

γ
(e)
m

φ
(d)
n · dx =

{
h if m = n and d = e

0 otherwise
(22)

where γ
(d)
m denotes the edge aligned with the d-th coordinate axis starting at the

node indexed by m (see Fig. 7). Exploiting this property allows the coefficients

α
(d)
n to be written explicitly in terms of the field Eh as follows:

α
(d)
n =

1

h

∫

γ
(d)
n

Eh · dx. (23)

By analogy with (8), a non-trivial discrete solution Eh is sought which satisfies
the condition

Eh(x + hn) = eihξh·nEh(x) ∀n ∈ Z3 (24)

where ξh is the discrete wave vector related to a prescribed temporal frequency
ω by the discrete dispersion relation. Our goal in this section is to determine
the discrete dispersion relation explicitly.

Applying a change of variable in equation (23) and exploiting the translation
invariance of the mesh, we deduce that

α
(d)
n =

1

h

∫

γ
(d)
n

Eh(x) · dx

=
1

h

∫

γ
(d)
0

Eh(x + nh) · dx

=
1

h

∫

γ
(d)
0

eihξh·nEh(x) · dx

and hence
α

(d)
n = eihξh·nα

(d)
0

∀n ∈ Z. (25)

Inserting condition (25) into the expression (18) gives

E
(d)
h = α

(d)
0

∑

n∈Z3

eihξh·nφ
(d)
n , (26)

and then, exploiting the fact that the summand decouples into separate contri-
butions from each component of n, it follows that

E
(1)
h = α

(1)
0

Υh(ξ1; x1)Θh(ξ2; x2)Θh(ξ3; x3)

E
(2)
h = α

(2)
0

Θh(ξ1; x1)Υh(ξ2; x2)Θh(ξ3; x3)

E
(3)
h = α

(3)
0

Θh(ξ1; x1)Θh(ξ2; x2)Υh(ξ3; x3)

(27)

12



where
Υh(ξ; s) =

∑

n∈Z

eihξnχn(s) (28)

and
Θh(ξ; s) =

∑

n∈Z

eihξnθn(s). (29)

Equation (27) is the discrete analogue of equation (5) and reflects the fact that
both the discrete and continuous fields have only three degrees of freedom, cor-
responding to the scalings applied to the individual components of the discrete
solution.

The functions Θh and Υh have several interesting properties. Let Vh denote
the space of continuous, piecewise linear functions on the real line with nodes
located at hZ. The function Θh(ξ; ·) may be regarded as the discrete analogue
of the complex exponential eiξs. For instance, Θh(ξ; ·) ∈ Vh is the interpolant
to the complex exponential at the nodes and satisfies

Θh(ξ; s + nh) = eihξnΘh(ξ; s) ∀n ∈ Z. (30)

Moreover, Θh(ξ; ·) satisfies the discrete variational counterpart of the eigen-
value problem satisfied by the complex exponential function −(eiξs)′′ = ξ2eiξs,
namely,

∫

R

Θh(ξ; s)′ v′h(s) ds = ωh(ξ)2
∫

R

Θh(ξ; s) vh(s) ds ∀vh ∈ Vh (31)

where a simple computation shows that the eigenvalue is given by

ωh(ξ)2 =
6

h2

1 − cos(hξ)

2 + cos(hξ)
= ξ2

(
1 +

1

12
(hξ)2 + . . .

)
. (32)

This result is well-known, e.g. Thompson and Pinsky [24], and represents the
discrete dispersion relation for the scalar Helmholtz equation in one dimension
u′′ + ω2u = 0:

ω2 = ξ2.

The function Υh(ξ; ·) is also closely related to the complex exponential eiξs.
For instance, the complex exponential satisfies (eiξs)′ = iξ eiξs. An elementary
computation reveals the following discrete counterpart of this property:

Θ′
h(ξ; ·) = ∆(ξ; h)Υh(ξ; ·) (33)

where

∆(ξ; h) =
eihξ − 1

h
→ iξ as hξ → 0. (34)

This property means that the function Eh defined by equation (27) may be
expressed in the alternative form

E
(1)
h = α1Θ

′
h(ξ1; x1)Θh(ξ2;x2)Θh(ξ3; x3)

E
(2)
h = α2Θh(ξ1; x1)Θ

′
h(ξ2;x2)Θh(ξ3; x3)

E
(3)
h = α3Θh(ξ1; x1)Θh(ξ2;x2)Θ

′
h(ξ3; x3)

(35)
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where α1 = α
(1)
0

/∆(ξ1; h) etc.
In order to determine the discrete dispersion relation, a non-trivial discrete

solution of the form (35) is sought which satisfies the variational form of (4):

(curlEh, curlvh) − ω2(Eh, vh) = 0 for all vh ∈ V h. (36)

At first sight, this problem seems to be intractable since there are only three
degrees of freedom associated with the function Eh given by (35), while equa-
tion (36) appears to embody infinitely many conditions. However, the transla-
tion invariance of the mesh means that equation (4) really only imposes three
independent conditions, as shown by the following arguments.

Firstly, for any n ∈ Z3, choose vh ∈ V h of the form

vh =




θ′n1(x1) θn2(x2) θn3(x3)
0
0


 (37)

then an elementary computation using property (31) reveals that

(Eh, vh) = ωh(ξ1)
2α1

3∏

ℓ=1

∫

R

Θh(ξℓ; s) θnℓ(s) ds (38)

and

(curlEh, curlvh) =
3∏

ℓ=1

∫

R

Θh(ξℓ; s) θnℓ(s) ds × (39)

ωh(ξ1)
2
[
α1(ωh(ξ2)

2 + ωh(ξ3)
2) − α2ωh(ξ2)

2 − α3ωh(ξ3)
2
]
.

Hence, with this choice of vh, equation (36) simplifies to the algebraic condition

ω(ξ1)
2
[
α1(ωh(ξ2)

2 + ωh(ξ3)
2 − ω2) − α2ωh(ξ2)

2 − α3ωh(ξ3)
2
]

= 0. (40)

Observe that the same algebraic condition arises regardless of the choice of
multi-index n ∈ Z3. The same argument applies to the remaining two compo-
nents. Therefore, as stated above, equation (36) reduces to only three indepen-
dent conditions. Consequently, we arrive at the following equivalent condition
for the existence of a non-trivial solution Eh:

∣∣∣∣∣∣

ω2 − ωh(ξ2)
2 − ωh(ξ3)

2 ωh(ξ1)ωh(ξ2) ωh(ξ1)ωh(ξ3)
ωh(ξ1)ωh(ξ2) ω2 − ωh(ξ1)

2 − ωh(ξ3)
2 ωh(ξ2)ωh(ξ3)

ωh(ξ1)ωh(ξ3) ωh(ξ2)ωh(ξ3) ω2 − ωh(ξ1)
2 − ωh(ξ2)

2

∣∣∣∣∣∣
= 0.

Expanding and simplifying the determinant gives

ω2
(
ω2 − ωh(ξ1)

2 − ωh(ξ2)
2 − ωh(ξ3)

2
)2

= 0

and hence, for non-zero ω, we obtain

ω2 = ωh(ξ1)
2 + ωh(ξ2)

2 + ωh(ξ3)
2. (41)
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Inserting expression (32) leads to an explicit expression for the discrete disper-

sion relation corresponding to the lowest order Nédélec elements:

ω2 =
6

h2

[
1 − cos(hξ1)

2 + cos(hξ1)
+

1 − cos(hξ2)

2 + cos(hξ2)
+

1 − cos(hξ3)

2 + cos(hξ3)

]
. (42)

If h|ξh| ≪ 1, then we obtain

ω2 = |ξh|
2 +

h2

12

(
ξ4
1 + ξ4

2 + ξ4
3

)
+ . . . (43)

which exhibits the second order accuracy of the discrete dispersion relation for
the lowest order Nédélec space.

The foregoing arguments show that the dispersion relation for Maxwell’s
equations for certain finite element schemes in higher dimensions is related
to the dispersion relation in one dimension. An alternative derivation of the
corresponding result for the lowest order Nédélec elements in two dimensions
from first principles was given in [2].

5 Dispersion Relation for Nédélec Elements of Ar-
bitrary Order

The purpose of this section is to derive the discrete dispersion relation for the
space V hp of Nédélec elements of arbitrary order p ∈ N, again on a partitioning
of R3 into uniform cubes of size h.

The key to the derivation of the dispersion relation for first order elements
was the construction of the function Θh(ξ; ·) satisfying conditions (30) and (31).
Let Vhp denote the space of continuous, piecewise polynomials of degree p on
the real line with nodes located at hZ. By analogy with the lowest order
case, we seek a piecewise polynomial Θhp(ξ; ·) ∈ Vhp satisfying the following
generalisations of properties (30) and (31):

Θhp(ξ; s + nh) = eihξnΘhp(ξ; s) ∀n ∈ Z (44)

and
∫

R

Θ′
hp(ξ; s)v

′
hp(s) ds = ωhp(ξ)

2

∫

R

Θhp(ξ; s)vhp(s) ds ∀vhp ∈ Vhp. (45)

The existence of such a function is analysed in [1] along with the dependence
of ωhp(ξ) on ξ, and will be discussed in detail later.

By analogy with equation (35), for given ξhp ∈ R3, define Ehp ∈ V hp by

E
(1)
hp = α1Θ

′
hp(ξ1;x1)Θhp(ξ2; x2)Θhp(ξ3; x3)

E
(2)
hp = α2Θhp(ξ1;x1)Θ

′
hp(ξ2; x2)Θhp(ξ3; x3)

E
(3)
hp = α3Θhp(ξ1;x1)Θhp(ξ2; x2)Θ

′
hp(ξ3; x3),

(46)
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observe that, by property (44), Ehp satisfies

Ehp(x + hn) = eihξhp·nEhp(x) ∀n ∈ Z3. (47)

Let v1, v2, v3 ∈ Vhp be arbitrary and define vhp ∈ V hp by

vhp =




v′1(x1) v2(x2) v3(x3)
0
0


 , (48)

then, similarly to the case of first order elements, property (45) again implies
that

(Eh, vh) = ωhp(ξ1)
2α1

3∏

ℓ=1

∫

R

Θhp(ξℓ; s) vℓ(s) ds (49)

and

(curlEh, curlvh) =

3∏

ℓ=1

∫

R

Θhp(ξℓ; s) vℓ(s) ds × (50)

ωhp(ξ1)
2
[
α1(ωhp(ξ2)

2 + ωhp(ξ3)
2) − α2ωhp(ξ2)

2 − α3ωhp(ξ3)
2
]
.

The remaining steps in the argument are identical to those used for first order
elements, leading to the discrete dispersion relation for higher order elements

ω2 = ωhp(ξ1)
2 + ωhp(ξ2)

2 + ωhp(ξ3)
2. (51)

Cohen and Monk [9] used a quite different argument showing that a similar
result holds for Gauss-point mass-lumped schemes for arbitrary order of ap-
proximation. The approach described above is more natural and is readily
extended to include mass-lumped schemes.

In order to make use of equation (51), we would like to be able to express
ωhp(ξ) in terms of ξ. As a matter of fact, it turns out to be easier to find an
implicit definition for ωhp(ξ) in terms of cos(hξ). For example, in the case of
lowest order elements, the relation (32) may be rewritten in the form

cos(hξ) = R1(hωh) =
6 − 2(hωh)2

6 + (hωh)2
. (52)

This expression is generalised to arbitrary order p in [1]:

Theorem 1 Let [2Ne + 2/2Ne]κ tan κ and [2No/2No − 2]κ cot κ denote the Padé

approximants to κ tanκ and κ cot κ respectively, where Ne = ⌊p/2⌋ and No =
⌊(p + 1)/2⌋. Then, ωhp satisfies

cos(hξ) = Rp(hωhp) (53)

where Rp is the rational function

Rp(2κ) =
[2No/2No − 2]κ cot κ − [2Ne + 2/2Ne]κ tan κ

[2No/2No − 2]κ cot κ + [2Ne + 2/2Ne]κ tan κ

. (54)

Furthermore, for hξ ≪ 1, there holds

ωhp(ξ)
2 = ξ2 +

[
p!

(2p)!

]2 h2pξ2p+2

2p + 1
+ . . . (55)
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Order p Rp(hωhp) ωhp(ξ)
2 − ξ2

1
−2(hωh1)

2 + 6

(hωh1)2 + 6

h2ξ4

12

2
3(hωh2)

4 − 104(hωh2)
2 + 240

(hωh2)4 + 16(hωh2)2 + 240

h4ξ6

720

3
−4(hωh3)

6 + 540(hωh3)
4 − 11520(hωh3)

2 + 25200

(hωh3)6 + 30(hωh3)4 + 1080(hωh3)2 + 25200

h6ξ8

100800

p

[
p!

(2p)!

]2
h2pξ2p+2

2p + 1

Table 1: Special cases of relationship between ωhp(ξ) and ξ for order p approx-
imation given in Theorem 1, along with the leading term for the error valid for
hξ ≪ 1.

The relevant Padé approximants for the lowest order (p = 1) elements coincide
with Taylor polynomials and are given by

[2No/2No − 2]κ cot κ = 1 −
1

3
κ2; [2Ne + 2/2Ne]κ tan κ = κ2

and, inserting these into equation (54) and simplifying, this leads to equa-
tion (52). Special cases of this result for orders p = 1, . . . , 4 are given in Ta-
ble 1, along with the leading term in the error valid for hξ ≪ 1. It is a simple
matter to generate the corresponding result for higher orders of approximation
using an algebraic manipulation package. An immediate consequence of the
expression (55) for the error is that

ωhp(ξ)

ξ
− 1 =

[
p!

(2p)!

]2 (hξ)2p

2(2p + 1)
+ . . . (56)

which, in the case p = 1, reduces to the result given by Thompson and Pin-
sky [24, eq. (41)]. Moreover, in the case of general order p, (55) has the form

ωhp(ξ)

ξ
− 1 = O(hξ)2p (57)

conjectured by Thompson and Pinsky [24] on the basis of investigations of the
particular cases p = 1, . . . , 5.

5.1 Order of accuracy of Nédélec elements for small wave num-
ber

It is now a simple matter to deduce the accuracy of the discrete dispersion re-
lation for Nédélec element approximation of the time-harmonic Maxwell equa-
tions. Inserting the expressions for the discrete eigenvalues gives the discrete
dispersion relation for p-th order Nédélec elements gives the following general-
isation of equation (43). If h|ξhp| ≪ 1, then

ω2 = |ξhp|
2 +

[
p!

(2p)!

]2 h2p

2p + 1

[
(ξ1)

2p+2 + (ξ2)
2p+2 + (ξ3)

2p+2
]
+ . . . (58)
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which demonstrates that p-th degree elements give a 2p-th order accurate ap-
proximation of the dispersion relation for the time-harmonic Maxwell equations.

5.2 Behaviour for large wave number

The restriction on h|ξhp| is unrealistic in practical computations at higher wave
number, where one would typically be obliged to work in the regime where
ωh ≫ 1. The rapid decrease in the coefficient of the leading term in the error
in the case ωh ≪ 1 provides some hope that the scheme may be accurate
for a larger range of wave number. Fig. 8 shows the behaviour of cos(ωh)
and the rational function Rp(ωhph) of equation (54) for order of approximation
p = 1 . . . 10 and ωh ∈ [0, 20]. The figures confirm that the higher order methods
continue to provide an accurate approximation even where ωh is quite large, and
moreover, as the order p is increased, the method appears to provide accurate
resolution for an increasingly large range for ωh.

Closer inspection leads to the conjecture that a p-th order method provides
a reasonable approximation for values of ωh up to approximately 2p + 1. This
question is studied in detail in [1], where the following result is shown: if ωh ≪
2p + 1, then

cos(hωhp) − cos(hξ) ≈
1

2
sin(ωh)

[
eωh

2(2p + 1)

]2p+1

+ . . . (59)

This estimate agrees with the upper bounds obtained by Babuška and Ihlen-
burg [17, Theorem 3.2]:

|ωhp − ω| ≤ ωCCa(p)2
[
hω

2p

]2p

, ωh < 1 (60)

where C (respectively Ca(p)) is a generic constant (respectively function of p)
defined in [17].

Estimate (59) provides a sharp quantification of the behaviour observed in
Fig. 8, and reveals that as the order of the method is increased for a fixed value
of ωh, then one obtains a super-exponential decay in the error. Moreover, com-
parison with the results presented in Fig. 8 shows that the p-th order method
provides an accurate approximation of the dispersion relation in the regime
ωh ∈ [0, 2p + 1]. Detailed analytical investigations given in [1] confirm the cor-
rectness of this observation for large order p. In addition, a detailed description
is given of the precise nature of the transition between the super-exponential
accuracy and the rapid degradation in accuracy observed in Fig. 8 when ωh
exceeds this threshold. The interested reader is referred to the above article for
further details.

6 Conclusions

In conclusion, a simple argument has been presented showing that the discrete
dispersion relation may be expressed in terms of the discrete dispersion relation
for the approximation of the scalar Helmholtz equation in one dimension. An
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Figure 8: Curves for cos(ωh) (dashed line) compared with rational approxima-
tion Rp(ωh) given in (54) (solid line), for methods of order p = 1 to p = 8.
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explicit form for the one dimensional dispersion relation was given, valid for
arbitrary order of approximation. Explicit expressions for the leading term in
the error in the regimes where (a) ωh is small, showing that the dispersion
relation is accurate to order 2p for a p-th order method; and (b) in the high
wave number limit where 1 ≪ ωh ≤ 2p + 1, showing that in this case the error
reduces at a super-exponential rate as the order of approximation is increased.

These results shed light on the behaviour of higher order spectral ele-
ment and p-version finite element methods for the approximation of the time-
harmonic Maxwell equations at moderately high wave numbers, and provide
quantitative information on the level of mesh refinement and order of approx-
imation needed to control the dispersive effects. Moreover, the error estimates
are sharp and provide lower bounds below which the dispersive behaviour will
dominate. This establishes practical limits on the applicability of high order
methods, beyond which the performance degenerates rapidly to the extent that
the numerically computed wave is severely degraded by numerical dispersion.
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