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SPATIO-TEMPORAL MODELS 
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1. INTRODUCTION 

Interest in the investigation of airborne particulate matter (PM) concentration 
is a key issue in environmental monitoring, mainly due to the fact that several e-
pidemiological studies have shown a link between daily PM levels and adverse he-
alth effects (see for example Pope et al., 1995). Hence the public authorities’ deci-
sion to create monitoring networks designed to monitor PM levels in given ad-
ministrative regions. 

The said monitoring networks very often suffer from two important flaws: 
firstly, their location is almost always established without using statistical optimi-
sation criteria; secondly, the monitoring sites are often equipped with heteroge-
neous measuring instruments. Low Volume Gravimetric (LVG) samplers repre-
sent the current benchmark instrument for the sampling and measurement of 
PM, according to the European Community directives adopted in Italy in 2006 
(DM 02/06). For this reason, air quality standards are set according to LVG sam-
plers. Such samplers work by collecting the PM10 fraction of ambient particulate 
matter on a filter and then determining the gravimetric fraction. Despite the fact 
that LVG samplers are widely agreed to be the most effective instruments for me-
asuring PM10 concentration, the monitoring sites are very often equipped with 
inefficient automatic samplers such as the Tapered Element Oscillating Microbal-
ance (TEOM) sampler. Such instruments are known to underestimate the true le-
vel given by the reference method. However, TEOM samplers have the advantage 
over LVG samplers in that they automatically record hourly data (whereas LVG 
samplers only take daily measurements). For this reason, TEOM measurements 
need to be “calibrated”. Calibration consists in the transformation of TEOM mea-
surements in order to obtain reliable estimates of true pollution levels. The pa-
rameters used for the purposes of this process of transformation should be esti-
mated using data collected by co-located LVG and TEOM measuring instruments 
in a suitably designed experiment. In recent years, TEOM data have generally been 
corrected by applying a 1.3 multiplicative correction factor to the measurements 
(the “1.3 rule”), thus implying a linear relationship between LVG and TEOM 
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measurements. The 1.3 correction factor has been proposed, for example, by the 
APEG report (1999). 

In recent years, a number of papers have been published on the subject of the 
spatio-temporal modelling of PM data recorded by monitoring networks (see 
Shaddick and Wakefield, 2002; Smith et al., 2003; Riccio et al., 2006; Cocchi et al., 
2006). The space-time modelling of air pollutants is a complex process due to the 
fact that temporal dependence, spatial dependence and interaction between spa-
tial and temporal behaviour, have to be modelled simultaneously, together with 
the dependence on meteorological covariates and other explanatory variables. Hi-
erarchical models are an effective instrument with which to build complex mod-
els from relatively simple sub-models. The Bayesian framework is the most suit-
able one for managing spatio-temporal models involving complex relationships 
(Wikle et al., 1998). Cocchi et al. (2006) proposed a spatio-temporal Bayesian hier-
archical model for daily mean concentrations of PM10 measured at 11 monitoring 
sites located in the main cities of the Emilia-Romagna Region, over a three-year 
period. All the monitoring sites included in the analyses were equipped with LVG 
samplers. The present paper proposes that this model be extended in order to 
deal with data collected by heterogeneous measuring instruments located within 
the same administrative area. We show how the model can be employed to pro-
duce calibrated measurements for those sites equipped with TEOM samplers. One 
of the aims of this model is to obtain a more effective rule than the “1.3 rule”, 
with which to calibrate TEOM measurements. We point out that an efficient cali-
bration procedure is needed since environmental standards are set according to 
the LVG sampler. A further aim of the model is to assess compliance with envi-
ronmental standards at sites equipped with TEOM samplers. 

The classical problem of calibration (see for example Brown, 1994) involves 
measurements of the same quantity, along time and space, performed simultane-
ously by a reference and an equivalent measuring instrument. Our case is differ-
ent, however, since reference and equivalent instruments are not located at the 
same points. Thus our approach produces “pseudo-calibrated” measurements 
since it is not based on co-located LVG and TEOM devices: this problem is de-
fined in the literature as “displaced calibration” (Fassò and Nicolis, 2005). The 
approach is feasible when spatial correlation is taken into account: in fact, refer-
ence measurements can only be used to calibrate non-reference measurements at 
far-away monitoring sites if a correlation structure exists in the pollution field. In 
studies of air-pollution levels, this is possible because of the spatial correlation 
and because of the common temporal trend of the pollution field. A non-
Bayesian approach based on the application of a Kalman filter to a state-space 
model is proposed in Fassò et al. (2005) for the PM10 monitoring network 
(equipped with LVG and TEOM samplers) in the Piedmont Region. 

The current paper is organised as follows: Section 2 describes the data set that 
led to the development of the hierarchical model; Section 3 provides an outline of 
a general hierarchical model designed for networks equipped with homogeneous 
measuring instruments; this model is extended in Section 4 in order to cope with 
heterogeneous monitoring networks. Finally, in Section 5, we discuss the results 
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of the application, the inadequacies of the“1.3 rule”, and the assessment of air 
quality at monitoring sites equipped with TEOM samplers, according to the pro-
posed model output. 

2. THE MOTIVATING DATA SET 

The analysed data set consists of time series of PM10 daily means (µg/m3) col-
lected at 12 monitoring sites located throughout the largest urban areas in the 
Emilia-Romagna Region, Italy; Figure 1 shows the spatial location of the said 
monitoring sites. The study period extends from January 1st 2000 to December 
31st 2002. Although measurement of PM10 only started in 1998, a satisfactory spa-
tial coverage of the region had been achieved by the beginning of the chosen 
study period. At least one monitoring site is available for each of the 9 adminis-
trative districts within the region, whose borders are shown in Fig. 1. 
 

 
Figure 1 – The monitoring sites’ spatial location. The bold lines indicate the main roads, while the 
dots indicate the monitoring sites locations: the letters are abbreviations for the names of the towns, 
while the monitoring site identifying numbers are shown in brackets. 

The monitoring sites - with the exception of numbers 6, 7 and 8 - are located 
along the main arterial road (the Roman Via Emilia) joining the region’s main 
towns and cities. The Apennine Mountains lie to the South of the Via Emilia, and 
the entire area south of that line is devoid of all significant industrial settlements. 
Sites 7, 8 and 11 are located in towns near, or on, the Adriatic coast. Site 12 is the 
one monitoring site equipped with a TEOM sampler. The other monitoring sites 
are equipped with LVG samplers. Site 13 is an additional monitoring site equipped 
with a TEOM sampler but not included in the model estimation. Data collected at 
this site are used to evaluate model performance in predicting off-sample PM10 
data.  

The percentage of missing values varies from 7% to 40% across the monitor-
ing sites. Missing values can be treated as parameters within the Bayesian frame-
work. Such values can be inferred by integrating out model parameters from the 
distribution of missing data given the observed values.  
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The sites have been sub-divided according to their specific urban location: 4 
are located in background urban areas such as parks (Type A), while the remain-
ing 7 are located in densely populated areas or areas with high traffic density 
(Type B and C). Site 12 is located in a background urban area (Type A). A pre-
liminary explorative analysis (not reported here) revealed that PM10 levels are, on 
average, lower at Type A monitoring sites, while the levels at Type B and C sites 
are comparable to each other. 

The time series seasonality is very similar for all three types. There is a strong 
linear correlation between site measurements, ranging from 0.86 for the nearest 
sites to 0.6 for those further away. The observed correlations remain high for the 
site equipped with the TEOM sampler. Even though the correlation decreases 
slightly as the distance increases, there is nevertheless a strong correlation be-
tween distant monitoring sites’ time series measurements, indicating that a con-
siderable amount of the between-sites correlation is due to the common temporal 
dynamics of data.  

Meteorological variables for each site are obtained from the mass-consistent 
CALMET model used by the Emilia-Romagna Regional Meteorological Service. 
The use of predicted meteorological variables provides homogeneous covariates 
for each monitoring site, which would not be otherwise available if data were ob-
tained by actual measurement, thus avoiding the problem of spatial misalignment 
as well as missing values in covariates. The model offers estimates of daily mean 
temperature, daily mean mixing height (MH) and daily mean wind speed (WS), on 
a regular grid of 10km×10km. The underlying reasons for the choice of MH in-
stead of temperature (which is more widely used in air pollution modelling) are 
discussed in some detail in Cocchi et al. (2006). For the purposes of model esti-
mation, the logarithmic transformation needs to be applied to PM10 data in order 
to obtain an approximately symmetric distribution for each monitoring site, and 
to stabilize the mean-variance relationship. 

3. THE HIERARCHICAL MODEL FOR A HOMOGENEOUS NETWORK 

Let tsY  and tsM  denote the log-PM10 concentration and the vector of mete-

orological covariates at spatial location s on day t (t=1,...,T) respectively, and let 
(C1s, C2s) be the geographical coordinates of site s (s=1,...,S). In what follows, first 
and second subscripts denote time and space dimensions, respectively. A dot as a 
subscript indicates that the whole domain referred to by the subscript is taken 
into consideration. We assume that: 

2 2| , ~ ( , ( ))t t tMVN diagY µ µ  (1) 

where tY  and tµ  denote the S-dimensional vectors of the observed log-PM10 

concentration at time t , and the unknown values of concentrations at the same 

time, respectively. Moreover, 2 2 2 2
1 2( , , ..., )S  represents the vector of resid-
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ual variances at the S monitoring sites. Conditionally on model parameters, ob-
servations at time t are independent. Unknown mean levels are modelled as fol-
lows: 

'
1 2 1 3 2ts s s s ts t tsZ C C M  (2) 

where 1sZ  if site s is located in a background urban area (Type A), and 

1sZ  if site s is located in an area with high traffic and population densities 

(Types B and C); hence parameter 1  measures the effect of the monitoring site 

type on the average log-PM10 concentration. Parameters 2  and 3  represent the 

large-scale spatial trend, while the  coefficients embody the dependence of log-
PM10 concentrations on meteorological variables. Several approaches may be 
taken for specifying parameters , depending on the hypothesised relationship 
between the variables in question. The most general model is characterised by co-
efficients that vary in space and time. The specification of time-varying coeffi-
cients is particularly useful in embodying nonlinear relationships between pollut-
ant levels and meteorological conditions. Specifying space-varying coefficients 
implies that the relationship between pollutant level and meteorological condi-
tions changes across space. In order to obtain a model that allows prediction at 
points where no data are available, some kind of spatial structure has to be im-
posed on the coefficients if a space-varying relationship is hypothesised. The spa-
tial and temporal dynamics of the regression coefficients can be modelled as mu-
tually dependent or independent. See, for example, Banerjee et al. (2004) for a dis-
cussion of space-time varying coefficients models. With regard to the space time 
modelling of PM10 pollution in the Emilia-Romagna Region, we assume a linear 
relationship between meteorological variables and PM10, and the same effect is 
hypothesised at each monitoring site. This is supported by a preliminary analysis 
indicating that comparable effects at each monitoring site may be postulated (see 
Cocchi et al., 2006). 

The t  parameters represent random temporal effects, which in turn account 

for a residual common dynamic component, once the effect of meteorological 
conditions has been accounted for. Such parameters are modelled as a random 
walk process:  

1t t t , 2~ (0, )t N  (3) 

which represents a first-order smoothing non-stationary temporal model. In 
terms of Dynamic Linear Models, equations (1)-(2) represent the observation 

equation, while equation (3) is the system equation where t  is the state (West 

and Harrison, 1997). Model (3) is a limiting form of the autoregressive first-order 
model, and is non-stationary. Within the Bayesian framework, a normal prior dis-

tribution is usually assumed for parameter 0 , the starting point of the random 

walk process. 
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The terms ts  represent spatially-correlated random effects. They are assumed 

to follow, at each time t, a multivariate normal distribution with mean vector 0S 

and S S  covariance matrix 2  with ss’ entry 2 2
' '( )ss ssexp d . In this 

way, the logarithm of the correlation is assumed to be a linearly decreasing func-

tion of distance 'ssd  between sites s and s’. The parameter 0  describes the 

correlation decay rate as a function of distance. This spatial structure is assumed 
to be constant over time, the underlying assumption being that spatial and tem-
poral processes are separable. A constraint is needed for model identifiability, due 
to the simultaneous presence of the random temporal effects  and random spa-
tial effects . 

4. THE CALIBRATION MODEL 

The model described in the previous section is designed for dealing with moni-
toring networks equipped with homogeneous measuring instruments. In this sec-
tion we extend the model to cope with data generated by monitoring networks 
equipped with non co-located heterogeneous measuring instruments. Let SR and 
SE denote the set of monitoring sites equipped with a reference measuring in-
strument R (an LVG sampler in our application) and with an equivalent non-
reference measuring instrument E (a TEOM sampler in our application), respec-
tively. Under the assumption that the reference instrument measures the un-
known underlying level with non-systematic errors, equation (1) for each moni-

toring site Rs S  at time t can be rewritten as: 

2 2| , ~ ( , )R R
ts ts s ts sY N  (4) 

where R
ts  represents the “error free” PM10 level. The equivalent instrument is 

supposed to measure the PM10 level with some degree of bias. For this reason, we 

specify equation (1) for each monitoring site Es S  as:  

2 2| , ~ ( , )E E
ts ts s ts sY N  (5) 

where E
ts  represents the PM10 level as measured by the equivalent measuring in-

strument, free from random error 2
s . The crucial feature of the model is that the 

mean produced by the equivalent measuring instrument can be expressed as a 
function (indexed by a set of parameters *) of the true underlying pollution 
level, that is, the level that would have been measured by the reference sampler: 

*( ; )E R
ts tsf . (6) 

The problem of calibration thus comes down to the specification of the form 
of the functional relationship (6) and to the consequent parameter estimation. 
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However, the relevance of a calibration study does not lie in the estimation of pa-
rameters allowing the transformation of reference values into equivalent values. 
The focus is rather on the estimation of parameters which transform non-
reference measures into reference measures according to the inverse function: 

1( ; )R E
ts tsf . (7) 

When the calibration function ( )f  is linear, equation (6) becomes 
* *E R

ts ts , where * * *( , ) . Parameters R
ts  are modelled as parame-

ters ts  in (2)  ( )R Es S S . Parameters * and * represent the additive and 

multiplicative bias characterising the equivalent measurement instrument. In this 
parameterisation, the E instrument’s expected measurements are expressed as a 
linear function of the expected reference measurements at the same site. Equa-

tion (7) becomes: R E
ts ts , where ( , )  and parameters E

ts  are 

modelled as in (2)  ( )R Es S S . If the model is parameterized as in (6), equa-

tion (2) expresses the mean value at point s on day t on the reference measuring 
instrument scale. If the model is re-parameterised using  and  as in (7), then 

(2) expresses the mean value on the equivalent measuring instrument scale. The 
measuring instruments are treated symmetrically and the parameterisation can be 
designed in order to estimate the calibration parameters in question.  

The model hierarchy is completed by the prior specification for model parame-
ters. According to an approximately non-informative criterion, proper, albeit flat, 
prior distributions have to be specified. Normal independent priors (0,1000)N  are 

assumed for each component of the coefficient vectors  and . Independent 

small parameters’ inverse Gamma distributions (0.01,0.01)IG  are specified for the 

variance parameters 2
s , s = 1, ..., S, while uniform prior distributions (0,10)U  are 

specified for the second-level standard deviations  and . A uniform distribu-

tion (0, 2)U  is assumed for : this results in a prior belief for the spatial correla-

tion ranging from 0.13 to 1 at a distance of 1 km, and from 0 to 1 at the maximum 

distance of 250 km. Our choice of a prior for parameter 0  is a normal distribution 

whose mean is equal to the observed mean at 31st December 1999, and whose vari-
ance is equal to 10, in order to specify a fairly vague prior. 

If the analyses are performed on the log-scale, the “1.3 rule” for the calibration 
of the TEOM measurements is a special case of the proposed model, with 

(1.3)log  and 1. On the original scale, this implies a linear relation- 

ship, with the intercept term equal to 0. The proposed model with a linear cali- 
bration function implies, on the original scale, the non-linear relationship 

10, 10,LVG TEOMPM exp PM . 

Since different relationships between reference and equivalent measures may 
be hypothesised, certain adaptation criteria under the different specification of (6) 
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have to be used in order to choose the most suitable functional relationship. A 
widely used adaptation criterion within the Bayesian framework is the Deviance 
Information Criteria (DIC; Spiegelhalter et al., 2002), a Bayesian generalisation of 
the Akaike Information Criterion that takes account both of model fitting and of 
model complexity. When comparing model performances using DIC, the chosen 
model is the one with the lowest DIC value.  

5. DISCUSSION AND RESULTS 

We estimated the previously-suggested model for the Emilia-Romagna Re-
gion’s monitoring network, on a set (SR) of 11 monitoring sites equipped with 
LVG samplers and one monitoring site equipped with a TEOM sampler. In order 
to check the appropriateness of the linear calibration function, we specified two 
different calibration functions, the first linear and the other quadratic. In terms of 
DIC, the linear function is preferable; furthermore, the MCMC sampling algo-
rithm displays a degree of inefficiency when estimating the quadratic function’s 
parameters.  

Samples from the parameters’ posterior distributions were obtained using an 
MCMC algorithm as implemented in the WinBUGS software following a multi-
chain approach. Convergence has been checked by graphical examination of the 
trace plots of the chain’s sample values versus iterations, and of the autocorrela-
tion plot for each chain. Moreover, we computed the Gelman-Rubin convergence 
statistic as modified by Brooks and Gelman (1998). Posterior summaries are ob-
tained by sampling 20,000 post-convergence samples after a burn-in of 30,000. 
Table 1 summarises the calibration parameters’ posterior distributions.  

TABLE 1 

Posterior summaries for the calibration parameters 

Parameter Mean 2.5th perc. 97.5th perc. 

 -1.076 -1.177 -0.991 
   1.362   1.336   1.392 

exp( )   0.342   0.308   0.371 

 
According to the parameters’ posterior mean, the estimated relationship is 

non-linear ( 1 ) and convex. This suggests that TEOM samplers tend to overes-

timate low levels, and to heavily underestimate high levels, of PM10. According to 
this result, the 1.3 factor mainly fails to correctly calibrate TEOM measurements in 
the case of high PM10 levels. As shown in Figure 2, underestimation of the true 
level can be serious in the case of acute pollution events, and in general during 
the winter, when pollution levels measured by LVG samplers are very often higher 
than 80 µg/m3. The inadequacy of the “1.3 rule” has been checked by estimating 
the proposed model under the hypotheses that the calibration parameters are set 
at log(1.3)  and 1 : the DIC for this model is 2140, compared with a value 

of 1980 obtained using the linear calibration function. 
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Figure 2 – The estimated calibration function 
and the “1.3 rule” calibration function. 

Figure 3 – Predicted vs observed TEOM meas-
urements in the out of sample site 13. 

Model effectiveness in spatial prediction has been checked using an off-sample 
monitoring site (site 13 in Figure 1) equipped with a TEOM sampler: both TEOM 
and calibrated measurements have been predicted for this site. Figure 3 shows the 
scatter plot of observed versus predicted values. The correlation between pre-
dicted and observed TEOM measurements is r=0.87, showing the satisfactory per-
formance of the proposed model. It is worth noting that the prediction is satis-
factory despite the fact that the out of sample monitoring site (site 13) is at a con-
siderable distance from the monitoring sites utilised for model estimation. This is 
favoured by the homogeneity of the pollutant-generating process in the Emilia 
Romagna Region, which ensures the strong spatial representativeness of each 
monitoring site. An efficient calibration rule is important when evaluating particu-
late matter pollution levels for two main reasons: first of all, it produces reliable 
population exposure levels in ecological regression studies designed to evaluate 
the effect of air pollution on the public’s health; secondly, it enables air quality to 
be evaluated in order to assess if environmental standards are being met. Since 
environmental standards for PM10 are set according to LVG sampler, using non-
calibrated TEOM measurements may underestimate the number of exceedances, 
with the consequence that a site could be deemed to comply with requirements 
when in fact it does not, simply because its measuring instrument is biased. Table 
2 below shows the environmental standards in force during the study period in 
question. 

TABLE 2 

Environmental standards for PM10 levels ( g/m3) 

Year 2000 2001 2002 

Threshold 75 70 65 
Annual mean 48 46.4 44.8 

 
A site is considered to comply with such standards if the mean daily concentra-

tions does not exceed the threshold reported in the first row of Table 2 on more 
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than 35 days per year, and if the annual mean does not exceed the values reported 
in the second row of table 2. Since air quality assessment is based on the number 
of exceedances, a model that can produce reliable predictions in space and time is 
useful since it enables scientists to obtain complete time series (that is, free from 
missing observations). 

When evaluating the annual mean and the number of exceedances, missing ob-
servations have to be imputed since the period during which there are no re-
corded observations heavily influences results: for example, if missing observa-
tions are concentrated during winter, the annual mean and the number of ex-
ceedances may be strongly underestimated if only observed data are considered. 
For this reason, we are now going to focus on the evaluation of compliance with 
environmental standards once missing observations have been imputed by the 
estimated model.  

Calibration is important when evaluating air quality at sites equipped with a 
TEOM sampler, as this tends to underestimate the number of exceedances per 
year. In order to see this, we focus on the number of exceedances at site 12, and 
compare:  

- the number of exceedances and the annual mean predicted on the TEOM 
scale after imputation of missing values using the mean of their posterior distri-
butions; 

- the number of exceedances and the annual mean predicted on the LVG scale 
once missing values have been imputed using the mean of their posterior distri-
butions after calibration using the “1.3 rule” and our model; 

- the number of exceedances and the annual mean predicted at site 4 once 
missing values have been imputed using the mean of their posterior distributions. 

Comparison with site 4 is of interest because of its proximity to site 12. Since 
the distance between the two sites is only 3 km, it is reasonable to expect a com-
parable number of exceedances and similar annual means at the two sites. How-
ever, site 12 is located in a background urban area whereas site 4 is located in a 
densely-populated area. They may be compared once the difference between the 
site types has been taken into account: using model (2): this was done simply by 
predicting data at site 4 as if it was a background site, that is by setting Z4=1. 

TABLE 3 

Number of exceedances and predicted annual mean 

Year  2000 2001 2002 2000-2002 

Site 12      
Exceedances 14 8 15 37    TEOM 
Mean 40.7 32.8 32.8 35.46 
Exceedances 49 28 41 118    1.3 rule 
Mean 52.9 42.6 42.7 46.1 
Exceedances 68 37 43 148    Calibrated Values 
Mean 53.3 39.8 40.2 44.5 

Site 4      
Exceedances 68 36 42 146    LVG 
Mean 53.2 39.2 39.3 43.92 
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As shown in Table 3, non-calibrated TEOM measurements tend to heavily un-
derestimate both the annual mean and the number of exceedances. The “1.3 rule” 
predicts a substantially lower number of exceedances than were predicted by the 
displaced calibration rule in the year 2000 when PM10 levels were higher than in 
subsequent years. As the mean pollution level drops, the difference between pre-
dicted exceedances is reduced. As regards mean levels, the “1.3 rule” tends to 
produce a higher annual mean for years 2001 and 2002 than the displaced calibra-
tion rule does. This is because the “1.3 rule” overestimates the low pollution lev-
els that were often observed in 2001 and 2002. Proof of the proposed model’s 
effectiveness in ascertaining whether environmental standards are being met is 
provided by the comparison between the number of exceedances and the forecast 
annual means at site 4 (equipped with an LVG sampler), and at site 12 after dis-
placed calibration of the TEOM measurements. In fact, since the sites are very 
close, we expect the air quality at the two sites to be comparable. Table 3 shows 
that, after the displaced calibration, the air quality at the sites in question is very 
similar, as we would have expected. 
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RIASSUNTO 

Calibrazione di misure eterogenee di PM10 mediante l’uso di modelli spazio-temporali 

Le reti di monitoraggio del PM10 sono spesso caratterizzate da eterogeneità degli stru-
menti di misurazione. E’ noto che alcuni di questi strumenti sottostimano il valore vero 
dell’inquinante. Nel presente articolo si propone un modello gerarchico spazio-temporale 
bayesiano per la calibrazione di misure effettuate da strumenti diversi da quello di riferi-
mento, sfruttando l’informazione derivante da misure rilevate da strumenti di riferimento 
non co-locati nello spazio. 

SUMMARY 

Displaced calibration of PM10 measurements using spatio-temporal models 

PM10 monitoring networks are equipped with heterogeneous samplers. Some of these 
samplers are known to underestimate true levels of concentrations (non-reference sam-
plers). In this paper we propose a hierarchical spatio-temporal Bayesian model for the 
calibration of measurements recorded using non-reference samplers, by borrowing 
strength from non co-located reference sampler measurements. 


