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Dispersive wave turbulence in one dimension
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Abstract

In this article, we study numerically a one-dimensional model of dispersive wave turbulence. The article begins with a de-
scription of the model which we introduced earlier, followed by a concise summary of our previous results about it. In those pre-
vious studies, in addition to the spectra of weak turbulence (WT) theory, we also observed another distinct spectrum (the “MMT
spectrum”). Our new results, presented here, include: (i) A detailed description of coexistence of spectra at distinct spatial
scales, and the transitions between them at different temporal scales; (ii) The existence of a stable MMT front in k-space which
separates the WT cascades from the dissipation range, for various forms of strong damping including “selective dissipation”;
(iii) The existence of turbulent cycles in the one-dimensional model with focusing nonlinearity, induced by the interaction of
spatially localized coherent structures with the resonant quartets of dispersive wave radiation; (iv) The detailed composition
of these turbulent cycles — including the self-similar formation of focusing events (distinct in the forced and freely decaying
cases), and the transport by the WT direct and inverse cascades of excitations between spatial scales. This one-dimensional
model admits a very precise and detailed realization of these turbulent cycles and their components. Our numerical experi-
ments demonstrate that a complete theory of dispersive wave turbulence will require a full description of the turbulent field
over all spatial scales (including those of the forcing and dissipation), and over extremely long times (as the nonlinear turnover
time becomes very long in the weakly nonlinear limit). And, in the focusing case, a complete theory must also incorporate
the interaction of localized coherent structures with resonant radiation. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Waves in nature, such as waves on the surface of the sea or waves in the atmosphere, are phenomena so complex
that they must be described statistically. Such complex waves comprise stochastic states for which wave spectra
(the average energy density as a function of the wavelength), rather than individual wave trajectories, are natural
observables. In these stochastic states, the fundamental weakly nonlinear excitations consist in resonant wave–wave
interactions, which are described statistically by the theories of dispersive wave turbulence. The goals of these
theories include: (i) the prediction of wave spectra and other observable quantities; (ii) the parametrization of small
scale behavior for large scale numerical simulations. Theories of dispersive wave turbulence play a role for nonlinear
waves similar to that played by statistical physics for mechanics — namely, to provide macroscopic descriptions
of observable phenomena. The validity and accuracy of these theories is difficult to assess, primarily because of
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mathematical and computational difficulties in those nonlinear partial differential equations (PDEs) which provide
the fundamental description of the waves’ evolution.

Dispersive wave turbulence is a theory of the flow of wave excitations between spatial scales — fluxes in k-space
[18,19]. It assumes that the turbulent state is one of “statistically steady flow in k-space”. Excitations at one spatial
scale (say a long spatial scale) are injected into the system by external forcing and are removed by dissipation which
is restricted to a second spatial scale (say a short scale). At scales in-between, there is no forcing or damping, and
the wave satisfies a conservative Hamiltonian system. Resonant wave–wave interactions transport the excitations,
setting up a steady flow from the injection to the dissipation scales. At the intermediate scales (the “inertial” or
“Kolmogorov” scales) the waves reside in a statistical state of steady flow in k-space, and their wave spectra should
be universal. These wave spectra are described by two-point correlation functions n(k, t),

n(k, t) ≡ 〈a(k, t)ā(k, t)〉 ,
where a(k, t) denotes the spatial Fourier transform of the wave profile q(x, t), and 〈 〉 denotes an average —
either an ensemble average, a local time average, or both. To characterize these two-point functions n(k, t), closure
approximations which rely upon weak nonlinearity and/or Gaussian random phase assumptions have been developed
— approximations which are often ad hoc and difficult to validate.

In the inertial range, one can describe the waves by the complex amplitude ak , satisfying the Hamiltonian system

i
∂ak

∂t
= δH

δāk
, (1)

if there is only one type of wave present in the nonlinear medium. We consider Hamiltonians of the form,

H = H0 + Hint, (2)

where

H0 =
∫

ω(k)akāk dk (3)

is the Hamiltonian of the linearized problem,ω(k) denotes the dispersion relation, and Hint is a perturbation describing
the interaction amongst those degrees of freedom represented, in k-space, by ak . Generally, Hint can be expressed
in terms of power series in ak and āk , such as

Hint =
∫

(Pkk1k2 ākak1ak2 + P̄kk1k2akāk1 āk2)δ(k − k1 − k2) dk dk1 dk2

+
∫

(Qkk1k2akak1ak2 + Q̄kk1k2 ākāk1 āk2)δ(k + k1 + k2) dk dk1 dk2

+
∫

Rkk1k2k3 ākāk1ak2ak3δ(k + k1 − k2 − k3) dk dk1 dk2 dk3 + · · · . (4)

The dispersion relation ω(k) determines the nature of near linear wave–wave interactions. For example, if the
following condition holds:

ω(k) = ω(k1) + ω(k2), k = k1 + k2 (5)

for some k, the wave interaction leads to the resonant interaction of the waves ak1 and ak2 with ak1+k2 . This situation
is called three-wave resonance. If (i) Eq. (5) does not have solutions, and if (ii) the following system has nontrivial
(k3 
= k1, k2) solutions,

ω(k1) + ω(k2) = ω(k3) + ω(k4), k1 + k2 = k3 + k4, (6)
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then the four-wave resonance is primarily responsible for the transfer of energy by weak dispersive waves. It can
be easily shown that, under the above two conditions, a normal form near-identity transformation will place the
Hamiltonian (2) in the form,

H =
∫

ω(k)akāk dk +
∫

Skk1k2k3 ākāk1ak2ak3δ(k + k1 − k2 − k3) dk dk1 dk2 dk3, (7)

where higher order nonlinearities have been neglected. This is the generic Hamiltonian system with four-wave
resonances. Clearly, in this case, the “particle” number,

N =
∫

nk dk =
∫

nω dω, (8)

where nk = |ak|2 and nω = nk dk/dω, is conserved. In addition, the linear energy can be written as

H0 =
∫

ωknk dk =
∫

ωnω dω. (9)

This linear energy also plays an important role in the theory of weakly nonlinear dispersive wave turbulence.
In a dispersive wave turbulence whose dynamics is governed by Eq. (7), four-wave resonance is the dominant

mechanism for transporting excitations between spatial scales, generating the direct cascade (toward short wave-
lengths) and the inverse cascade (toward long wavelengths). However, in nonlinear wave systems, localized coherent
structures often coexist with resonant radiation. When both resonant radiation and coherent structures are present,
theoretical descriptions of dispersive wave turbulence are even more difficult to construct. For example, the for-
mation of coherent structures and their interaction with radiation may result in modifications of WT cascades, and
must be incorporated into a theory of the mechanism for the energy transfer.

We [3,5,9] have been developing and studying a one-dimensional model system for dispersive wave turbulence in
order to understand its properties and to clarify its theoretical representations. The single spatial dimension renders
the waves nearly amenable to analytical description, and certainly to careful and controlled numerical simulation.
Furthermore, our model system has tunable parameters which control dispersion and nonlinearity. This flexibility
allows us not only to treat the model as a “toy system” for realistic physical waves, such as gravitational waves over
deep waters, by choosing specific parameter values, but also to examine systematically the validity of WT theory
by varying the parameter values over a wide range of parameter space.

After a very brief overview of standard weak turbulence (WT) theory, this article begins with a concise summary
in Section 2.3 of our previous results [3,5,9] for a one-dimensional model of dispersive wave turbulence, introduced
in [9]. In those previous studies, in addition to the spectra of WT theory, we also observed another distinct spectrum
(which will be referred to as the “MMT spectrum”). Our new results, presented here, include the following.

In Section 3, we focus upon the temporal and spatial scales over which distinct spectra are observed. In particular,
(i) we use the temporal growth of the L2 norm to monitor a transition between the MMT and WT spectra. (ii)
We show the existence of a stable MMT front in k-space which separates the WT cascades at intermediate spatial
scales from the high k dissipation range, for various forms of strong damping, including “selective dissipation”.
This material in Section 3 emphasizes that (a) distinct wave spectra can coexist in distinct spatial scales, which (b)
then compete over distinct time scales; moreover, (c) this competition is further complicated by very long nonlinear
turnover times in precisely the weakly nonlinear limit for which WT is believed valid. These results of the interplay
between the MMT and WT spectra show that a complete theory of dispersive wave turbulence will require a full
description of the turbulent field across all spatial scales, including those of the forcing and dissipation.

In Section 4, we study (for our one-dimensional model with focusing nonlinearity) the interaction of spatially
localized coherent structures with the resonant quartets of dispersive wave radiation. First, we describe two distinct
self-similar focusing events — one for the free and another for the driven-damped case. These fast processes transfer
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excitations from long spatial scales to shorter ones, and initiate turbulent cycles. These cycles are then studied in
precise detail numerically, for different strengths of forcing and for the freely decaying case. The coexistence of
the direct and inverse cascades within these cycles (as induced by the formation of localized structures), and the
roles of both cascades in the transport of excitations between spatial scales, constitute the primary results of these
numerical studies. We stress that this one-dimensional model admits a very precise and detailed realization of these
turbulent cycles and their components. Finally, in Section 5, we summarize our results and mention an analogy with
soap film turbulence.

2. Background summary

2.1. A one-dimensional model

In this paper, we study a class of one-dimensional nonlinear wave equations which was introduced in [9] as a
simple model for which the validity of theories of dispersive wave turbulence could be precisely checked numerically.
This model takes the form,

iqt = |∂x |αq ± |∂x |−σ (||∂x |−σ q|2|∂x |−σ q), (10)

or equivalently in “k-space”

iȧk = ω(k)a ±
∫

a(k1)a(k2)ā(k3)

|k1k2k3k|σ δ(k1 + k2 − k3 − k) dk1 dk2 dk3. (11)

Note the − (+) sign which labels focusing (defocusing) nonlinearity. This model depends upon two real pa-
rameters, α > 0 and σ . The parameter σ controls the nonlinearity and the parameter α controls the dispersion
relation,

ω(k) = |k|α. (12)

For α < 1, this one-dimensional model supports resonant quartets; that is, there exist nontrivial (k 
= k1, k2)

solutions of the four-wave resonance conditions (6). Note that α = 2, σ = 0 constitute the usual cubic nonlinear
Schrödinger equation, with no nontrivial four-wave resonances. The case of α = 1

2 and σ = − 3
4 mimics dispersion

and nonlinear interaction for water waves. But, as stressed above, the wide range of tunable parameters permits
systematic studies of various dynamical aspects of dispersive wave turbulence.

Next, to acquire some simple physical intuition and to obtain the kinetic equation of WT for our system, we
sketch the closure derivation for n(k, t) (e.g., see [19]), starting with Eq. (11) in k-space, one obtains

nt (k, t) = ±
∫

2Im〈ak1ak2 āk3 āk〉
|k1k2k3k|σ δ(k1 + k2 − k3 − k) dk1 dk2 dk3 (13)

for the two-point function n(k, t) = 〈ak(t)āk(t)〉. Under a Gaussian random phase approximation, and the assump-
tion that

∂

∂t
〈ak1ak2 āk3 āk〉 ≈ 0, (14)

which is consistent with a second-order perturbation analysis when the nonlinearity is assumed to be weak, one
obtains the closure condition

Im〈ak1ak2 āk3 āk〉 = ∓2π
n2n3nk + n1n3nk − n1n2nk − n1n2n3

|k1k2k3k|σ δ(ω1 + ω2 − ω3 − ω). (15)
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Under this closure condition, Eq. (13) reduces to

ṅk=4π
∫

n1n2n3nk

|k1k2k3k|2σ
(

1

nk

+ 1

n3
− 1

n2
− 1

n1

)
δ(ω1 + ω2 − ω3 − ω)δ(k1 + k2 − k3 − k) dk1 dk2 dk3. (16)

Eq. (16) is the kinetic equation for n(k, t). Note that Eq. (16) does not depend upon the sign of nonlinearity.

2.2. The wave spectra

Time independent (stable) solutions of the WT kinetic equations (16) describe steady-state spectra:

n(k) = c, equipartition of particle number (17)

n(k) = c

ω(k)
, equipartition of energy (18)

n(k) = c|k|8σ/3−1, direct cascade (19)

n(k) = c|k|8σ/3−1+α/3, inverse cascade. (20)

The first two “equilibrium spectra” can immediately be shown to satisfy (16). In fact, each is a special case of
the general solution,

n(k) = c

ω(k) + µ
,

where µ is the “chemical potential.” Their interpretation as “equipartition of particles” and “equipartition of energy”
comes from the invariant∫

qq∗ dx =
∫

aa∗ dk =
∫

n(k) dk,

and from the “linear energy”∫
ω(k)a(k)a∗(k) dk =

∫
ω(k)n(k) dk.

Very generally, Zakharov [18] showed that the other two spectra of the “direct” and “inverse” cascades also are
steady-state solutions. His argument uses a conformal transformation, and is motivated and described in [9] for our
system (10).

In the numerical experiments reported in [3,9], another spectrum (the MMT spectrum) was observed. For Eq. (10)
at α = 1

2 , this spectrum is

n(k) = c|k|2σ−(5/4) MMT. (21)

The MMT spectrum is not a steady solution of the WT kinetic equation (16) [9]. Rather, it satisfies an alternative
closure which was heuristically proposed in [9].

2.3. Summary of earlier results

In our initial work [9] on dispersive wave turbulence, we (i) introduced the model (10); (ii) described numerical
experiments, together with their validation and control, in which the MMT spectrum (rather than the direct or
inverse cascades of WT theory) was observed and (iii) presented a heuristic closure whose steady solution is the
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MMT spectrum. These studies used a pseudospectral numerical method in combination with an integrating factor
algorithm, randomly forced (with Gaussian white-noise in time) at the long spatial scales, and damped selectively
on both long and short spatial scales with a dissipation of the form (in k-space)

−i[ν−|k|−d + ν+|k|d ]ak (22)

with the parameter d set to be 8. Here the constants ν± are chosen such that there is a sufficiently wide inertial range
in our numerical experiments.

More recent work, reported here and in Refs. [3,5], also used a pseudospectral method in combination with an
integrating factor algorithm. For the time dynamics, we used a fourth-order adaptive stepsize Runge–Kutta integrator.
(A second-order symplectic time-integrator was also used for numerical verification. No significant differences were
observed between these two integrators.) For most of these experiments, the total number of Fourier modes is 213,
and the system size L ∼ 400.

In recent studies [3,5] we replaced selective dissipation (22) with

−iΓjak, j = l, s (23)

with Γ 1 restricted to large spatial scales |k| ∼ 1, Γ s to small spatial scales |k| > Kd (Kd = 2600 for most
experiments) and no damping in-between. We also use this constant dissipation (23) in this paper, except in Section
3 on selective dissipation. In [3,5] both deterministic and random (white-noise in time) forcings were studied.

In the numerical experiments reported in [3], four distinct stable spectra were observed — the direct and inverse
cascades of WT theory, thermal equilibrium, and a fourth spectrum (MMT). Each spectrum can describe long-time
behavior, and transitions between them may occur — depending upon details of nonlinearity, forcing, and dissipation.
Cases of a long-lived MMT transient state decaying to a state with WT spectra, and vice versa, were observed.

An important result in [3] is the numerical confirmation of WT spectra for the model equation (10), for both the
direct and inverse cascades, as well as thermodynamic equilibrium. Fig. 1 is a typical example of the WT direct
cascade, which is observed over more than four decades of energy scales, and more than three decades of spatial
scales. This result constitutes the clearest and most striking numerical observation of WT spectra to date.

Fig. 1. Direct cascade WT spectrum for a freely decaying dispersive wave (defocusing nonlinearity, α = 1
2 , σ = −0.125) [3]. The slope of the

dotted line is the prediction of the WT theory for direct cascade. The total number of modes here is 216. Here and throughout this paper, the
wavenumber = 2πk/L, k ∈ integers.



D. Cai et al. / Physica D 152–153 (2001) 551–572 557

Fig. 2. MMT spectrum of driven-damped dynamics (defocusing nonlinearity with α = 1
2 , σ = 0). The system is driven by a random force at

2 ≤ |k| ≤ 3 and is damped at |k| = 1 and |k| > 2600. The slope of the dotted line is the prediction of the MMT closure and, for comparison,
the dashed line has the slope of the direct WT cascade.

We also verified in [3] the existence of the MMT spectra for both focusing and defocusing nonlinearities. As an
example, Fig. 2 shows a case of the MMT spectrum with defocusing nonlinearity.

Additional numerical experiments designed to study details of the composition, coexistence, and transition be-
tween spectra were briefly described in [3], including: (i) For deterministic forcing, sharp distinctions between
focusing and defocusing nonlinearities, including the role of long wavelength instabilities, localized coherent struc-
tures, and chaotic behavior; (ii) The role of energy growth in time as a means to monitor the selection of the MMT
or WT spectra; (iii) A second manifestation of the MMT spectrum as it describes a self-similar evolution of the

Fig. 3. Phase distribution for the defocusing nonlinearity under deterministic drive. In this case, the WT direct cascade is only observed for a
very small range of high k’s. Plotted is the phase function φ(x, t) evenly sampled in time, where φ(x, t) = Arg q(x, t), of the wave q(x, t). The
phase of the wave is nearly “locked” (at φ ∼ π ) to the external forcing, with a small random spattering around the locking phase. (Note that π
and −π should be identified.).
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Fig. 4. Chaotic phase distribution for the focusing nonlinearity under deterministic drive when the WT direct cascade is observed over almost
the entire inertial range. Plotted here is the phase function φ(x, t) (see Fig. 3).

wave, without temporal averaging; (iv) Coherent structures and the evolution of the direct and inverse cascades; (v)
Nonlocality (in k-space) of the transferral process.

In [5], properties of the turbulent state are contrasted between focusing and defocusing nonlinearities. The numer-
ical experiments show a clear distinction between the focusing and defocusing cases in the manner and efficiency by
which the deterministic force at small k is converted into an “effective random stirring” of the intermediate spatial
scales. In the focusing case, this conversion is very efficient, relies on the modulational instability, and involves
only modes for relatively small values of k. On the other hand, in the deterministic defocusing case, the absence of
the modulational instability forces the conversion to be less efficient, and to take place through a larger range of k
modes (presumably through a breakdown of KAM tori). Numerical experiments in [5] with deterministic constant

Fig. 5. Deviation from Gaussianity for the defocusing nonlinearity under deterministic drive. In this case, the WT direct cascade is only observed
for a very small range of high k’s. The best fit (dashed line) for the nearly power law tail for the sixth moment (crosses) as a function of second
moment is m6 = 11.9m2

2.62 and the best fit (dot-dashed line) for the fourth moment (dots) is m4 = 2.54m2
1.84. Note that m2 = n(k) and the

relations m6 = 6m2
3 and m4 = 2m2

2 hold for Gaussian distributions.
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Fig. 6. Gaussianity for the focusing nonlinearity under a deterministic drive. In this case, the WT direct cascade is observed over almost the
entire inertial range. The best fit for the sixth moment (crosses) as a function of second moment is m6 = 6.30m2

2.95 (white line) and for the
fourth moment (dots) is m4 = 2.05m2

1.98 (dashed line). Note that m2 = n(k) and the relations m6 = 6m2
3 and m4 = 2m2

2 hold for Gaussian
distribution.

forcing also demonstrate that, in the focusing case, the phases of the waves are much more uniformly randomized
and the wave amplitudes are much more Gaussian than for the defocusing nonlinearity (see Figs. 3–6), indicating
the validity of a WT description of wave turbulence. For the defocusing case, a sufficiently strong nonlinearity is
required for a possible chaoticization of wave motions. Note that, however, WT theories are often justified on the
ground of weak nonlinearity. This obviously raises an interesting theoretic issue of identifying spatial and temporal
scales of decoherence for the onset of WT for the defocusing nonlinearity under deterministic forcing.

Another consequence of the focusing nonlinearity is the formation (through the modulation instability) of spatially
localized coherent structures in the wave field, which then interact with the resonant radiation. This interaction is
shown in [3,5] to be an essential component of the turbulent cascades and energy transfer cycles in the focusing
case for model (10). These turbulent cycles are studied in detail in this article.

3. MMT–WT crossover vs persistence of the MMT spectrum

As mentioned above, for focusing nonlinearity under random driving, a transition takes place from the MMT
spectrum to the WT direct cascade. Here, we discuss in detail how the “crossover time scale” from the MMT regime
to that of WT is controlled by the driving strength. We also point out that the MMT scaling can arise as a statistically
steady front in k-space which separates the WT regime from the dissipation regime.

The MMT–WT crossover: First, we report our numerical results on the MMT–WT crossover of system (10) with
focusing nonlinearity, which is driven by a Gaussian white random forcing and damped with the dissipation of
the form (23). We describe three numerical experiments, which are initialized with the same smooth initial data,
and are driven with three different amplitudes of forcing. (The damping strengths Γ l, s remain fixed for all these
cases.) Fig. 7 shows the corresponding temporal growth of the L2 norm for these experiments. Clearly, it can be
seen that, when driving is large, the growth of norm is fast and the total averaged norm is large in the final steady
state. With decreasing amplitude of forcing, the norm (and the amplitude of nonlinearity) decrease; hence, the time
scale for wave interaction becomes long. Prior to the points labeled by d, g, and i in Fig. 7, the system exhibits a
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Fig. 7. Temporal growth of L2 norm [N(t)]. a–d correspond to the four spectra in Fig. 8. e–g correspond to the three spectra in Fig. 9. h and i
correspond to the two spectra in Fig. 10. The location and the length of the horizontal line segment, indicate the time, and the time window,
used in averages to obtain the corresponding spectrum. Case (1) has the largest amplitude of forcing, while case (3) has the weakest amplitude
of forcing. Note that time is on a logarithmic scale.

coexistence of the MMT spectrum and WT direct cascade spectrum as shown in Figs. 8–10. We can correlate each
stage of expansion of the WT spectrum and contraction of the MMT spectrum with the growth of L2 norm. For
example, the case of strong forcing is shown in Fig. 7 (Curve 1) with four stages labeled by a, b, c, and d. The
location and the length of corresponding line segment indicate the time and the time window used in averages to
obtain the corresponding spectrum shown in Fig. 8. Similar situations are shown in Figs. 9 and 10 for intermediate
and weak forcings, respectively. For times greater than those of the points labeled d, g, and i, the norm fluctuates in
time about a constant mean, and the WT direct cascade finally establishes itself as a statistically steady state in all
three cases. When the drive becomes weak, the norm grows extremely slowly and the resulting weak nonlinearity

Fig. 8. Transition (a → d) from the MMT regime to the WT direct cascade (focusing nonlinearity with α = 1
2 , σ = 0). The system is driven by

a random force at 2 ≤ |k| ≤ 3 and is damped at |k| = 1 and |k| > 2600 with Γl,s = 10. The slope of the dashed (dotted) line is the prediction
of the MMT (WT) closure.
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Fig. 9. Transition (e → g) from the MMT regime to the WT direct cascade (focusing nonlinearity with α = 1
2 , σ = 0). The system is driven by

a random force at 2 ≤ |k| ≤ 3 with a weaker strength than that in Fig. 8. There is damping at |k| = 1 and |k| > 2600, with the same damping
strength as the case shown in Fig. 8. The slope of the dashed (dotted) line is the prediction of the MMT (WT) closure.

leads to a very large time scale for the crossover as shown in Fig. 7 (Curve 3) (note that the time scale in Fig. 7 is
logarithmic). From case (2) to (3) in Fig. 7, the total norm is reduced (approximately) by a factor of 2, while the
MMT–WT turn-over time in case (3) (i.e., the time at point i) is more than 10 times longer than that in case (2)
(the time at the point labeled by g). In this weakly nonlinear regime, our results show that the MMT spectrum can
live for a very long time — precisely in the regime in which WT theory is supposed to be valid. In this regime,
the nonlinear turnover time scale can be very long because the nonlinearity is very weak; therefore, an important
theoretic issue is to delimit the temporal validity of the spectra of dispersive wave turbulence. In the next paragraph,

Fig. 10. Transition (h → i) from the MMT regime to the WT direct cascade (focusing nonlinearity with α = 1
2 , σ = 0). The system is driven

by a random force at 2 ≤ |k| ≤ 3 with a weaker strength than that in Fig. 9. There is damping at |k| = 1 and |k| > 2600 with the same damping
strength as the case shown in Fig. 8. The slope of the dashed (dotted) line is the prediction of the MMT (WT) closure.
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Fig. 11. Persistence of the front described by the MMT spectrum, which separates the WT direct cascade and the dissipation range (focusing
nonlinearity with α = 1

2 and σ = 0). The damping used here has the form described by Eq. (24) with Kd = 1000, p = 4. The slope of the
dashed (dotted) line is the prediction of the MMT (WT) closure.

we show that the MMT spectrum can actually persist as a stable front in k-space which separates the WT spectrum
from the dissipation range — in a very weak nonlinear regime, induced by strong damping.

Persistence of the MMT spectrum: Here, we consider a very weak nonlinear regime as signified by small total
norms (e.g., usually below the steady part of Curve 3 in Fig. 7), with a strong dissipation at high k’s. The strong
dissipation can be achieved with large Γ s in Eq. (23) or by a “selective dissipation” of the form,

−iΓs(k − Kd)
pak, (24)

where Kd is a dissipation cutoff below which there is no damping. Strikingly, Fig. 11 shows that, in this regime,
the MMT spectrum is observed as a stable statistically steady matching front between the weak-turbulent direct

Fig. 12. Fluctuation of norm about a constant (dotted line) for the case of Fig. 11 with a steady MMT regime between the WT direct cascade
and the dissipation regime.
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cascade and the dissipation range. Unlike the previous case of the MMT–WT crossover, where over the times of
constant norm, the MMT spectrum disappears, here, the MMT spectrum persists even when the total norm has
reached a statistically steady state. Fig. 12 clearly illustrates this point, in which the norm as a function of time for
the statistically steady state of Fig. 11 is shown. We emphasize that this statistically steady MMT matching front is
robust for various damping forms, such as Eq. (24) with p = 4 or p = 6, or the constant damping as in Eq. (23)
with a sufficiently large Γ s. And this statistically steady MMT front occurs regardless of the sign of nonlinearity.
Therefore, in addition to the delineation of time scales over which the MMT and WT spectra can be observed, there
is also the issue of delineating spatial scales over which the MMT and/or WT spectra can persist. Here, we have
clearly demonstrated that there are regimes in which the WT direct cascade at intermediate spatial scales can coexist
with a stable MMT spectrum at shorter spatial scales.

4. Energy transfer cycles and cascades

Traditionally, WT theory primarily concerns the weakly nonlinear limit, where only wave–wave resonant inter-
actions control energy transfer in k-space — as signified in the kinetic equation (16), which involves only resonant
quartets of waves and does not discriminate the sign of nonlinearity. However, the original system (10) can display
quite different dynamics, depending upon which sign of nonlinearity is chosen. For the defocusing nonlinearity,
the system has a definite Hamiltonian, with linear-like waves. Whereas, for the focusing nonlinearity, the system
has an indefinite Hamiltonian and its long waves may be subject to modulational instability, thus inducing coherent
solitonic excitations, which may in turn lead to waves which collapse in space in finite time. When there is a gener-
ation of coherent excitations in the system, it can be argued that the applicability of WT theory to this regime may
be questioned since the nonlinearity is no longer small. However, there is a dynamic regime in which the nonlinear
term remains small for short waves, while simultaneously long waves form nonlinear coherent excitations through
the modulational instability. It can be expected that the statistical behavior of these spatially localized coherent
structures can be captured by a “most probable state description” which predicts these states live in thermodynamic
equilibrium [4,8]. In this section, we address the following issue: what roles do these coherent excitations, together
with resonant quartets, play in energy transfer within this regime of moderate nonlinearity — where, the nonlinear
terms become significant for the long waves. (In contrast, we note in passing that for the defocusing case, at moderate
nonlinearity, it can be expected that the dynamics of high k waves can be described by a cascade of renormalized
near-linear waves, which are weakly interacting.)

In this section, for the focusing case, we present a detailed numerical study of energy transfer throughout the entire
range of spatial scales — a cycle of energy transfer for dispersive wave turbulence which involves the interaction of
coherent structures and resonant waves as they form the equilibrium, inverse and direct WT cascades simultaneously.
First, we describe the formation of two distinct types of coherent structures for the forced and free cases, and their
associated energy transport from small k to large k. Then, we precisely characterize turbulent cycles for strongly
driven, moderately driven, and freely decaying turbulence.

4.1. Formation of coherent structures

As described above, the modulational instability in focusing dynamics induces spatially coherent “solitonic”
excitations at random spatial locations to form a thermal equilibrium state (Fig. 13). The energy injection process
associated with the creation of these localized excitations is a fast process, while the decay of these coherent
structures is slow. There are two extreme cases for the formation of the localized excitations: (i) the self-similar
collapse in a free wave system and (ii) a focusing event for driven-damped wave.
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Fig. 13. Formation of the coherent structures, their saturation, and the generation of the inverse cascades (which can be observed in the decay
process of localized structures into long wavelength radiation). Plotted here is the space–time profile of |q(x, t)| (α= 1

2 , σ = 0, focusing
nonlinearity).

Free wave case: Fig. 14 illustrates this fast process of energy injection of the collapse, in which an isolated
solitonic structure in the initial data becomes a highly focusing, self-similar event, transferring energy into small
scales. We note that the free wave equation (11) admits self-similar collapsing solutions of the form,

ak = τ−((4σ+α−2)/2α)R(η) exp(iθ log τ), (25)

where τ = |t − t0|, η = kτ 1/α and σ < 1
4 (1 − α) (t0 is the collapse time). One can show analytically that, for this

collapse, the wave front propagation in k-space of the instantaneous n(k, t) = a(k, t)ā(k, t) possesses an envelope
function S(k) of the following scaling:

S(k) ∼ k4σ+α−2. (26)

Incidentally, we note that this exponent is related to the Phillips spectrum for water waves [12,13], and (at σ = − 3
4 )

is exactly the spectrum studied in [20] for the model (10).
For the collapsing wave shown in Fig. 14, the associated wave front propagation in k-space is shown in Fig. 15.

It can be clearly seen that the exponent of the envelope is well described by Eq. (26).
Driven-damped wave: With sufficiently strong driving and damping, the second kind of focusing waves occurs

— one which possesses the MMT exponent for the envelope of its propagating wave fronts in k-space. This is
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Fig. 14. Fast injection of energy into small scales for the focusing nonlinearity: an initially localized coherent structure evolves into a highly
focused event, σ = 0, α = 1

2 . The initial data is of the form A sech(bx), where A and b are constants.

Fig. 15. Collapsing wave front in k-space: solutions for the focusing nonlinearity (α = 1
2 , σ = 0) for the free wave evolving from a smooth

initial data. Note that no time average is used here. Each curve represents n(k, t) = a(k, t)ā(k, t) at a different time. (The solutions after the
thick curve are advanced in an even time interval, others are not necessarily evenly sampled in time.) The large k envelope exhibits the collapse
exponent (Eq. (26)) (dotted line). The total number of modes here is 219.



566 D. Cai et al. / Physica D 152–153 (2001) 551–572

Fig. 16. Wave motion in k-space: solutions for the focusing nonlinearity (α = 1
2 , σ = 0), driven by a steady force on 1 ≤ |k| ≤ 2 and damped on

|k| = 1, evolving from a smooth initial data. Note that no time average is used here. Each curve represents n(k, t) = a(k, t)ā(k, t) at a different
time (not necessarily evenly sampled). The large k envelope exhibits the MMT exponent (dotted line).

demonstrated in Fig. 16, in which the envelope of n(k, t) = a(k, t)ā(k, t), evolving from a smooth initial data
(without time average) exhibits the MMT exponent.

4.2. Energy transfer cycles

The formation of spatially localized excitations can actively transfer energy into high ks via their focusing
processes in space, where the order of magnitude of wavenumber ks is determined by the spatial scale at which these
localized waves saturate. When the forcing is strong, hence strong nonlinearity, the propagation of the wave front
in k-space saturates at short scales within the dissipation range. One anticipates that, once it reaches the dissipation
scale, the localized structure starts to decay via emission of long-wave radiation. Fig. 17 confirms this scenario,
in which the focusing event in Fig. 14 slowly decays by emitting radiation of various long wavelengths, gradually
transferring the energy back from small scales to large scales via resonant quartets. Clearly, this energy transfer
process should initiate an inverse cascade.

At large forcing amplitudes, the saturation process occurs at very short wavelengths, and ks resides within the
dissipation range; however, at moderate forcing amplitudes, the saturation process occurs at intermediate spatial
scales, and ks can reside in the middle of the inertial range. In the former case, as shown in Fig. 17, some radiation is
dissipated and some generates, through resonant quartet interactions, an inverse cascade toward long wavelengths
— where the modulational instability acts to create self-focusing coherent structures and to complete the cycle. In
the latter case (of moderate forcing amplitudes), the localized structures saturate in the center of the inertial range,
where they generate, again through resonant quartet interactions, both the direct (toward shorter scales) and the
inverse (toward longer scales) cascades. Dissipation terminates the flux toward shorter scales, and the modulational
instability terminates the flux (of the inverse cascade) toward longer scales. And again, the process cycles. Fig. 18
illustrates schematically the energy transfer cycle in these two situations.

Cycles in driven-damped case: Our numerical spectra, such as for the case depicted in Fig. 13, confirms these cycles
of energy transfer. Fig. 19(a) provides an excellent example of the coexistence of a thermodynamical equilibrium of
coherent structures with the inverse cascade induced by their slow generation of long wave radiation. For spectrum
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Fig. 17. Decay of a coherent structure initiates inverse cascade of energy by transferring energy from small scales to large scales via radiation.

Fig. 18. The cycle of energy transfer in dispersive wave turbulence: (a) The saturation scale ks of the spatially localized coherent structures is in
the dissipation range — coexistence of energy equipartition and the WT inverse cascade; (b) The saturation scale ks of the spatially localized
coherent structures is in the middle of the inertial range — coexistence of the WT inverse cascade and direct cascade.
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Fig. 19. (a) Coexistence of thermodynamical equilibrium and the inverse WT cascade, for the focusing nonlinearity (α = 1
2 , σ = 0), driven by

a steady force on |k| = 1. The flat part of the spectrum (dot-dashed line) shows thermodynamical equilibrium. (b) Coexistence of the inverse
and direct WT cascades. The dotted (dashed) line has the exponent of inverse (direct) WT cascade.

(a), we have ks > 1000. We note that, for k greater than ks, the usual WT direct cascade should be expected, since
the coherent excitations do not have strong influence on energy transfer at spatial scales much smaller than their
coherence length. Fig. 19(b) demonstrates this phenomenon, where, by reducing forcing, we have tuned to a regime
such that only very few long waves are unstable. These inject energy into ks ∼ 100, resulting in an inverse cascade
for k < ks and a direct cascade for k > ks. Incidentally, the quantity, R ≡ |(H0 − H)/H |, can be used to indicate
the strength of nonlinearity, where H0 is the total kinetic (linear) energy (Eq. (9)) and H is the total energy (Eq. (7)).
For spectrum (a), R ∼ 20%, indicating relatively strong nonlinearity (especially, for long waves as we discussed
above). However for spectrum (b), R < 3%, signifying weak nonlinearity over the entire inertial range.

Cycles in freely decaying case: In a freely decaying situation, the cycle changes dynamically. The results are
captured in Fig. 20, in which we use the final state of the numerical experiment depicted in Fig. 19(a) as the initial
state, which then freely decays without any forcing. As the turbulence decays, the saturation scale ks moves from
the high-k dissipation scale of strong nonlinearity, where it exhibits a strong inverse cascade originated near the
dissipation scale (Fig. 20(b)); then it moves through the intermediate inertial range where both cascades appear
(Fig. 20(c)); finally moving to the low-k injection range, where only a WT direct cascade remains (Fig. 20(d)). This
latter state is very much linear-wave like, as shown in Fig. 21 (best viewed with an oblique angle with the paper).
This near linear state is in sharp contrast to the violent wave motions associated with the formation of coherent
structures as captured in Fig. 13.

Fig. 22 illustrates schematically this temporal dynamics of energy cycles with decreasing ks. The decay of the
associated L2 norm is shown in Fig. 23, in which the thick segments indicate the time average window used for
obtaining the corresponding spectra in Fig. 20. The cycle of energy transfer in the freely decaying setting shows
that the mechanism determining the saturation scale is due to the strength of nonlinearity (which is controlled by
the amplitude of forcing in the damp-driven situation).

Finally, we emphasize that defocusing dynamics does not possess this energy transfer cycle, even when driven
extremely strongly, e.g., a value so strong that the total norm is increased by a factor of 102 with respect to the
cases shown in Fig. 19. This is simply because the defocusing nonlinearity does not have long wave instabilities
and localized excitations.
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Fig. 20. Cycle of energy transfer in a freely decaying dispersive wave (α = 1
2 , σ = 0, |Kd| = 2600 and focusing nonlinearity). (a) The spectrum

associated with the initial state of the decay process; (b) An inverse cascade of WT originating near the dissipation scale; (c) Coexistence of
inverse and direct cascades when the saturation scale ks is in the intermediate inertial range; (d) A WT direct cascade remains when the saturation
scale ks decreases to the low-k injection range. The dotted line has the exponent of the WT inverse cascade and the dashed line has that of the
WT direct cascade.

Fig. 21. Spatio-temporal evolution for which only direct WT cascade is observed in a freely decaying wave turbulence. Plotted here is the
space–time profile of |q(x, t)|. The scales of x, t and |q| are the same as those in Fig. 13 (α = 1

2 , σ = 0, focusing nonlinearity).
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Fig. 22. The cycle of energy transfer for a freely decaying dispersive wave turbulence. The saturation scale ks decreases as the nonlinearity
decreases.

Fig. 23. Temporal decay of L2 norm. b–d correspond to the three spectra shown in Fig. 20. The location and the time interval of the thick line
segment indicate the time and time window used in averages to obtain the corresponding spectrum in Fig. 20.

5. Discussion and conclusion

Taken together, our numerical studies of the one-dimensional model equation (10) (reported here and in [3,5,9]),
have established the richness of spectra for dispersive wave turbulence — the direct and inverse cascades of WT
theory, thermodynamic equilibrium, and the MMT spectrum. For this model (10), the MMT spectrum often appears
in regimes of relatively strong forcing, and has only been observed in driven-damped situations — in sharp contrast
to the WT spectra which we have shown appear in the freely decaying case. In fact, our numerical experiments
on freely decaying turbulence constitute the most striking confirmation to date of WT theory. The MMT spectrum
can be transient in some forcing and damping regimes, and can be persistent in others; it can describe wave front
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propagation in k-space of focusing waves, or a statistically steady front which separates the WT cascades and the
dissipation range. We emphasize that the MMT spectrum is observed for both defocusing and focusing nonlinear-
ities. The WT spectra of WT theory seem to be intrinsic properties of free waves, whose description is universal
in the sense that it does not depend upon the detailed processes of energy injection and dissipation. However, we
have demonstrated that, in realistic settings in the presence of forcing and damping, these universal WT spectra
may not be observed or may coexist with other spectra. Thus, a comprehensive understanding of dispersive wave
turbulence requires the incorporation of effects of forcing and damping on the entire inertial range. Our numerical
experiments establish that caution is required when WT theory is applied to practical situations which include forc-
ing and damping — such as in the parametrization of small scales for large scale simulations, or in the theoretical
interpretation of wave spectra observed experimentally.

In this article, we have described new numerical results about (i) the coexistence and competition between distinct
spectra, throughout spatial and temporal scales; (ii) the role of forcing and damping in the outcome of these competi-
tions and (iii) the interactions between localized coherent structures and resonant radiation in the transport of energy
within turbulent cycles. These new results further emphasize that a complete theory of dispersive wave turbulence
will require uniform asymptotics in both space and time. This uniformity, together with an effective description of
the interaction of localized coherent structures with resonant waves, presents a significant theoretical challenge.

As for the turbulent cycles, we comment that a similar scenario has been argued for optical and plasma turbulence
— in which long wave instabilities give rise to collapsing filaments, directly transporting excitations to the high k
dissipation regime, leading to cycles of intermittency [6,11]. Clearly, our study of turbulence cycles in model (10)
presents a precise and detailed characterization of the role of spatially localized coherent structures as controlling
mechanisms in setting up the WT direct and inverse cascades, which in turn give rise to energy transfer cycles
across the entire inertial range. In particular, as we have demonstrated above, the energy injection scale, controlled
by the strength of nonlinearity, can reside well within the inertial range (not restricted to the high k dissipation
range as in [6,11]), thus, leading to fascinating temporal and spatial dynamics of spectra, such as the coexistence of
multiple WT spectra in the driven-damped or freely decaying cases. Evidently, this explicit numerical realization of
turbulent cycles arises as one of the consequences of the rich mathematical structure possessed by our model (10),
in combination with numerical advantages derived from its one-dimensionality.

We note that the intuition about dispersive wave turbulence acquired from our studies of Eq. (10) is not restricted
to this idealized class of one-dimensional models. We believe that our numerical study has broad implications about
the nature of far more complicated, realistic physical wave turbulence. For example, it is instructive to compare the
spectra in Fig. 20 in our freely decaying turbulence with the experimentally observed spectra for a freely decaying
turbulence in a thin soap film — which also exhibits the decay of a state described by the coexistence of the direct
enstrophy and inverse energy cascades, to a state with only the direct enstrophy cascade [7,14] — where the energy
injection scale is controlled by small vortices created upstream. In addition, it is tempting to speculate that the MMT
spectrum, associated with the fast injection of excitations by spatially localized coherent structures in our model
(10) for the focusing case, may be analogous to the k−4 spectrum, which is presumably related to vorticity shocks
[15], and which is observed experimentally [7] for “soap film turbulence”, in the region near the initial injection,
and numerically, in the onset of the coherent eddy formation before the dissipative scales are excited [2].

Furthermore, we observe that, over the years, numerical studies of the spectra of turbulent phenomena have proven
difficult, contradictory, and inconclusive. In most of the numerical studies of turbulence, computational limitations
severely restrict the decades over which spectra can be observed, making such numerical observations difficult to
interpret and to rely upon. As an example of the difficulties in two-dimensional fluid turbulence, different groups
[1,16,17] in careful studies observe different and distinct spectra in their numerical experiments. Similar studies of
turbulence for fluids with rotation, which are relevant for atmospheric flows, were reported in [10]. In each of these
studies, the presence of coherent vortices alters the observed spectra. These distinct observations are very reminiscent
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of our observations for model (10) with focusing nonlinearity. In our studies, the distinct time scales associated
with different coherent excitations (and the comparison of these time scales with natural mixing and turnover times)
produces an interpretation of the mechanisms responsible for the different spectra — an interpretation which is likely
to extend to more realistic settings of fluid turbulence. Our numerical studies demonstrate that the one-dimensional
class of models introduced in [9] permits precise numerical characterization of rich dynamics of wave turbulence,
toward the resolution of issues necessarily left ambiguous in the simulations of more realistic models of turbulence
in two and three spatial dimension.
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