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ABSTRACT 

In this paper we introduce a new surface representation, the 

displaced subdivision surface.  It represents a detailed surface 

model as a scalar-valued displacement over a smooth domain 

surface.  Our representation defines both the domain surface and 

the displacement function using a unified subdivision framework, 

allowing for simple and efficient evaluation of analytic surface 

properties.  We present a simple, automatic scheme for converting 

detailed geometric models into such a representation.  The 

challenge in this conversion process is to find a simple 

subdivision surface that still faithfully expresses the detailed 

model as its offset.  We demonstrate that displaced subdivision 

surfaces offer a number of benefits, including geometry 

compression, editing, animation, scalability, and adaptive 

rendering.  In particular, the encoding of fine detail as a scalar 

function makes the representation extremely compact. 

Additional Keywords: geometry compression, multiresolution geometry, 
displacement maps, bump maps, multiresolution editing, animation. 

1. INTRODUCTION 

Highly detailed surface models are becoming commonplace, in 

part due to 3D scanning technologies.  Typically these models are 

represented as dense triangle meshes.  However, the irregularity 

and huge size of such meshes present challenges in manipulation, 

animation, rendering, transmission, and storage.  Meshes are an 

expensive representation because they store: 

(1) the irregular connectivity of faces, 

(2) the (𝑥, 𝑦, 𝑧) coordinates of the vertices, 

(3) possibly several sets of texture parameterization (𝑢,𝑣) 

coordinates at the vertices, and 

(4) texture images referenced by these parameterizations, such as 

color images and bump maps. 

An alternative is to express the detailed surface as a displacement 

from some simpler, smooth domain surface (see Figure 1).  

Compared to the above, this offers a number of advantages: 

(1) the patch structure of the domain surface is defined by a 

control mesh whose connectivity is much simpler than that of 

the original detailed mesh; 

(2) fine detail in the displacement field can be captured as a 

scalar-valued function which is more compact than traditional 

vector-valued geometry; 

(3) the parameterization of the displaced surface is inherited from 

the smooth domain surface and therefore does not need to be 

stored explicitly; 

(4) the displacement field may be used to easily generate bump 

maps, obviating their storage. 
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Figure 1: Example of a displaced subdivision surface. 

A simple example of a displaced surface is terrain data expressed 

as a height field over a plane.  The case of functions over the 

sphere has been considered by Schröder and Sweldens [33].  

Another example is the 3D scan of a human head expressed as a 

radial function over a cylinder.  However, even for this simple 

case of a head, artifacts are usually detectable at the ear lobes, 

where the surface is not a single-valued function over the 

cylindrical domain. 

The challenge in generalizing this concept to arbitrary surfaces is 

that of finding a smooth underlying domain surface that can 

express the original surface as a scalar-valued offset function. 

Krishnamurthy and Levoy [25] show that a detailed model can be 

represented as a displacement map over a network of B-spline 

patches.  However, they resort to a vector-valued displacement 

map because the detailed model is not always an offset of their B-

spline surface.  Also, avoiding surface artifacts during animation 

requires that the domain surface be tangent-plane (𝐶1) continuous, 

which involves constraints on the B-spline control points. 

We instead define the domain surface using subdivision surfaces, 

since these can represent smooth surfaces of arbitrary topological 

type without requiring control point constraints.  Our 

representation, the displaced subdivision surface, consists of a 

control mesh and a scalar field that displaces the associated 

subdivision surface locally along its normal (see Figure 1).  In this 

paper we use the Loop [27] subdivision surface scheme, although 

the representation is equally well defined using other schemes 

such as Catmull-Clark [5]. 

Both subdivision surfaces and displacement maps have been in 

use for about 20 years.  One of our contributions is to unify these 

two ideas by defining the displacement function using the same 

subdivision machinery as the surface.  The scalar displacements 

are stored on a piecewise regular mesh.  We show that simple 

subdivision masks can then be used to compute analytic properties 

on the resulting displaced surface.  Also, we make displaced 

subdivision surface practical by introducing a scheme for 

constructing them from arbitrary meshes. 

 



 

We demonstrate several benefits of expressing a model as a 

displaced subdivision surface: 

Compression: both the surface topology and parameterization are 

defined by the coarse control mesh, and fine geometric detail 

is captured using a scalar-valued function (Section 5.1). 

Editing: the fine detail can be easily modified since it is a scalar 

field (Section 5.2). 

Animation: the control mesh makes a convenient armature for 

animating the displaced subdivision surface, since geometric 

detail is carried along with the deformed smooth domain 

surface (Section 5.3). 

Scalability: the scalar displacement function may be converted 

into geometry or a bump map.  With proper multiresolution 

filtering (Section 5.4), we can also perform magnification and 

minification easily. 

Rendering: the representation facilitates adaptive tessellation and 

hierarchical backface culling (Section 5.5). 

2. PREVIOUS WORK 

Subdivision surfaces:  Subdivision schemes defining 

smooth surfaces have been introduced by Catmull and Clark [5], 

Doo and Sabin [13], and Loop [27].  More recently, these schemes 

have been extended to allow surfaces with sharp features [21] and 

fractionally sharp features [11].  In this paper we use the Loop 

subdivision scheme because it is designed for triangle meshes. 

DeRose et al. [11] define scalar fields over subdivision surfaces 

using subdivision masks.  Our scalar displacement field is defined 

similarly, but from a denser set of coefficients on a piecewise 

regular mesh (Figure 2). 

Hoppe et al. [21] describe a method for approximating an original 

mesh with a much simpler subdivision surface.  Unlike our 

conversion scheme of Section 4, their method does not consider 

whether the approximation residual is expressible as a scalar 

displacement map. 

Displacement maps:  The idea of displacing a surface by a 

function was introduced by Cook [9].  Displacement maps have 

become popular commercially as procedural displacement shaders 

in RenderMan [1].  The simplest displacement shaders interpolate 

values within an image, perhaps using standard bicubic filters.  

Though displacements may be in an arbitrary direction, they are 

almost always along the surface normal [1].   

Typically, normals on the displaced surface are computed 

numerically using a dense tessellation.  While simple, this 

approach requires adjacency information that may be unavailable 

or impractical with low-level APIs and in memory-constrained 

environments (e.g. game consoles).  Strictly local evaluation 

requires that normals be computed from a continuous analytic 

surface representation.  However, it is difficult to piece together 

multiple displacement maps while maintaining smoothness.  One 

encounters the same vertex enclosure problem [32] as in the 

stitching of B-spline surfaces.  While there are well-documented 

solutions to this problem, they require constructions with many 

more coefficients (9× in the best case), and may involve solving a 

global system of equations. 

In contrast, our subdivision-based displacements are inherently 

smooth and have only quartic total degree (fewer DOF than 

bicubic).  Since the displacement map uses the same 

parameterization as the domain surface, the surface representation 

is more compact and displaced surface normals may be computed 

more efficiently.  Finally, unifying the representation around 

subdivision simplifies implementation and makes operations such 

as magnification more natural. 

Krishnamurthy and Levoy [25] describe a scheme for 

approximating an arbitrary mesh using a B-spline patch network 

together with a vector-valued displacement map.  In their scheme, 

the patch network is constructed manually by drawing patch 

boundaries on the mesh.  The recent work on surface pasting by 

Chan et al. [7] and Mann and Yeung [29] uses the similar idea of 

adding a vector-valued displacement map to a spline surface. 

Gumhold and Hüttner [19] describe a hardware architecture for 

rendering scalar-valued displacement maps over planar triangles.  

To avoid cracks between adjacent triangles of a mesh, they 

interpolate the vertex normals across the triangle face, and use this 

interpolated normal to displace the surface.  Their scheme permits 

adaptive tessellation in screen space.  They discuss the importance 

of proper filtering when constructing mipmap levels in a 

displacement map.  Unlike our representation, their domain 

surface is not smooth since it is a polyhedron.  As shown in 

Section 5.3, animating a displaced surface using a polyhedral 

domain surface results in many surface artifacts. 

Kobbelt et al. [23] use a similar framework to express the 

geometry of one mesh as a displacement from another mesh, for 

the purpose of multiresolution shape deformation. 

Bump maps:  Blinn [3] introduces the idea of perturbing the 

surface normal using a bump map.  Peercy et al. [31] present 

recent work on efficient hardware implementation of bump maps.  

Cohen et al. [8] drastically simplify meshes by capturing detail in 

the related normal maps.  Both Cabral et al. [4] and Apodaca and 

Gritz [1] discuss the close relationship of bump mapping and 

displacement mapping.  They advocate combining them into a 

unified representation and resorting to true displacement mapping 

only when necessary. 

Multiresolution subdivision:  Lounsbery et al. [28] apply 

multiresolution analysis to arbitrary surfaces.  Given a 

parameterization of the surface over a triangular domain, they 

compress this (vector-valued) parameterization using a wavelet 

basis, where the basis functions are defined using subdivision of 

the triangular domain.  Zorin et al. [39] use a similar subdivision 

framework for multiresolution mesh editing.  To make this 

multiresolution framework practical, several techniques have been 

developed for constructing a parameterization of an arbitrary 

surface over a triangular base domain.  Eck et al. [14] use 

Voronoi/Delaunay diagrams and harmonic maps, while Lee et al. 

[26] track successive mappings during mesh simplification. 

In contrast, displaced subdivision surfaces do not support an 

arbitrary parameterization of the surface, since the 

parameterization is given by that of a subdivision surface.  The 

benefit is that we need only compress a scalar-valued function 

instead of vector-valued parameterization.  In other words, we 

store only geometric detail, not a parameterization.  The drawback 

is that the original surface must be expressible as an offset of a 

smooth domain surface.  An extremely bad case would be a fractal 

“snowflake” surface, where the domain surface cannot be made 

much simpler than the original surface.  Fortunately, fine detail in 

most practical surfaces is expressible as an offset surface. 

Guskov et al. [20] represent a surface by successively applying a 

hierarchy of displacements to a mesh as it is subdivided.  Their 

construction allows most of the vertices to be encoded using 

scalar displacements, but a small fraction of the vertices require 

vector displacements to prevent surface folding. 



 

3. REPRESENTATION OVERVIEW 

A displaced subdivision surface consists of a triangle control mesh 

and a piecewise regular mesh of scalar displacement coefficients 

(see Figure 2).  The domain surface is generated from the control 

mesh using Loop subdivision.  Likewise, the displacements 

applied to the domain surface are generated from the scalar 

displacement mesh using Loop subdivision. 

 
Figure 2: Control mesh (left) with its piecewise regular mesh of 

scalar displacement coefficients (𝑘 = 3).  

Displacement map:  The scalar displacement mesh is stored 

for each control mesh triangle as one half of the sample grid 

(2𝑘 + 1) × (2𝑘 + 1), where 𝑘 depends on the sampling density 

required to achieve a desired level of accuracy or compression. 

To define a continuous displacement function, these stored values 

are taken to be subdivision coefficients for the same (Loop) 

subdivision scheme that defines the domain surface.  Thus, as the 

surface is magnified (i.e. subdivided beyond level 𝑘), both the 

domain surface geometry and the displacement field are 

subdivided using the same machinery.  As a consequence, the 

displacement field is 𝐶1 even at extraordinary vertices, and the 

displaced subdivision surface is 𝐶1 everywhere except at 

extraordinary vertices.  The handling of extraordinary vertices is 

discussed below. 

For surface minification, we first compute the limit displacements 

for the subdivision coefficients at level 𝑘, and we then construct a 

mipmap pyramid with levels �0, … , 𝑘–1� by successive filtering of 

these limit values.  We cover filtering possibilities in Section 4.5.  

As with ordinary texture maps, the content author may sometimes 

want more precise control of the filtered levels, so it may be 

useful to store the entire pyramid.  (For our compression analysis 

in Section 5.1, we assume that the pyramid is built automatically.) 

For many input meshes, it is inefficient to use the same value of 𝑘 

for all control mesh faces.  For a given face, the choice of 𝑘 may 

be guided by the number of original triangles associated it, which 

is easily estimated using MAPS [26].  Those regions with lower 

values of 𝑘 are further subdivided logically to produce a mesh 

with uniform 𝑘. 

Normal Calculation: We now derive the surface normal for 

a point 𝑆 on the displaced subdivision surface.  Let 𝑆 be the 

displacement of the limit point 𝑃�⃑  on the domain surface: 𝑆 = 𝑃�⃑ + 𝐷𝑛�, 
where 𝐷 is the limit displacement and 𝑛� = 𝑛�⃑ /‖𝑛�⃑ ‖ is the unit 

normal on the domain surface.  The normal 𝑛�⃑  is obtained as 𝑛�⃑ = 𝑃�⃑𝑢 × 𝑃�⃑𝑣 where the tangent vectors 𝑃�⃑𝑢 and 𝑃�⃑𝑣 are computed 

using the first derivative masks in Figure 3. 

The displaced subdivision surface normal at 𝑆 is defined as 𝑛�⃑ 𝑠 = 𝑆𝑢 × 𝑆𝑣 where each tangent vector has the form 𝑆𝑢 = 𝑃�⃑𝑢 + 𝐷𝑢𝑛� + 𝐷𝑛�𝑢 . 

If the displacements are relatively small, it is common to ignore 

the third term, which contains second-order derivatives [3]. 

However, if the surface is used as a modeling primitive, then the 

displacements may be quite large and the full expression must be 

evaluated.  The difficult term 𝑛�𝑢 = 𝑛�⃑ 𝑢/‖𝑛�⃑ 𝑢‖ may be derived 

using the Weingarten equations [12].  Equivalently, it may be 

expressed as: 

𝑛�𝑢 =
𝑛�⃑ 𝑢 − 𝑛�(𝑛�⃑ 𝑢 ⋅ 𝑛�)‖𝑛�⃑ ‖    where   𝑛�⃑ 𝑢 = 𝑃�⃑𝑢𝑢 × 𝑃�⃑𝑣 + 𝑃�⃑𝑢 × 𝑃�⃑𝑢𝑣  . 

At a regular (valence 6) vertex, the necessary partial derivatives 

are given by a simple set of masks (see Figure 3).  At 

extraordinary vertices, the curvature of the domain surface 

vanishes and we omit the second-order term.  In this case, the 

standard Loop tangent masks may be used to compute the first 

partial derivatives.  Since there are few extraordinary vertices, this 

simplified normal calculation has not proven to be a problem. 
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Figure 3: Loop masks for limit position 𝑃 and first and second 

derivatives at a regular control vertex. 

Bump map:  The displacement map may also be used to 

generate a bump map during the rendering of coarser tessellations 

(see Figure 13).  This improves rendering performance on 

graphics systems where geometry processing is a bottleneck.  The 

construction of this bump map is presented in Section 5.4. 

Other textures:  The domain surface parameterization is used 

for storing the displacement map (which also serves to define a 

bump map).  It is natural to re-use this same inherent 

parameterization to store additional appearance attributes for the 

surface, such as color.  Section 4.4 describes how such attributes 

are re-sampled from the original surface. 

Alternatively, one could define more traditional surface 

parameterizations by explicitly specifying (𝑢, 𝑣) texture 

coordinates at the vertices of the control mesh, as in [11].  

However, since the domain of a (𝑢, 𝑣) parameterization is a planar 

region, this generally requires segmenting the surface into a set of 

charts. 



 

4. CONVERSION PROCESS 

To convert an arbitrary triangle mesh (Figure 5a) into a displaced 

subdivision surface (Figure 5b), our process performs the 

following steps: 

• Obtain an initial control mesh (Figure 5c) by simplifying the 

original mesh.  Simplification is done using a traditional 

sequence of edge collapse transformations, but with added 

heuristics to attempt to preserve a scalar offset function. 

• Globally optimize the control mesh vertices (Figure 5d) such 

that the domain surface (Figure 5e) more accurately fits the 

original mesh. 

• Sample the displacement map by shooting rays along the 

domain surface normals until they intersect the original mesh.  

At the ray intersection points, compute the signed 

displacement, and optionally sample other appearance attributes 

like surface color.  (The black line segments visible in Figure 5f 

correspond to rays with positive displacements.) 

4.1 Simplification to control mesh 

We simplify the original mesh using a sequence of edge collapse 

transformations [22] prioritized according to the quadric error 

metric of Garland and Heckbert [16].  In order to produce a good 

domain surface, we restrict some of the candidate edge collapses. 

The main objective is that the resulting domain surface should be 

able to express the original mesh using a scalar displacement map.  

Our approach is to ensure that the space of normals on the domain 

surface remains locally similar to the corresponding space of 

normals on the original mesh. 

To maintain an efficient correspondence between the original 

mesh and the simplified mesh, we use the MAPS scheme [26] to 

track parameterizations of all original vertices on the mesh 

simplified so far.  (When an edge is collapsed, the 

parametrizations of points in the neighborhood are updated using 

a local 1-to-1 map onto the resulting neighborhood.) 

For each candidate edge collapse transformation, we examine the 

mesh neighborhood that would result.  In Figure 4, the thickened 

1-ring is the neighborhood of the unified vertex.  For vertices on 

this ring, we compute the subdivision surface normals (using 

tangent masks that involve vertices in the 2-ring of the unified 

vertex).  The highlighted points within the faces in the 1-ring 

represent original mesh vertices that are currently parameterized 

on the neighborhood using MAPS. 
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Figure 4: Neighborhood after candidate edge collapse and, for 

one face, the spherical triangle about its domain surface normals. 
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Figure 5: Steps in the conversion process. 

 

For each face in the 1-ring neighborhood, we gather the 3 

subdivision surface normals at the vertices and form their 

spherical triangle on the Gauss sphere.  Then, we test whether this 

spherical triangle encloses the normals of the original mesh 

vertices parameterized using MAPS.  If this test fails on any face 

in the 1-ring, the edge collapse transformation is disallowed.  To 

allow simplification to proceed further, we have found it useful to 



 

broaden each spherical triangle by pushing its three vertices an 

additional 45 degrees away from its inscribed center, as illustrated 

in Figure 4. 

We observe that the domain surface sometimes has undesirable 

undulations when the control mesh has vertices of high valence.  

Therefore, during simplification we also disallow an edge collapse 

if the resulting unified vertex would have valence greater than 8. 

4.2 Optimization of domain surface 

Having formed the initial control mesh, we optimize the locations 

of its vertices such that the associated subdivision surface more 

accurately fits the original mesh.  This step is performed using the 

method of Hoppe et al. [21].  We sample a dense set of points 

from the original mesh and minimize their squared distances to 

the subdivision surface.  This nonlinear optimization problem is 

approximated by iteratively projecting the points onto the surface 

and solving for the most accurate surface while fixing those 

parameterizations.  The result of this step is shown in Figure 5d-e. 

Note that this geometric optimization modifies the control mesh 

and thus affects the space of normals over the domain surface.  

Although this invalidates the heuristic used to guide the 

simplification process, this has not been a problem in our 

experiments.  A more robust solution would be to optimize the 

subdivision surface for each candidate edge collapse (as in [21]) 

prior to testing the neighborhood normals, but this would be much 

more costly. 

4.3 Sampling of scalar displacement map 

We apply 𝑘 steps of Loop subdivision to the control mesh.  At 

each of these subdivided vertices, we compute the limit position 

and normal of the domain surface.  We seek to compute the signed 

distance from the limit point to the original surface along the 

normal (Figure 5f). 

The directed line formed by the point and normal is intersected 

with the original surface, using a spatial hierarchy [17] for 

efficiency.  We disregard any intersection point if the intersected 

surface is oriented in the wrong direction with respect to the 

directed line.  If multiple intersection points remain, we pick the 

one closest to the domain surface.  Figure 6 illustrates a possible 

failure case if the domain surface is too far from the original. 
 

domain surface 

original mesh 
 

Figure 6: The displacement sampling may “fold over itself” if the 

domain surface is too distant from the original mesh. 

Near surface boundaries, there is the problem that the domain 

surface may extend beyond the boundary of the original surface, 

in which case the ray does not intersect any useful part of the 

original surface. (We detect this using a maximum distance 

threshold based on the mesh size.)  In this case, the surface should 

really be left undefined, i.e. trimmed to the detailed boundary of 

the original mesh.  One approach would be to store a special 

illegal value into the displacement map.  Instead, we find the 

closest original triangle to the subdivided vertex, and intersect the 

ray with the plane containing that triangle.  Precise surface 

trimming can be achieved using an alpha mask in the surface 

color image, but we have not yet implemented this. 

4.4 Resampling of appearance attributes 

Besides sampling the scalar displacement function, we also 

sample other appearance attributes such as diffuse color.  These 

attributes are stored, filtered, and compressed just like the scalar 

displacements.  An example is shown in Figure 11. 

4.5 Filtering of displacement map 

Since our displacement field has the same structure as the domain 

surface, we can apply the same subdivision mask for 

magnification.  This is particular useful when we try to zoom in a 

tiny region on our displaced subdivision surface.  For sampling 

the displacements at minified levels of the displacement pyramid, 

we compute the samples at any level 𝑙 < 𝑘 by filtering the limit 

displacements of level 𝑙 + 1.  We considered several filtering 

operations and opted for the non-shrinking filter of Taubin [35]. 

Because the displacement magnitudes are kept small, their 

filtering is not extremely sensitive.  In many rendering situations 

much of the visual detail is provided by bump mapping.  As has 

been discussed elsewhere [2], careful filtering of bump maps is 

both important and difficult. 

4.6 Conversion results 

The following table shows execution times for the various steps of 

the conversion process.  These times are obtained on a Pentium III 

550 MHz PC. 

Model armadillo venus bunny dinosaur 

 Conversion Statistics 

Original mesh #F 210,944 100,000 69,451 342,138 

Control mesh #F 1,306 748 526 1,564 

Maximum level 𝑘 4 4 4 4 

  Execution Times (minutes) 

Simplification 61 28 19 115 

Domain surface optimiz. 25 11 11 43 

Displacement sampling 2 2 1 5 

 Total 88 41 31 163 

 

5. BENEFITS 

5.1 Compression 

Mesh compression has recently been an active area of research.  

Several clever schemes have been developed to concisely encode 

the combinatorial structure of the mesh connectivity, in as few as 

1-2 bits per face (e.g. [18] [35]).  As a result, the major portion of 

a compressed mesh goes to storing the mesh geometry.  Vertex 

positions are typically compressed using quantization, local 

prediction, and variable-length delta encoding.  Geometry can also 

be compressed within a multiresolution subdivision framework as 

a set of wavelet coefficients [28].  To our knowledge, all previous 

compression schemes for arbitrary surfaces treat geometry as a 

vector-valued function. 

In contrast, displaced subdivision surfaces allow fine geometric 

detail to be compressed as a scalar-valued function.  Moreover, 

the domain surface is constructed to be close to the original 

surface, so the magnitude of the displacements tends to be small. 

To exploit spatial coherence in the scalar displacement map, we 

use linear prediction at each level of the displacement pyramid, 

and encode the difference between the predicted and actual 

values.  For each level, we treat the difference coefficients over all 



 

faces as a subband.  For each subband, we use the embedded 

quantizer and embedded entropy coder described in Taubman and 

Zakhor [37].  The subbands are merged using the bit allocation 

algorithm described by Shoham and Gersho [34], which is based 

on integer programming. 

An alternative would be to use the compression scheme of 

Kolarov and Lynch [24], which is a generalization of the wavelet 

compression method in [33]. 

Figure 10 and Table 1 show results of our compression 

experiments.  We compare storage costs for simplified triangle 

meshes and displaced subdivision surfaces, such that both 

compressed representations have the same approximation 

accuracy with respect to the original reference model.  This 

accuracy is measured as 𝐿2 geometric distance between the 

surfaces, computed using dense point sampling [16].  The 

simplified meshes are obtained using the scheme of Garland and 

Heckbert [16].  For mesh compression, we use the VRML 

compressed binary format inspired by the work of Taubin and 

Rossignac [36].  We vary the quantization level for the vertex 

coordinates to obtain different compressed meshes, and then 

adjust our displacement map compression parameters to obtain a 

displaced surface with matching 𝐿2 geometric error. 

For simplicity, we always compress the control meshes losslessly 

in the experiments (i.e. with 23-bits/coordinate quantization).  Our 

compression results would likely be improved further by adapting 

the quantization of the control mesh as well.  However, this would 

modify the domain surface geometry, and would therefore require 

re-computing the displacement field.  Also, severe quantization of 

the control mesh would result in larger displacement magnitudes. 

Table 1 shows that displaced subdivision surfaces consistently 

achieve better compression rates than mesh compression, even 

when the mesh is carefully simplified from detailed geometry. 

5.2 Editing 

The fine detail in the scalar displacement mesh can be edited 

conveniently, as shown in the example of Figure 7. 

 
Figure 7: In this simple editing example, the embossing effect is 

produced by enhancing the scalar displacements according to a 

texture image of the character ‘B’ projected onto the displaced 

surface. 

5.3 Animation 

Displaced subdivision surfaces are a convenient representation for 

animation.  Kinematic and dynamics computation are vastly more 

efficient when operating on the control mesh rather than the huge 

detailed mesh. 

Because the domain surface is smooth, the surface detail deforms 

naturally without artifacts.  Figure 8 shows that in contrast, the 

use of a polyhedron as a domain surface results in creases and 

folds even with a small deformation of a simple surface. 

  

Subdivision control mesh Polyhedral control mesh 

  
Domain surfaces 

  

  
Displaced surfaces 

Figure 8: Comparison showing the importance of using a smooth 

domain surface when deforming the control mesh.  The domain 

surface is a subdivision surface on the left, and a polyhedron on 

the right. 

Figure 12 shows two frames from the animation of a more 

complicated surface.  For that example, we used 3D Studio MAX 

to construct a skeleton of bones inside the control mesh, and 

manipulated the skeleton to deform this mesh.  (The complete 

animation is on the accompanying video.) 

Another application of our representation is the fitting of 3D head 

scans [30].  For this application, it is desirable to re-use a common 

control mesh structure so that deformations can be conveniently 

transferred from one face model to another. 

5.4 Scalability 

Depending on the level-of-detail requirements and hardware 

capabilities, the scalar displacement function can either be: 

• rendered as explicit geometry:  Since it is a continuous 

representation, the tessellation is not limited to the resolution of 

the displacement mesh.  A scheme for adaptive tessellation is 

presented in Section 5.5. 

• converted to a bump map:  This improves rendering 

performance on graphics systems where geometry processing is 

a bottleneck.  As described in [31], the calculation necessary for 

tangent-space bump mapping involves computing the displaced 

subdivision surface normal relative to a coordinate frame on the 

domain surface.  A convenient coordinate frame is formed by 

the domain surface unit normal 𝑛� and a tangent vector such 

as 𝑃�⃑𝑢.  Given these vectors, the coordinate frame is: 



 �𝑏�, �̂�,𝑛��   where   �̂� = 𝑃�⃑𝑢/�𝑃�⃑𝑢�   and   𝑏� = 𝑛� × �̂� . 
Finally, the normal 𝑛�𝑠 to the displaced subdivision surface relative 

to this tangent space is computed using the transform: 𝑛�tangent space = �𝑏�  �̂�  𝑛��𝑇 ⋅ 𝑛�𝑠 . 

The computations of 𝑛�, 𝑃�⃑𝑢, and 𝑛�𝑠 are described in Section 3.  

Note that we use the precise analytic normal in the bump map 

calculation.  As an example, Figure 13 shows renderings of the 

same model with different boundaries between explicit geometry 

and bump mapping.  In the leftmost image, the displacements are 

all converted into geometry, and bump-mapping is turned off.  In 

the rightmost image, the domain surface is sampled only at the 

control mesh vertices, but the entire displacement pyramid is 

converted into a bump map. 

5.5 Rendering 

Adaptive tessellation:  In order to perform adaptive 

tessellation, we need to compute the approximation error of any 

intermediate tessellation level from the finely subdivided surface.  

This approximation error is obtained by computing the maximum 

distance between the dyadic points on the planar intermediate 

level and their corresponding surface points at the finest level (see 

Figure 9).  Note that this error measurement corresponds to 

parametric error and is stricter than geometric error.  Bounding 

parametric error is useful for preventing appearance fields (e.g. 

bump map, color map) from sliding over the rendered surface [8].  

These precomputed error measurements are stored in a quadtree 

data structure.  At runtime, adaptive tessellation prunes off the 

entire subtree beneath a node if its error measurement satisfies 

given level-of-detail parameters.  By default, the displacements 

applied to the vertices of a face are taken from the corresponding 

level of the displacement pyramid. 

Note that the pruning will make adjacent subtrees meet at 

different levels.  To avoid cracks, if a vertex is shared among 

different levels, we choose the finest one from the pyramid.  Also, 

we perform a retriangulation of the coarser face so that it 

conforms to the vertices along the common edges.  Figure 14 

shows some examples of adaptive tessellation. 
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Figure 9: Error computation for adaptive tessellation. 

 

 

Backface patch culling:  To improve rendering 

performance, we avoid rendering regions of the displaced 

subdivision surface that are entirely facing away from the 

viewpoint.  We achieve this using the normal masks technique of 

Zhang and Hoff [38]. 

On the finely subdivided version of the domain surface, we 

compute the vertex normals of the displaced surface as described 

in Section 3.  We convert these into a normal mask for each 

subdivided face.  During a bottom-up traversal of the subdivision 

hierarchy, we propagate these masks to the parents using the 

logical or operation. 

Given the view parameters, we then construct a viewing mask as 

in [38], and take its logical and with the stored masks in the 

hierarchy.  Generally, we cull away 1/3 to 1/4 of the total number 

of triangles, thereby speeding up rendering time by 20% to 30%. 

6. DISCUSSION 

Remeshing creases:  As in other remeshing methods [14] 

[26], the presence of creases in the original surface presents 

challenges to our conversion process.  Lee et al. [26] demonstrate 

that the key is to associate such creases with edges in the control 

mesh.  Our simplification process also achieves this since mesh 

simplification naturally preserves sharp features. 

However, displaced subdivision surfaces have the further 

constraint that the displacements are strictly scalar.  Therefore, the 

edges of the control mesh, when subdivided and displaced, do not 

generally follow original surface creases exactly.  (A similar 

problem also arises at surface boundaries.)  This problem can be 

resolved if displacements were instead vector-based, but then the 

representation would lose its simplicity and many of its benefits 

(compactness, ease of scalability, etc.). 

Scaling of displacements:  Currently, scalar displacements 

are simply multiplied by unit normals on the domain surface.  

With a “rubbery” surface, the displaced subdivision surface 

behaves as one would expect, since detail tends to smooth as the 

surface stretches.  However, greater control over the magnitude of 

displacement is desirable in many situations.  A simple extension 

of the current representation is to provide scale and bias factors 
(𝑠, 𝑏) at control mesh vertices.  These added controls enhance the 

basic displacement formula: 𝑆 = 𝑃�⃑ + (𝑠𝐷 + 𝑏)𝑛� . 

Exploring such scaling controls is an interesting area of future 

work. 

7. SUMMARY AND FUTURE WORK 

Nearly all geometric representations capture geometric detail as a 

vector-valued function.  We have shown that an arbitrary surface 

can be approximated by a displaced subdivision surface, in which 

geometric detail is encoded as a scalar-valued function over a 

domain surface.  Our representation defines both the domain 

surface and the displacement function using a unified subdivision 

framework.  This synergy allows simple and efficient evaluation 

of analytic surface properties. 

We demonstrated that the representation offers significant savings 

in storage compared to traditional mesh compression schemes.  It 

is also convenient for animation, editing, and runtime level-of-

detail control. 

Areas for future work include: a more rigorous scheme for 

constructing the domain surface, improved filtering of bump 

maps, hardware rendering, error measures for view-dependent 

adaptive tessellation, and use of detail textures for displacements. 
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Original mesh 

342,138 faces;  1011 KB 

Simplified mesh 

50,000 faces;  169 KB 

Compressed simplified mesh 

(12-bits/coord.);  68 KB 

Displaced subdivision surface 

1564 control mesh faces;  18 KB 

    
Original mesh 

100,000 faces;  346 KB 
Simplified mesh 

20,000 faces;  75 KB 
Compressed simplified mesh 

(12-bits/coord.);  33 KB 
Displaced subdivision surface 

748 control mesh faces;  16 KB 

Figure 10: Compression results.  Each example shows the approximation of a dense original mesh using a simplified mesh and a displaced 

subdivision surface, such that both have comparable 𝐿2 approximation error (expressed as a percentage of object bounding box). 

 

 

 

Dinosaur 

Original mesh 
Compressed 

simplified mesh 

Displaced subdivision 

surface (𝑘=4) 

#V=171,074 
#F=342,138 

#V=25,005 
#F=50,000 

#V0=787  

#F0=1564 ≡ 6.5KB 

Quantization 
(bits/coord.) 

𝐿2 error 
Size 
(KB) 

𝐿2 error 
Size 
(KB) 

𝐿2 error 
Size 
(KB) 

Size 
ratio 

23  0.002% 1011 0.024% 169 0.025% 22 7.7 

12  0.014% 322 0.028% 68 0.028% 18 3.8 

10  0.053% 217 0.059% 50 0.058% 10 5.0 

8  0.197% 169 0.21% 35 0.153% 7 5.0 

Venus 

Original mesh 
Compressed 

simplified mesh 

Displaced subdivision 

surface (𝑘=4) 

#V=50,002 
#F=100,000 

#V=10,002 
#F=20,000 

#V0=376  

#F0=748 ≡ 3.4KB 

Quantization 
(bits/coord.) 

𝐿2 error 
Size 
(KB) 

𝐿2 error 
Size 
(KB) 

𝐿2 error 
Size 
(KB) 

Size 
ratio 

23  0.001% 346 0.027% 75  0.027% 17 4.4 

12  0.014% 140 0.030% 33  0.031% 16 2.0 

10  0.054% 102 0.059% 26  0.053% 8 3.2 

8  0.207% 69 0.210% 18  0.149% 4 4.5 

Table 1: Quantitative compression results for the two examples in Figure 10. Numbers in red refer to figures above. 

  



 

    
Original colored mesh Displaced subdivision surface Domain surface Displacement samples (𝑘 = 4) 

Figure 11: Example of a displaced subdivision surface with resampled color. 

     
Original mesh Control mesh Displaced subdiv. surface Modified control mesh Resulting deformed surface 

Figure 12: The control mesh makes a convenient armature for animating the displaced subdivision surface. 

     
Level 4 (134,656 faces) Level 3 (33,664 faces) Level 2 (8,416 faces) Level 1 (2,104 faces) Level 0 (526 faces) 

Figure 13: Replacement of scalar displacements by bump-mapping at different levels. 

   
Threshold = 1.87% diameter 

12,950 triangles;  𝐿2 error = 0.104% 

Threshold = 0.76% diameter 

88,352 triangles;  𝐿2 error = 0.035% 

Threshold = 0.39% diameter  

258,720 triangles;  𝐿2 error = 0.016% 

Figure 14: Example of adaptive tessellation, using the view-independent criterion of comparing residual error with a global threshold.  
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