

Displaced Subdivision Surfaces

Aaron Lee
Department of Computer Science

Princeton University

http://www.aaron-lee.com/

Henry Moreton
NVIDIA Corporation

moreton@nvidia.com

Hugues Hoppe
Microsoft Research

http://research.microsoft.com/~hoppe

ABSTRACT

In this paper we introduce a new surface representation, the

displaced subdivision surface. It represents a detailed surface

model as a scalar-valued displacement over a smooth domain

surface. Our representation defines both the domain surface and

the displacement function using a unified subdivision framework,

allowing for simple and efficient evaluation of analytic surface

properties. We present a simple, automatic scheme for converting

detailed geometric models into such a representation. The

challenge in this conversion process is to find a simple

subdivision surface that still faithfully expresses the detailed

model as its offset. We demonstrate that displaced subdivision

surfaces offer a number of benefits, including geometry

compression, editing, animation, scalability, and adaptive

rendering. In particular, the encoding of fine detail as a scalar

function makes the representation extremely compact.

Additional Keywords: geometry compression, multiresolution geometry,
displacement maps, bump maps, multiresolution editing, animation.

1. INTRODUCTION

Highly detailed surface models are becoming commonplace, in

part due to 3D scanning technologies. Typically these models are

represented as dense triangle meshes. However, the irregularity

and huge size of such meshes present challenges in manipulation,

animation, rendering, transmission, and storage. Meshes are an

expensive representation because they store:

(1) the irregular connectivity of faces,

(2) the (𝑥, 𝑦, 𝑧) coordinates of the vertices,

(3) possibly several sets of texture parameterization (𝑢,𝑣)

coordinates at the vertices, and

(4) texture images referenced by these parameterizations, such as

color images and bump maps.

An alternative is to express the detailed surface as a displacement

from some simpler, smooth domain surface (see Figure 1).

Compared to the above, this offers a number of advantages:

(1) the patch structure of the domain surface is defined by a

control mesh whose connectivity is much simpler than that of

the original detailed mesh;

(2) fine detail in the displacement field can be captured as a

scalar-valued function which is more compact than traditional

vector-valued geometry;

(3) the parameterization of the displaced surface is inherited from

the smooth domain surface and therefore does not need to be

stored explicitly;

(4) the displacement field may be used to easily generate bump

maps, obviating their storage.

(a) control mesh (b) smooth

domain surface

(c) displaced

subdivision surface

Figure 1: Example of a displaced subdivision surface.

A simple example of a displaced surface is terrain data expressed

as a height field over a plane. The case of functions over the

sphere has been considered by Schröder and Sweldens [33].

Another example is the 3D scan of a human head expressed as a

radial function over a cylinder. However, even for this simple

case of a head, artifacts are usually detectable at the ear lobes,

where the surface is not a single-valued function over the

cylindrical domain.

The challenge in generalizing this concept to arbitrary surfaces is

that of finding a smooth underlying domain surface that can

express the original surface as a scalar-valued offset function.

Krishnamurthy and Levoy [25] show that a detailed model can be

represented as a displacement map over a network of B-spline

patches. However, they resort to a vector-valued displacement

map because the detailed model is not always an offset of their B-

spline surface. Also, avoiding surface artifacts during animation

requires that the domain surface be tangent-plane (𝐶1) continuous,

which involves constraints on the B-spline control points.

We instead define the domain surface using subdivision surfaces,

since these can represent smooth surfaces of arbitrary topological

type without requiring control point constraints. Our

representation, the displaced subdivision surface, consists of a

control mesh and a scalar field that displaces the associated

subdivision surface locally along its normal (see Figure 1). In this

paper we use the Loop [27] subdivision surface scheme, although

the representation is equally well defined using other schemes

such as Catmull-Clark [5].

Both subdivision surfaces and displacement maps have been in

use for about 20 years. One of our contributions is to unify these

two ideas by defining the displacement function using the same

subdivision machinery as the surface. The scalar displacements

are stored on a piecewise regular mesh. We show that simple

subdivision masks can then be used to compute analytic properties

on the resulting displaced surface. Also, we make displaced

subdivision surface practical by introducing a scheme for

constructing them from arbitrary meshes.

We demonstrate several benefits of expressing a model as a

displaced subdivision surface:

Compression: both the surface topology and parameterization are

defined by the coarse control mesh, and fine geometric detail

is captured using a scalar-valued function (Section 5.1).

Editing: the fine detail can be easily modified since it is a scalar

field (Section 5.2).

Animation: the control mesh makes a convenient armature for

animating the displaced subdivision surface, since geometric

detail is carried along with the deformed smooth domain

surface (Section 5.3).

Scalability: the scalar displacement function may be converted

into geometry or a bump map. With proper multiresolution

filtering (Section 5.4), we can also perform magnification and

minification easily.

Rendering: the representation facilitates adaptive tessellation and

hierarchical backface culling (Section 5.5).

2. PREVIOUS WORK

Subdivision surfaces: Subdivision schemes defining

smooth surfaces have been introduced by Catmull and Clark [5],

Doo and Sabin [13], and Loop [27]. More recently, these schemes

have been extended to allow surfaces with sharp features [21] and

fractionally sharp features [11]. In this paper we use the Loop

subdivision scheme because it is designed for triangle meshes.

DeRose et al. [11] define scalar fields over subdivision surfaces

using subdivision masks. Our scalar displacement field is defined

similarly, but from a denser set of coefficients on a piecewise

regular mesh (Figure 2).

Hoppe et al. [21] describe a method for approximating an original

mesh with a much simpler subdivision surface. Unlike our

conversion scheme of Section 4, their method does not consider

whether the approximation residual is expressible as a scalar

displacement map.

Displacement maps: The idea of displacing a surface by a

function was introduced by Cook [9]. Displacement maps have

become popular commercially as procedural displacement shaders

in RenderMan [1]. The simplest displacement shaders interpolate

values within an image, perhaps using standard bicubic filters.

Though displacements may be in an arbitrary direction, they are

almost always along the surface normal [1].

Typically, normals on the displaced surface are computed

numerically using a dense tessellation. While simple, this

approach requires adjacency information that may be unavailable

or impractical with low-level APIs and in memory-constrained

environments (e.g. game consoles). Strictly local evaluation

requires that normals be computed from a continuous analytic

surface representation. However, it is difficult to piece together

multiple displacement maps while maintaining smoothness. One

encounters the same vertex enclosure problem [32] as in the

stitching of B-spline surfaces. While there are well-documented

solutions to this problem, they require constructions with many

more coefficients (9× in the best case), and may involve solving a

global system of equations.

In contrast, our subdivision-based displacements are inherently

smooth and have only quartic total degree (fewer DOF than

bicubic). Since the displacement map uses the same

parameterization as the domain surface, the surface representation

is more compact and displaced surface normals may be computed

more efficiently. Finally, unifying the representation around

subdivision simplifies implementation and makes operations such

as magnification more natural.

Krishnamurthy and Levoy [25] describe a scheme for

approximating an arbitrary mesh using a B-spline patch network

together with a vector-valued displacement map. In their scheme,

the patch network is constructed manually by drawing patch

boundaries on the mesh. The recent work on surface pasting by

Chan et al. [7] and Mann and Yeung [29] uses the similar idea of

adding a vector-valued displacement map to a spline surface.

Gumhold and Hüttner [19] describe a hardware architecture for

rendering scalar-valued displacement maps over planar triangles.

To avoid cracks between adjacent triangles of a mesh, they

interpolate the vertex normals across the triangle face, and use this

interpolated normal to displace the surface. Their scheme permits

adaptive tessellation in screen space. They discuss the importance

of proper filtering when constructing mipmap levels in a

displacement map. Unlike our representation, their domain

surface is not smooth since it is a polyhedron. As shown in

Section 5.3, animating a displaced surface using a polyhedral

domain surface results in many surface artifacts.

Kobbelt et al. [23] use a similar framework to express the

geometry of one mesh as a displacement from another mesh, for

the purpose of multiresolution shape deformation.

Bump maps: Blinn [3] introduces the idea of perturbing the

surface normal using a bump map. Peercy et al. [31] present

recent work on efficient hardware implementation of bump maps.

Cohen et al. [8] drastically simplify meshes by capturing detail in

the related normal maps. Both Cabral et al. [4] and Apodaca and

Gritz [1] discuss the close relationship of bump mapping and

displacement mapping. They advocate combining them into a

unified representation and resorting to true displacement mapping

only when necessary.

Multiresolution subdivision: Lounsbery et al. [28] apply

multiresolution analysis to arbitrary surfaces. Given a

parameterization of the surface over a triangular domain, they

compress this (vector-valued) parameterization using a wavelet

basis, where the basis functions are defined using subdivision of

the triangular domain. Zorin et al. [39] use a similar subdivision

framework for multiresolution mesh editing. To make this

multiresolution framework practical, several techniques have been

developed for constructing a parameterization of an arbitrary

surface over a triangular base domain. Eck et al. [14] use

Voronoi/Delaunay diagrams and harmonic maps, while Lee et al.

[26] track successive mappings during mesh simplification.

In contrast, displaced subdivision surfaces do not support an

arbitrary parameterization of the surface, since the

parameterization is given by that of a subdivision surface. The

benefit is that we need only compress a scalar-valued function

instead of vector-valued parameterization. In other words, we

store only geometric detail, not a parameterization. The drawback

is that the original surface must be expressible as an offset of a

smooth domain surface. An extremely bad case would be a fractal

“snowflake” surface, where the domain surface cannot be made

much simpler than the original surface. Fortunately, fine detail in

most practical surfaces is expressible as an offset surface.

Guskov et al. [20] represent a surface by successively applying a

hierarchy of displacements to a mesh as it is subdivided. Their

construction allows most of the vertices to be encoded using

scalar displacements, but a small fraction of the vertices require

vector displacements to prevent surface folding.

3. REPRESENTATION OVERVIEW

A displaced subdivision surface consists of a triangle control mesh

and a piecewise regular mesh of scalar displacement coefficients

(see Figure 2). The domain surface is generated from the control

mesh using Loop subdivision. Likewise, the displacements

applied to the domain surface are generated from the scalar

displacement mesh using Loop subdivision.

Figure 2: Control mesh (left) with its piecewise regular mesh of

scalar displacement coefficients (𝑘 = 3).

Displacement map: The scalar displacement mesh is stored

for each control mesh triangle as one half of the sample grid

(2𝑘 + 1) × (2𝑘 + 1), where 𝑘 depends on the sampling density

required to achieve a desired level of accuracy or compression.

To define a continuous displacement function, these stored values

are taken to be subdivision coefficients for the same (Loop)

subdivision scheme that defines the domain surface. Thus, as the

surface is magnified (i.e. subdivided beyond level 𝑘), both the

domain surface geometry and the displacement field are

subdivided using the same machinery. As a consequence, the

displacement field is 𝐶1 even at extraordinary vertices, and the

displaced subdivision surface is 𝐶1 everywhere except at

extraordinary vertices. The handling of extraordinary vertices is

discussed below.

For surface minification, we first compute the limit displacements

for the subdivision coefficients at level 𝑘, and we then construct a

mipmap pyramid with levels �0, … , 𝑘–1� by successive filtering of

these limit values. We cover filtering possibilities in Section 4.5.

As with ordinary texture maps, the content author may sometimes

want more precise control of the filtered levels, so it may be

useful to store the entire pyramid. (For our compression analysis

in Section 5.1, we assume that the pyramid is built automatically.)

For many input meshes, it is inefficient to use the same value of 𝑘

for all control mesh faces. For a given face, the choice of 𝑘 may

be guided by the number of original triangles associated it, which

is easily estimated using MAPS [26]. Those regions with lower

values of 𝑘 are further subdivided logically to produce a mesh

with uniform 𝑘.

Normal Calculation: We now derive the surface normal for

a point 𝑆 on the displaced subdivision surface. Let 𝑆 be the

displacement of the limit point 𝑃�⃑ on the domain surface: 𝑆 = 𝑃�⃑ + 𝐷𝑛�,
where 𝐷 is the limit displacement and 𝑛� = 𝑛�⃑ /‖𝑛�⃑ ‖ is the unit

normal on the domain surface. The normal 𝑛�⃑ is obtained as 𝑛�⃑ = 𝑃�⃑𝑢 × 𝑃�⃑𝑣 where the tangent vectors 𝑃�⃑𝑢 and 𝑃�⃑𝑣 are computed

using the first derivative masks in Figure 3.

The displaced subdivision surface normal at 𝑆 is defined as 𝑛�⃑ 𝑠 = 𝑆𝑢 × 𝑆𝑣 where each tangent vector has the form 𝑆𝑢 = 𝑃�⃑𝑢 + 𝐷𝑢𝑛� + 𝐷𝑛�𝑢 .

If the displacements are relatively small, it is common to ignore

the third term, which contains second-order derivatives [3].

However, if the surface is used as a modeling primitive, then the

displacements may be quite large and the full expression must be

evaluated. The difficult term 𝑛�𝑢 = 𝑛�⃑ 𝑢/‖𝑛�⃑ 𝑢‖ may be derived

using the Weingarten equations [12]. Equivalently, it may be

expressed as:

𝑛�𝑢 =
𝑛�⃑ 𝑢 − 𝑛�(𝑛�⃑ 𝑢 ⋅ 𝑛�)‖𝑛�⃑ ‖ where 𝑛�⃑ 𝑢 = 𝑃�⃑𝑢𝑢 × 𝑃�⃑𝑣 + 𝑃�⃑𝑢 × 𝑃�⃑𝑢𝑣 .

At a regular (valence 6) vertex, the necessary partial derivatives

are given by a simple set of masks (see Figure 3). At

extraordinary vertices, the curvature of the domain surface

vanishes and we omit the second-order term. In this case, the

standard Loop tangent masks may be used to compute the first

partial derivatives. Since there are few extraordinary vertices, this

simplified normal calculation has not proven to be a problem.

x/6 x/6

P
u

P
v

1 2

-1 0 1

-1-2

P

x/12

1 1

1 6 1

11

2 1

1 0 -1

-2-1

x/2

1 0

0 -2 0

10

0 1

0 -2 0

01

1 1

-1 -2 -1

11
x/1x/1

u v

P
vv

P
uv

P
uu

Figure 3: Loop masks for limit position 𝑃 and first and second

derivatives at a regular control vertex.

Bump map: The displacement map may also be used to

generate a bump map during the rendering of coarser tessellations

(see Figure 13). This improves rendering performance on

graphics systems where geometry processing is a bottleneck. The

construction of this bump map is presented in Section 5.4.

Other textures: The domain surface parameterization is used

for storing the displacement map (which also serves to define a

bump map). It is natural to re-use this same inherent

parameterization to store additional appearance attributes for the

surface, such as color. Section 4.4 describes how such attributes

are re-sampled from the original surface.

Alternatively, one could define more traditional surface

parameterizations by explicitly specifying (𝑢, 𝑣) texture

coordinates at the vertices of the control mesh, as in [11].

However, since the domain of a (𝑢, 𝑣) parameterization is a planar

region, this generally requires segmenting the surface into a set of

charts.

4. CONVERSION PROCESS

To convert an arbitrary triangle mesh (Figure 5a) into a displaced

subdivision surface (Figure 5b), our process performs the

following steps:

• Obtain an initial control mesh (Figure 5c) by simplifying the

original mesh. Simplification is done using a traditional

sequence of edge collapse transformations, but with added

heuristics to attempt to preserve a scalar offset function.

• Globally optimize the control mesh vertices (Figure 5d) such

that the domain surface (Figure 5e) more accurately fits the

original mesh.

• Sample the displacement map by shooting rays along the

domain surface normals until they intersect the original mesh.

At the ray intersection points, compute the signed

displacement, and optionally sample other appearance attributes

like surface color. (The black line segments visible in Figure 5f

correspond to rays with positive displacements.)

4.1 Simplification to control mesh

We simplify the original mesh using a sequence of edge collapse

transformations [22] prioritized according to the quadric error

metric of Garland and Heckbert [16]. In order to produce a good

domain surface, we restrict some of the candidate edge collapses.

The main objective is that the resulting domain surface should be

able to express the original mesh using a scalar displacement map.

Our approach is to ensure that the space of normals on the domain

surface remains locally similar to the corresponding space of

normals on the original mesh.

To maintain an efficient correspondence between the original

mesh and the simplified mesh, we use the MAPS scheme [26] to

track parameterizations of all original vertices on the mesh

simplified so far. (When an edge is collapsed, the

parametrizations of points in the neighborhood are updated using

a local 1-to-1 map onto the resulting neighborhood.)

For each candidate edge collapse transformation, we examine the

mesh neighborhood that would result. In Figure 4, the thickened

1-ring is the neighborhood of the unified vertex. For vertices on

this ring, we compute the subdivision surface normals (using

tangent masks that involve vertices in the 2-ring of the unified

vertex). The highlighted points within the faces in the 1-ring

represent original mesh vertices that are currently parameterized

on the neighborhood using MAPS.

allowable normals

on Gauss sphere

Figure 4: Neighborhood after candidate edge collapse and, for

one face, the spherical triangle about its domain surface normals.

(a) original mesh (b) displaced subdivision surface

(c) initial control mesh (d) optimized control mesh

(e) smooth domain surface (f) displacement field

Figure 5: Steps in the conversion process.

For each face in the 1-ring neighborhood, we gather the 3

subdivision surface normals at the vertices and form their

spherical triangle on the Gauss sphere. Then, we test whether this

spherical triangle encloses the normals of the original mesh

vertices parameterized using MAPS. If this test fails on any face

in the 1-ring, the edge collapse transformation is disallowed. To

allow simplification to proceed further, we have found it useful to

broaden each spherical triangle by pushing its three vertices an

additional 45 degrees away from its inscribed center, as illustrated

in Figure 4.

We observe that the domain surface sometimes has undesirable

undulations when the control mesh has vertices of high valence.

Therefore, during simplification we also disallow an edge collapse

if the resulting unified vertex would have valence greater than 8.

4.2 Optimization of domain surface

Having formed the initial control mesh, we optimize the locations

of its vertices such that the associated subdivision surface more

accurately fits the original mesh. This step is performed using the

method of Hoppe et al. [21]. We sample a dense set of points

from the original mesh and minimize their squared distances to

the subdivision surface. This nonlinear optimization problem is

approximated by iteratively projecting the points onto the surface

and solving for the most accurate surface while fixing those

parameterizations. The result of this step is shown in Figure 5d-e.

Note that this geometric optimization modifies the control mesh

and thus affects the space of normals over the domain surface.

Although this invalidates the heuristic used to guide the

simplification process, this has not been a problem in our

experiments. A more robust solution would be to optimize the

subdivision surface for each candidate edge collapse (as in [21])

prior to testing the neighborhood normals, but this would be much

more costly.

4.3 Sampling of scalar displacement map

We apply 𝑘 steps of Loop subdivision to the control mesh. At

each of these subdivided vertices, we compute the limit position

and normal of the domain surface. We seek to compute the signed

distance from the limit point to the original surface along the

normal (Figure 5f).

The directed line formed by the point and normal is intersected

with the original surface, using a spatial hierarchy [17] for

efficiency. We disregard any intersection point if the intersected

surface is oriented in the wrong direction with respect to the

directed line. If multiple intersection points remain, we pick the

one closest to the domain surface. Figure 6 illustrates a possible

failure case if the domain surface is too far from the original.

domain surface

original mesh

Figure 6: The displacement sampling may “fold over itself” if the

domain surface is too distant from the original mesh.

Near surface boundaries, there is the problem that the domain

surface may extend beyond the boundary of the original surface,

in which case the ray does not intersect any useful part of the

original surface. (We detect this using a maximum distance

threshold based on the mesh size.) In this case, the surface should

really be left undefined, i.e. trimmed to the detailed boundary of

the original mesh. One approach would be to store a special

illegal value into the displacement map. Instead, we find the

closest original triangle to the subdivided vertex, and intersect the

ray with the plane containing that triangle. Precise surface

trimming can be achieved using an alpha mask in the surface

color image, but we have not yet implemented this.

4.4 Resampling of appearance attributes

Besides sampling the scalar displacement function, we also

sample other appearance attributes such as diffuse color. These

attributes are stored, filtered, and compressed just like the scalar

displacements. An example is shown in Figure 11.

4.5 Filtering of displacement map

Since our displacement field has the same structure as the domain

surface, we can apply the same subdivision mask for

magnification. This is particular useful when we try to zoom in a

tiny region on our displaced subdivision surface. For sampling

the displacements at minified levels of the displacement pyramid,

we compute the samples at any level 𝑙 < 𝑘 by filtering the limit

displacements of level 𝑙 + 1. We considered several filtering

operations and opted for the non-shrinking filter of Taubin [35].

Because the displacement magnitudes are kept small, their

filtering is not extremely sensitive. In many rendering situations

much of the visual detail is provided by bump mapping. As has

been discussed elsewhere [2], careful filtering of bump maps is

both important and difficult.

4.6 Conversion results

The following table shows execution times for the various steps of

the conversion process. These times are obtained on a Pentium III

550 MHz PC.

Model armadillo venus bunny dinosaur

 Conversion Statistics

Original mesh #F 210,944 100,000 69,451 342,138

Control mesh #F 1,306 748 526 1,564

Maximum level 𝑘 4 4 4 4

 Execution Times (minutes)

Simplification 61 28 19 115

Domain surface optimiz. 25 11 11 43

Displacement sampling 2 2 1 5

 Total 88 41 31 163

5. BENEFITS

5.1 Compression

Mesh compression has recently been an active area of research.

Several clever schemes have been developed to concisely encode

the combinatorial structure of the mesh connectivity, in as few as

1-2 bits per face (e.g. [18] [35]). As a result, the major portion of

a compressed mesh goes to storing the mesh geometry. Vertex

positions are typically compressed using quantization, local

prediction, and variable-length delta encoding. Geometry can also

be compressed within a multiresolution subdivision framework as

a set of wavelet coefficients [28]. To our knowledge, all previous

compression schemes for arbitrary surfaces treat geometry as a

vector-valued function.

In contrast, displaced subdivision surfaces allow fine geometric

detail to be compressed as a scalar-valued function. Moreover,

the domain surface is constructed to be close to the original

surface, so the magnitude of the displacements tends to be small.

To exploit spatial coherence in the scalar displacement map, we

use linear prediction at each level of the displacement pyramid,

and encode the difference between the predicted and actual

values. For each level, we treat the difference coefficients over all

faces as a subband. For each subband, we use the embedded

quantizer and embedded entropy coder described in Taubman and

Zakhor [37]. The subbands are merged using the bit allocation

algorithm described by Shoham and Gersho [34], which is based

on integer programming.

An alternative would be to use the compression scheme of

Kolarov and Lynch [24], which is a generalization of the wavelet

compression method in [33].

Figure 10 and Table 1 show results of our compression

experiments. We compare storage costs for simplified triangle

meshes and displaced subdivision surfaces, such that both

compressed representations have the same approximation

accuracy with respect to the original reference model. This

accuracy is measured as 𝐿2 geometric distance between the

surfaces, computed using dense point sampling [16]. The

simplified meshes are obtained using the scheme of Garland and

Heckbert [16]. For mesh compression, we use the VRML

compressed binary format inspired by the work of Taubin and

Rossignac [36]. We vary the quantization level for the vertex

coordinates to obtain different compressed meshes, and then

adjust our displacement map compression parameters to obtain a

displaced surface with matching 𝐿2 geometric error.

For simplicity, we always compress the control meshes losslessly

in the experiments (i.e. with 23-bits/coordinate quantization). Our

compression results would likely be improved further by adapting

the quantization of the control mesh as well. However, this would

modify the domain surface geometry, and would therefore require

re-computing the displacement field. Also, severe quantization of

the control mesh would result in larger displacement magnitudes.

Table 1 shows that displaced subdivision surfaces consistently

achieve better compression rates than mesh compression, even

when the mesh is carefully simplified from detailed geometry.

5.2 Editing

The fine detail in the scalar displacement mesh can be edited

conveniently, as shown in the example of Figure 7.

Figure 7: In this simple editing example, the embossing effect is

produced by enhancing the scalar displacements according to a

texture image of the character ‘B’ projected onto the displaced

surface.

5.3 Animation

Displaced subdivision surfaces are a convenient representation for

animation. Kinematic and dynamics computation are vastly more

efficient when operating on the control mesh rather than the huge

detailed mesh.

Because the domain surface is smooth, the surface detail deforms

naturally without artifacts. Figure 8 shows that in contrast, the

use of a polyhedron as a domain surface results in creases and

folds even with a small deformation of a simple surface.

Subdivision control mesh Polyhedral control mesh

Domain surfaces

Displaced surfaces

Figure 8: Comparison showing the importance of using a smooth

domain surface when deforming the control mesh. The domain

surface is a subdivision surface on the left, and a polyhedron on

the right.

Figure 12 shows two frames from the animation of a more

complicated surface. For that example, we used 3D Studio MAX

to construct a skeleton of bones inside the control mesh, and

manipulated the skeleton to deform this mesh. (The complete

animation is on the accompanying video.)

Another application of our representation is the fitting of 3D head

scans [30]. For this application, it is desirable to re-use a common

control mesh structure so that deformations can be conveniently

transferred from one face model to another.

5.4 Scalability

Depending on the level-of-detail requirements and hardware

capabilities, the scalar displacement function can either be:

• rendered as explicit geometry: Since it is a continuous

representation, the tessellation is not limited to the resolution of

the displacement mesh. A scheme for adaptive tessellation is

presented in Section 5.5.

• converted to a bump map: This improves rendering

performance on graphics systems where geometry processing is

a bottleneck. As described in [31], the calculation necessary for

tangent-space bump mapping involves computing the displaced

subdivision surface normal relative to a coordinate frame on the

domain surface. A convenient coordinate frame is formed by

the domain surface unit normal 𝑛� and a tangent vector such

as 𝑃�⃑𝑢. Given these vectors, the coordinate frame is:

 �𝑏�, �̂�,𝑛�� where �̂� = 𝑃�⃑𝑢/�𝑃�⃑𝑢� and 𝑏� = 𝑛� × �̂� .
Finally, the normal 𝑛�𝑠 to the displaced subdivision surface relative

to this tangent space is computed using the transform: 𝑛�tangent space = �𝑏� �̂� 𝑛��𝑇 ⋅ 𝑛�𝑠 .

The computations of 𝑛�, 𝑃�⃑𝑢, and 𝑛�𝑠 are described in Section 3.

Note that we use the precise analytic normal in the bump map

calculation. As an example, Figure 13 shows renderings of the

same model with different boundaries between explicit geometry

and bump mapping. In the leftmost image, the displacements are

all converted into geometry, and bump-mapping is turned off. In

the rightmost image, the domain surface is sampled only at the

control mesh vertices, but the entire displacement pyramid is

converted into a bump map.

5.5 Rendering

Adaptive tessellation: In order to perform adaptive

tessellation, we need to compute the approximation error of any

intermediate tessellation level from the finely subdivided surface.

This approximation error is obtained by computing the maximum

distance between the dyadic points on the planar intermediate

level and their corresponding surface points at the finest level (see

Figure 9). Note that this error measurement corresponds to

parametric error and is stricter than geometric error. Bounding

parametric error is useful for preventing appearance fields (e.g.

bump map, color map) from sliding over the rendered surface [8].

These precomputed error measurements are stored in a quadtree

data structure. At runtime, adaptive tessellation prunes off the

entire subtree beneath a node if its error measurement satisfies

given level-of-detail parameters. By default, the displacements

applied to the vertices of a face are taken from the corresponding

level of the displacement pyramid.

Note that the pruning will make adjacent subtrees meet at

different levels. To avoid cracks, if a vertex is shared among

different levels, we choose the finest one from the pyramid. Also,

we perform a retriangulation of the coarser face so that it

conforms to the vertices along the common edges. Figure 14

shows some examples of adaptive tessellation.

one face in the

coarse tessellation

finely subdivided

surface

Figure 9: Error computation for adaptive tessellation.

Backface patch culling: To improve rendering

performance, we avoid rendering regions of the displaced

subdivision surface that are entirely facing away from the

viewpoint. We achieve this using the normal masks technique of

Zhang and Hoff [38].

On the finely subdivided version of the domain surface, we

compute the vertex normals of the displaced surface as described

in Section 3. We convert these into a normal mask for each

subdivided face. During a bottom-up traversal of the subdivision

hierarchy, we propagate these masks to the parents using the

logical or operation.

Given the view parameters, we then construct a viewing mask as

in [38], and take its logical and with the stored masks in the

hierarchy. Generally, we cull away 1/3 to 1/4 of the total number

of triangles, thereby speeding up rendering time by 20% to 30%.

6. DISCUSSION

Remeshing creases: As in other remeshing methods [14]

[26], the presence of creases in the original surface presents

challenges to our conversion process. Lee et al. [26] demonstrate

that the key is to associate such creases with edges in the control

mesh. Our simplification process also achieves this since mesh

simplification naturally preserves sharp features.

However, displaced subdivision surfaces have the further

constraint that the displacements are strictly scalar. Therefore, the

edges of the control mesh, when subdivided and displaced, do not

generally follow original surface creases exactly. (A similar

problem also arises at surface boundaries.) This problem can be

resolved if displacements were instead vector-based, but then the

representation would lose its simplicity and many of its benefits

(compactness, ease of scalability, etc.).

Scaling of displacements: Currently, scalar displacements

are simply multiplied by unit normals on the domain surface.

With a “rubbery” surface, the displaced subdivision surface

behaves as one would expect, since detail tends to smooth as the

surface stretches. However, greater control over the magnitude of

displacement is desirable in many situations. A simple extension

of the current representation is to provide scale and bias factors
(𝑠, 𝑏) at control mesh vertices. These added controls enhance the

basic displacement formula: 𝑆 = 𝑃�⃑ + (𝑠𝐷 + 𝑏)𝑛� .

Exploring such scaling controls is an interesting area of future

work.

7. SUMMARY AND FUTURE WORK

Nearly all geometric representations capture geometric detail as a

vector-valued function. We have shown that an arbitrary surface

can be approximated by a displaced subdivision surface, in which

geometric detail is encoded as a scalar-valued function over a

domain surface. Our representation defines both the domain

surface and the displacement function using a unified subdivision

framework. This synergy allows simple and efficient evaluation

of analytic surface properties.

We demonstrated that the representation offers significant savings

in storage compared to traditional mesh compression schemes. It

is also convenient for animation, editing, and runtime level-of-

detail control.

Areas for future work include: a more rigorous scheme for

constructing the domain surface, improved filtering of bump

maps, hardware rendering, error measures for view-dependent

adaptive tessellation, and use of detail textures for displacements.

ACKNOWLEDGEMENTS

Our thanks to Gene Sexton for his help in scanning the dinosaur.

REFERENCES

[1] Apodaca, A. and Gritz, L. Advanced RenderMan – Creating CGI

for Motion Pictures, Morgan Kaufmann, San Francisco, CA,

1999.

[2] Becker, B. and Max, N. Smooth transitions between bump

rendering algorithms. Proceedings of SIGGRAPH 93, Computer

Graphics, Annual Conference Series, pp. 183-190.

[3] Blinn, J. F. Simulation of wrinkled surfaces. Proceedings of

SIGGRAPH 78, Computer Graphics, pp. 286-292.

[4] Cabral, B., Max, N. and Springmeyer, R. Bidirectional reflection

functions from surface bump maps. Proceedings of SIGGRAPH

87, Computer Graphics, Annual Conference Series, pp.273-281.

[5] Catmull, E., and Clark, J. Recursively generated B-spline

surfaces on arbitrary topological meshes. Computer Aided Design

10, pp. 350-355 (1978).

[6] Certain, A., Popovic, J., DeRose, T., Duchamp, T., Salesin, D. and

Stuetzle, W. Interactive multiresolution surface viewing.

Proceedings of SIGGRAPH 96, Computer Graphics, Annual

Conference Series, pp. 91-98.

[7] Chan, K., Mann, S., and Bartels, R. World space surface pasting.

Graphics Interface '97, pp. 146-154.

[8] Cohen, J., Olano, M. and Manocha, D. Appearance preserving

Simplification. Proceedings of SIGGRAPH 98, Computer

Graphics, Annual Conference Series, pp. 115-122.

[9] Cook, R. Shade trees. Computer Graphics (Proceedings of

SIGGRAPH 84), 18(3), pp. 223-231.

[10] Deering, M. Geometry compression. Proceedings of SIGGRAPH

95, Computer Graphics, Annual Conference Series, pp. 13-20.

[11] DeRose, T., Kass, M., and Truong, T. Subdivision surfaces in

character animation. Proceedings of SIGGRAPH 98, Computer

Graphics, Annual Conference Series, pp. 85-94.

[12] Do Carmo, M. P. Differential Geometry of Curves and Surfaces.

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976.

[13] Doo, D., and Sabin, M. Behavior of recursive division surfaces

near extraordinary points. Computer Aided Design 10, pp. 356-

360 (1978).

[14] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M.,

and Stuetzle, W. Multiresolution analysis of arbitrary meshes.

Proceedings of SIGGRAPH 95, Computer Graphics, Annual

Conference Series, pp. 173-182.

[15] Forsey, D., and Bartels, R. Surface fitting with hierarchical

splines. ACM Transactions on Graphics, 14(2), pp. 134-161 (April

1995).

[16] Garland, M., and Heckbert, P. Surface simplification using

quadric error metrics. Proceedings of SIGGRAPH 97, Computer

Graphics, Annual Conference Series, pp. 209-216.

[17] Gottschalk, S., Lin, M., and Manocha, D. OBB-tree: a

hierarchical structure for rapid interference detection. Proceedings

of SIGGRAPH 96, Computer Graphics, Annual Conference

Series, pp. 171-180.

[18] Gumhold, S., and Straßer, W. Real time compression of triangle

mesh connectivity. Proceedings of SIGGRAPH 98, Computer

Graphics, Annual Conference Series, pp. 133-140.

[19] Gumhold, S., and Hüttner, T. Multiresolution rendering with

displacement mapping. SIGGRAPH workshop on Graphics

hardware, Aug 8-9, 1999.

[20] Guskov, I., Vidimce, K., Sweldens, W., and Schröder, P. Normal

meshes. Proceedings of SIGGRAPH 2000, Computer Graphics,

Annual Conference Series.

[21] Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H.,

McDonald, J., Schweitzer, J., and Stuetzle, W. Piecewise smooth

surface reconstruction. Proceedings of SIGGRAPH 94, Computer

Graphics, Annual Conference Series, pp. 295-302.

[22] Hoppe, H. Progressive meshes. Proceedings of SIGGRAPH 96,

Computer Graphics, Annual Conference Series, pp. 99-108.

[23] Kobbelt, L., Bareuther, T., and Seidel, H. P. Multi-resolution

shape deformations for meshes with dynamic vertex connectivity.

Proceedings of EUROGRAPHICS 2000, to appear.

[24] Kolarov, K. and Lynch, W. Compression of functions defined on

surfaces of 3D objects. In J. Storer and M. Cohn, editors, Proc. of

Data Compression Conference, IEEE, pp. 281-291, 1997.

[25] Krishnamurthy, V., and Levoy, M. Fitting smooth surfaces to

dense polygon meshes. Proceedings of SIGGRAPH 96, Computer

Graphics, Annual Conference Series, pp. 313-324.

[26] Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D.

MAPS: Multiresolution adaptive parameterization of surfaces.

Proceedings of SIGGRAPH 98, Computer Graphics, Annual

Conference Series, pp. 95-104.

[27] Loop, C. Smooth subdivision surfaces based on triangles.

Master’s thesis, University of Utah, Department of Mathematics,

1987.

[28] Lounsbery, M., DeRose, T., and Warren, J. Multiresolution

analysis for surfaces of arbitrary topological type. ACM

Transactions on Graphics, 16(1), pp. 34-73 (January 1997).

[29] Mann, S. and Yeung, T. Cylindrical surface pasting. Technical

Report, Computer Science Dept., University of Waterloo (June

1999).

[30] Marschner, S., Guenter, B., and Raghupathy, S. Modeling and

rendering for realistic facial animation. Submitted for

publication.

[31] Peercy, M., Airey, J. and Cabral, B. Efficient bump mapping

hardware. Proceedings of SIGGRAPH 97, Computer Graphics,

Annual Conference Series, pp. 303-306.

[32] Peters, J. Local smooth surface interpolation: a classification.

Computer Aided Geometric Design, 7(1990), pp. 191-195.

[33] Schröder, P., and Sweldens, W. Spherical wavelets: efficiently

representing functions on the sphere. Proceedings of SIGGRAPH

95, Computer Graphics, Annual Conference Series, pp. 161-172.

[34] Shoham, Y. and Gersho, A. Efficient bit allocation for an arbitrary

set of quantizers. IEEE Transactions on Acoustics, Speech, and

Signal Processing, Vol. 36, No. 9, pp. 1445-1453, Sept 1988.

[35] Taubin, G. A signal processing approach to fair surface design.

Proceedings of SIGGRAPH 95, Computer Graphics, Annual

Conference Series, pp. 351-358.

[36] Taubin, G. and Rossignac, J. Geometric compression through

topological surgery. ACM Transactions on Graphics, 17(2), pp.

84-115 (April 1998).

[37] Taubman, D. and Zakhor, A. Multirate 3-D subband coding of

video. IEEE Transactions on Image Processing, Vol. 3, No. 5,

Sept, 1994.

[38] Zhang, H., and Hoff, K. Fast backface culling using normal

masks. Symposium on Interactive 3D Graphics, pp. 103-106,

1997.

[39] Zorin, D., Schröder, P., and Sweldens, W. Interactive

multiresolution mesh editing. Proceedings of SIGGRAPH 97,

Computer Graphics, Annual Conference Series, pp. 259-268.

Original mesh

342,138 faces; 1011 KB

Simplified mesh

50,000 faces; 169 KB

Compressed simplified mesh

(12-bits/coord.); 68 KB

Displaced subdivision surface

1564 control mesh faces; 18 KB

Original mesh

100,000 faces; 346 KB
Simplified mesh

20,000 faces; 75 KB
Compressed simplified mesh

(12-bits/coord.); 33 KB
Displaced subdivision surface

748 control mesh faces; 16 KB

Figure 10: Compression results. Each example shows the approximation of a dense original mesh using a simplified mesh and a displaced

subdivision surface, such that both have comparable 𝐿2 approximation error (expressed as a percentage of object bounding box).

Dinosaur

Original mesh
Compressed

simplified mesh

Displaced subdivision

surface (𝑘=4)

#V=171,074
#F=342,138

#V=25,005
#F=50,000

#V0=787

#F0=1564 ≡ 6.5KB

Quantization
(bits/coord.)

𝐿2 error
Size
(KB)

𝐿2 error
Size
(KB)

𝐿2 error
Size
(KB)

Size
ratio

23 0.002% 1011 0.024% 169 0.025% 22 7.7

12 0.014% 322 0.028% 68 0.028% 18 3.8

10 0.053% 217 0.059% 50 0.058% 10 5.0

8 0.197% 169 0.21% 35 0.153% 7 5.0

Venus

Original mesh
Compressed

simplified mesh

Displaced subdivision

surface (𝑘=4)

#V=50,002
#F=100,000

#V=10,002
#F=20,000

#V0=376

#F0=748 ≡ 3.4KB

Quantization
(bits/coord.)

𝐿2 error
Size
(KB)

𝐿2 error
Size
(KB)

𝐿2 error
Size
(KB)

Size
ratio

23 0.001% 346 0.027% 75 0.027% 17 4.4

12 0.014% 140 0.030% 33 0.031% 16 2.0

10 0.054% 102 0.059% 26 0.053% 8 3.2

8 0.207% 69 0.210% 18 0.149% 4 4.5

Table 1: Quantitative compression results for the two examples in Figure 10. Numbers in red refer to figures above.

Original colored mesh Displaced subdivision surface Domain surface Displacement samples (𝑘 = 4)

Figure 11: Example of a displaced subdivision surface with resampled color.

Original mesh Control mesh Displaced subdiv. surface Modified control mesh Resulting deformed surface

Figure 12: The control mesh makes a convenient armature for animating the displaced subdivision surface.

Level 4 (134,656 faces) Level 3 (33,664 faces) Level 2 (8,416 faces) Level 1 (2,104 faces) Level 0 (526 faces)

Figure 13: Replacement of scalar displacements by bump-mapping at different levels.

Threshold = 1.87% diameter

12,950 triangles; 𝐿2 error = 0.104%

Threshold = 0.76% diameter

88,352 triangles; 𝐿2 error = 0.035%

Threshold = 0.39% diameter

258,720 triangles; 𝐿2 error = 0.016%

Figure 14: Example of adaptive tessellation, using the view-independent criterion of comparing residual error with a global threshold.

	1. INTRODUCTION
	2. PREVIOUS WORK
	3. REPRESENTATION OVERVIEW
	4. CONVERSION PROCESS
	4.1 Simplification to control mesh
	4.2 Optimization of domain surface
	4.3 Sampling of scalar displacement map
	4.4 Resampling of appearance attributes
	4.5 Filtering of displacement map
	4.6 Conversion results

	5. BENEFITS
	5.1 Compression
	5.2 Editing
	5.3 Animation
	5.4 Scalability
	5.5 Rendering

	6. DISCUSSION
	7. SUMMARY AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

