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Summary. Analytical expressions for the static displacement field produced 
by a centre of dilation and by a pressure source in a viscoelastic half-space are 
derived. The associated stress fields are also computed. The rheology of a 
standard linear solid (SLS) is adopted for the shear modulus, while the incom- 
pressibility is kept elastic. An instantaneous dilation or variation of pressure is 
considered as responsible for the deformation. In the centre of dilation 
model, if the two rigidities of the SLS are of the same order of magnitude, 
the viscoelastic contribution to the deformation is negligible; if the short-term 
rigidity is at least two orders of magnitude higher than the other one, the 
results are indistinguishable from those obtained with a Maxwell solid 
rheology. In this case, it is found that the initial elastic displacement is 
amplified by 20 per cent. In the pressure source model, if the rigidities of the 
SLS are of the same order of magnitude, the initial elastic displacement is 
amplified by a factor of about 2, but unrealistically high pressure values are 
required. On the other hand, for a Maxwell solid rheology the displacement 
grows indefinitely in time, following a sudden application of a finite pressure. 
The uplift rate is evaluated and it is shown that, for obtaining values of the 
order of 1 m over one characteristic relaxation time, more reasonable values 
of pressure are allowed. Applications to ground deformation in volcanic areas 
are discussed, taking as an example the Campi Flegrei zone, near Naples, Italy. 
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1 Introduction 

The elastic deformation due to an isotropic nucleus of strain has been often considered in 
the geophysical literature. Nuclei of strain are concentrated sources of a displacement field 
in an elastic medium and are built up from the simple superposition of single forces acting at 
a point in the medium (Love 1927). The displacement field due to nuclei of strain in a half- 
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456 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
space is necessary for applications to crustal deformation. Analytical expressions for some 
nuclei of strain in an elastic half-space, including a centre of dilation, were given by Mindlin 
& Cheng (1950). A complete solution for the fundamental types of nuclei of strain was given 
by Maruyama (1964), in the case in which the two Lame parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp are equal: this 
corresponds to aPoisson modulus v = 0.25, which is appropriate to most of the Earth’s crust. 
The solution for the displacement produced by a centre of dilation is useful for many 
purposes. Mogi (1958) applied a centre of dilation in an elastic space to interpret the ground 
deformation produced in volcanic areas and this model is often called the Mogi’s model after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
him. Further applications of Mogi’s model to the interpretation of ground deformation in 
volcanic areas such as Kilauea (Fiske & Kinoshita 1969; Walsh & Decker 1975), Long Valley 
Caldera (Savage & Clark 1982; Rundle & Whitcomb 1984; Rundle et al. 1985), Palmdale 
(Rundle 1978a) and Campi Flegrei (Corrado et al. 1976; Berrino et al. 1986). Finite element 
models with different shapes for the magma chamber were worked out by Dieterich & 

Decker (1975). This model has been also employed to describe the deformation connected 
with dilatancy and fluid diffusion (Singh & Sabina 1975; Rundle 1978a) and with under- 
ground nuclear explosions (Ben-Menahem & Gillon 1970). 

However, for some purposes the anelastic properties of the Earth’s crust are to be con- 
sidered. This is particularly the case in volcanic areas where the presence of incoherent 
materials and higher temperatures produce a lower effective viscosity of the Earth’s crust. A 
first step is to consider the deformation produced by a nucleus of strain in a viscoelastic 
medium. 

The problem of nuclei of strain in an elastic layer overlying a viscoelastic half-space has 
been faced by Rundle (1978b) to model the effect of the asthenosphere. However, the 
presence of two layers with different rheological properties makes the analytical solution 
difficult to find and one must finally resort to numerical techniques. For a nucleus of 
strain in a homogeneous viscoelastic half-space the problem is easily solved in an analytical 
way from the formulae derived by Maruyama (1964) for nuclei of strain in an elastic half- 
space, with h = p .  However, most rocks flow to relax deviatoric stresses, as though their 
rigidity decreased gradually with time, while relaxation of the isotropic stress component is 
usually negligible. For this reason, only the deviatoric stress is treated as viscoelastic, while 
the isotropic stress is linked through an elastic constitutive relation to isotropic strain. This 
can be done by choosing the rheologies of the incompressibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK and the rigidity p inde- 
pendently (e.g. Christensen 1971). In our paper, a standard linear solid (SLS) rheology is 
adopted for the shear modulus, while K is left as a constant. 

In an elastic medium, the deformations produced by a dilation at one point (centre of 
dilation) coincide with those due to a pressure change applied on the surface of a spherical 
cavity (centre of pressure), since a pressure change can be associated with a change of volume 
through the Lame constants. However, when viscoelasticity is taken into account, different 
deformations are produced by these two different sources. We shall work out analytical 
solutions for the displacement field for each one of the two sources in a viscoelastic half- 
space. For this purpose, the expressions for the elastic displacement field are first derived as 
done by Maruyama (1964), but keeping h # p. The solution is then rewritten in terms of p 
and K and the viscoelastic solution is finally obtained by applying the correspondence 
principle (Christensen 1971) only to the shear modulus p.  The associated stress fields are 
also computed from the analytical expressions of displacements. 

The model is then applied to the volcanic area of Campi Flegrei, south of Italy. In this 
century, ground deformations accompanied by seismic activity occurred in the area of 
Campi Flegrei. Quantitative measures are available from the beginning of 1970, when a 
ground uplift was detected and continuously monitored by tide-gauges installed in the 
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Displacement in a halfspace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA457 

central part of the area. The uplift continued with decreasing rate until the summer of 1972, 
when it reached its maximum, about 60cm. Then, the ground level began to decrease, 
although very slowly, and reached a steady value in 1974. After this episode, a similar 
process involved the Campi Flegrei area, beginning in 1982 and leading to a maximum uplift 
of about 160cm, in 1984 September. In Fig. 1, from Berrino zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1986), the dots 
represent the measures of ground level in the central part of the caldera, from 1970 to 1983. 
At the end of 1984, a slow deflation has been detected, probably analogous to the deflation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.*.., . .. . ', . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
910 1915 1980 1985 

time 

Figure 1. Observed uplift in the central part of the caldera of Campi Flegrei from 1970 till 1986 (redrawn 
from Berrino et al. 1986) and from data courtesy of Osservatorio Vesuviano, Naples. 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2. Observed uplift measured at  Campi Flegrei, Italy, and Long Valley Caldera, California, as a 
function of the distance from the point of  maximum uplift (redrawn from Berrino zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef al. 1986 and from 
Rundle er al. 1985. respectively). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
7
/2

/4
5
5
/6

1
8
4
5
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



458 

of 1972-73 (Berrino zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al., note presented at the ‘Riunione Scientifica sui Campi Flegrei’, 
Naples, 1985 March 28). Seismic activity accompanied both these two deformation 
processes. The measures of the ground level show a nearly radial symmetry, thus allowing one 
to use axisymmetric models in order to represent the dynamics of Campi Flegrei. The shape 
of the gound level curves plotted versus distance from the maximum uplift point is charac- 
teristic of volcanic areas: another typical and well-known example is Long Valley Caldera 
(Fig. 2a). Much evidence suggests that the uplift is related to the existence of a magma 
chamber at a depth of about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 km beneath Pozzuoli, having a nearly spherical shape and a 
radius ranging from some hundreds of metres (Berrino et al. 1986) to 1.5 km (Armienti 
et al. 1983). A magma migration involving the upper part of the chamber would provide a 
pressure increase responsible for the ground uplift. 

Furthermore, external tidal and meteorological forces produce additional ground defor- 
mations (Palumbo 1985). This shows that the volcanic area is very sensitive even to weak 
forces, applied for long times, thus suggesting an anelastic behaviour. 

Elastic models have been applied to the Campi Flegrei area, both making use of the 
original analytical solution by Mogi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 958) for a point-like source (Berrino et al. 1986) and 
taking advantage of numerical techniques (such as finite elements) which are able to handle 
the finite dimensions of the source and the characteristic features of the surrounding 
medium, such as stratification and the existence of the caldera (Bianchi et al. 1986). 
Although these models are able to reproduce the behaviour of the measured ground defor- 
mation as a function of the distance from the centre (which is also the point of maximum 
uplift), a very large pressure increase is required to produce an uplift of the order of those 
detected at Campi Flegrei. In fact, in order to obtain a vertical displacement of 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn at the 
surface due to the presence of a point-like source at a depth l =  3 km, with an associated 
spehrical volume of radius a = 1 km, an instantaneous pressure increase of about 1 kbar is 
necessary, if the medium surrounding the source has a rigidity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 10” dyne cm-2 and an 
incompressibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = 5/3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.1 (from the formula given by Maruyama 1964). Such unreasonably 
high pressure increase would determine deviatoric stresses in the surrounding medium which 
are certainly beyond the yield strength of crustal rocks even if they were at ambient tem- 
perature (Griggs, Turner & Heard 1960). This shows that a model based on a centre of 
pressure (or dilation) embedded in an elastic medium (such as Mogi’s model and those 
derived from it) cannot be applied to the study of ground deformation in volcanic areas like 
Campi Flegrei, where large uplifts occur. 

In this paper, the viscoelastic pressure-source model is applied to Campi Flegrei with a 
pressure source history varying in time and the results for the ground uplift are discussed. 
The principal stresses and the maximum shear stress are derived for this model and related to 
the seismic activity at Campi Flegrei. 

M. Bonafede, M. Dragoni and F. Quareni 

2 Elastic solution 

Let us consider a homogeneous and isotropic elastic half-space with Lam6 parameters and 
incompressibility K = h + y3 1.1 (Fig. 3). The free surface is the plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx3 = 0 and the x3-axis 
penetrates into the elastic medium. We are looking for the static displacement field produced 
in the medium by a centre of dilation or pressure located at depth x3 = (. I t  is well known 
(Steketee 1958; Maruyama 1964; Press 1965) that a point-like dislocation, including a centre 
of dilation, can be represented by a superposition of nine types of force couples which are 
characterized by two indices i and j (i, j = 1, 2, 3), where i denotes the direction of the forces 
and j denotes the direction of the couple arm (Fig. 4). 

According to Maruyama (1 964), the displacement field produced by a centre of dilation 
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Displacement in a half-space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA459 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P'10.0;E) . ,"' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i 
x3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. Viscoelastic half-space model. The centre of dilation or pressure is at depth x, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt .  
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Figure 4. The nine couples of forces as defined in this paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

will be obtained through the Galerkin vector, F. This is defined as a vector from which the 
displacement field satisfying the equation of equilibrium is obtained according to: 

Uk = r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAknn - ar ,, nk (1) 

where the displacement components are denoted by a superscript. 
The quantity a is defined as: 

3K + p  

3X + 4p 
QI=- 

The boundary conditions of the problem require that the plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx3 = 0 is a free surface, i.e. 

031 = 032 = u33 = 0; 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu is the stress tensor. Moreover displacement and stress must vanish at infinity. The 
displacement field produced by a nucleus of strain in the elastic half-space can be obtained 
by superposition of three contributions: (1) the displacement produced by a nucleus at 

(3) at xg = 0 
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460 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0,  0, + $) in an unbounded medium; (2) the displacement produced by an image 
nucleus at point (0,  0, - $); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 )  the displacement produced by a suitable distribution of 
normal forces on the plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx3 = 0. 

and at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx3 = - .$ to the 
i-component of displacement and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw i l  the analogous contribution from the force distribution 
on the plane x3 = 0, the indices k and I denoting the type of nucleus. 

The case k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 corresponds to a centre of dilation (sum of three couples without moment) 
plus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa couple without moment, while the case k # 1 corresponds to a combination of two 
coplanar couples with moment. The case k = 1 will be therefore considered in the following. 
Then, the displacement produced in the half-space can be written as: 

M. Bonafede, M. Dragoniand F. Quareni 

Let us call w i t  the contribution from the two nuclei at x3 = 

where m, is the intensity of the nucleus and g t t )  is its time history. If a volume V is asso- 
ciated with the nucleus, the intensity m, can be written as: 

mo= VAQ (5) 

in the case of a centre of dilation, where A 0  is the fractional change in volume. A pressure 
change can also be associated with the centre of dilation, which represents the pressure 
variation necessary to produce a dilation A@ at the source. 

If we want to calculate the displacement due to a pressure Apo applied to the surface of a 
spherical cavity of volume V, the intensity m,must be rewritten as: 

VAP, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m p  =-. 

4P 

According to (1) the displacements w i t  and o i k l  can be obtained from Galerkin vectors 
W i t  and respectively: 

Since the force distribution is normal to the plane x3 = 0, the Galerkin vector has only the 
third component different from zero. The expressions of W i z  and for a centre of dila- 
tion (k = I) can be found in Maruyama (1 964). 

The displacement components W i k  and o i k  calculated from (7) and (8) are given in 
Appendix A. Formulae (AI-A9) and (A19-A27) for the displacement field given in 
Appendix A differ from those given by Maruyama (1964) since they have been obtained for 
h # p and then rewritten in terms of K and p. 

For later use, we write here the expression for the vertical displacement u3(0)  at the 
point x1 = x2 = x3 = 0 derived from (4): 

where 0 = I/&. 

3 Viscoekstic solution 

For a linear viscoelastic material, the solution can be obtained from the elastic one employ- 
ing the correspondence principle (e.g. Christensen 1971). One must replace the constants K 
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Displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin a half-space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA461 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI T -  

'I (a) 

STANDARD LINEAR SOLID zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvuuvvo-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PI 'I 

MAXWELL SOLID zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 5. Mechanical models of the standard linear solid (SLS) (a) and the Maxwell solid (b) 

and p appearing in the elastic solution by their expressions as functions of the Laplace 
variable s, 2 (s) and g(s), which depend on the particular rheology considered. The source 
function g ( t )  is substituted by its Laplace transform g"(s). In the case of a pressure source 
the intensity m p  must also be written as a function of s, EP(s), since it contains p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(cf. 
equation 6). The resulting expression is the Laplace transform of the viscoelastic solution. 
One must then invert it in order to obtain the solution in the time domain. Since most rocks 
flow to relax only shear stress, we shall replace only p with p (s), while K is left constant as 
in the elastic case. We assume that the rheology of the viscoelastic half-space is that of a 
standard linear solid 
1965): 

where p1 and p2 are 

(SLS) which is represented in Fig. 5a. In this case (see, e.g. Fung 

(10) 

the rigidities and 77 is the viscosity. If p2 = 0, the SLS reduces to the 
Maxwell solid (Fig. 5b). The Laplace transform of the displacement field produced by either 
the centre of dilation or the pressure source in the viscoelastic half-space is therefore: 

where W"il and G;)ikl are the expressions (Al-A9) and (A19-A27) respectively, in which the 
substitution p -+ j3 (s) has been made. The solution in the time domain can be written as: 

and 

L-' denoting Laplace inversion. The expression for the Laplace inversion of the displacement 
components w i l  and ail are given in Appendix B. 
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462 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Bonafede, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Dragoni and F. Quareni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We shall now employ a specific source function to model the time history of the centre of 

dilation or the pressure source in the viscoelastic half-space, We choose the Heaviside step 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( t )  for representing a change of volume or pressure at t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0: 

3.1 V I S C O E L A S T I C  S O L U T I O N  FOR A C E N T R E  O F  DILATION 

For scaling the time, we choose the quantity: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(16) 

(3K + 111) 17 

3K (111 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.4 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPZ 
7 =  

In order to estimate the effect of stress relaxation on the displacement at the Earth's 
surface, we calculate the ratio between the maximum vertical displacements at xj  = 0 in the 
viscoelastic and in the elastic case, respectively. At each instant of time, the vertical displace- 
ment is maximum at x1 = x2 = 0. The elastic displacement coincides with the viscoelastic 
displacement at r = 0. Since the coefficients d i n  (B16) and (B17) are not positive, the visco- 
elastic displacement has a finite limit for r -+ 00, which is its maximum value in the time 
domain. If u3 (3, t )  is the vertical displacement, we calculate therefore: 

Figure 6. Vertical ground displacement due to a centre of dilation at depth xj  = t ,  as a function of the 
radial distance r. The three curves refer to different times and are normalized to the maximum elastic 
displacement, which occurs at r = 0 and i = 0. Maxwell solid rheology. 

050 

i' 

0.25 

0 
0 1 2 

r/t 
Figure 7. Horizontal ground displacement due to a centre of dilation. Details as in Fig. 6. 
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Displacement in a hulf-space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA463 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the case of a Maxwell solid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0), if we assume moreover zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY3p1, the ratio (17) is 
equal to 1.2. Therefore, the ground deformation is amplified by 20 per cent as a conse- 
quence of viscoelasticity. 

Figs 6 and 7 show respectively the vertical and the horizontal displacement at the Earth’s 
surface as a function of r for a Maxwell rheology with K = 5/3p1, i.e. h = pl. The different 
curves refer to different times and displacements are normalized to the maximum vertical 
displacement at t = 0, i.e. the maximum elastic displacement. It can be seen that more than 
half of the viscoelastic effect occurs for 0 < r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. 

In the case of the SLS rheology, with pl = pz and K = y3 pl, the effect of viscoelasticity 
on the displacement at the Earth’s surface is much less noticeable: the ratio between the 
vertical displacement at t + and t = 0 is in fact about 1.09. 

01 1 , I 
0 0 5  1 0  15  2 0  

r / E  

Figure 8. Vertical ground displacement due to  a pressure source a t  depth x ,  = E .  Details as in Fig. 6. 
Standard linear solid rheology. 

1.0 
I 

t- m 

0 0 5  10  1 5  2 0  

r /$  

Figure 9. Horizontal ground displacement due to a pressure source at depth x s  = [. Details as in Fig. 6 .  
Standard linear solid rheology. 
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464 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Bomfede, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Dragoni and F. Quareni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2 V I S C O E L A S T I C  S O L U T I O N  F O R  A C E N T R E  O F  P R E S S U R E  

For a centre of pressure embedded in a medium with SLS rheology, for which the Laplace 
inverse (B l ) ,  (B2), (B3) and (B4) have the form of (B17) (see Appendix B), the viscoelastic 
displacement has a finite limit for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt -+w. The ratio between the limit for r -+w and the 
elastic value of the vertical displacement at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= x 2  = 0 is given by: 

If we assume K = s/3 w1 (i.e, X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApl) and p1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2,  the ratio (18) is equal to about 2.2, which 
indicates that the ground deformation is amplified by a factor of about 2 due to visco- 
elasticity. Figs 8 and 9 show the vertical and the horizontal displacement at the surface, 
x3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, with K = y3 p1 and = p2, at t = 0, t = 7 and t+m. Although the amplification of the 
deformation is larger, the qualitative behaviour is very similar to the case of the centre of 
dilation. 

.I5 

Figure 10. Vertical ground displacement due to a pressure source at  depth x, = 6. Details as in Fig. 6. 
Maxwell solid rheology. 

5. 
I I I 1 

4. c 

0. 0.5 1. 1.5 2. 

r/s 

Figure 11. Horizontal ground displacement due to a pressure source at  depth x, = t .  Details as in Fig. 6. 
Maxwell solid rheology. 
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Displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa half-space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA465 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
On the other hand, for a Maxwell solid rheology, due to the form of Laplace inverts (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B19), the displacement does not have a finite limit for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt +m, owing to the presence of a 
term proportional to the time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr .  Figs 10 and 1 1  show the horizontal and vertical displace- 
ments, with K = ' /3 p l ,  at the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx3 = 0, for three values of time, t = 0 , ~  and 57. 

4 Stress fields 

Stress fields are now evaluated for the cases discussed in the previous section. The stress- 
strain relation in the Laplace variable domain reads: 

oij=K6ijun,,I + ~ ( u i , i  + ~ i , i - 2 / 3 6 i j ~ n , n ) .  (1 9) 

The stress as a function of time is given by the inversion of (19). The derivatives are taken 
numerically using a four-point, fourth-order accurate central formula (Ferziger 198 1). 

1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz/t ''1 1.5 

1 I I /  I 1-20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r/5 r/ 5 

2 0  15 10 0 5  0 2 0  1 5  10 0 5  0 

(a) (b)  
Figure 12. [overleaf for (c). (d), (e ) ]  Stress field components due to a centre of dilation at depthx,= ( at 
three different times. Stress values are expressed in units of p,/ IOO. Solid lines denote positive values, 
dashed lines denote negative values. Maxwell solid rheology. (a) urr, (b) 096, (c) uzz, (d) urz, (e) trace uji. 
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466 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Bonafede, M. Dragoniand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. Quareni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-05 \-005 - - 

0 05 

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

/ 

-005 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 
- 

I I /  I 1 1 I 2 0  
/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 12 - continued 

Since the geometry of the problem has a cylindrical symmetry, the components of the 
stress field are given as functions of the cylindrical coordinates z, r and 6 defined as: 

xI = r cos 6 

x2 = r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsin 6 

x3 =z.  (20c) 

Maps of stress components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAurr, uaa, u,, and orz due to a centre of dilation with the 
rheology of a Maxwell solid are shown in Fig. 12 (a-d) respectively. In Fig. 12(e), the trace 
uij of the stress field is shown. 

The upper edge of each graph represents the Earth’s surface, while the dot is the centre of 
dilation. For each stress component, three maps are shown, which are relative to different 
times. In all cases, the first map refers to c = 0 and therefore represents the elastic solution. 
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Displacement in a half-space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA467 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 

[Trace of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 1 

I I , 120 

r/ 5 
(el zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 15 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA05 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 - continued 

Stress relaxation is evident from the subsequent maps at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt > 0. The last map for each com- 
ponent represents the permanent state of stress which is left in the medium as t +-. This 
state of stress is virtually reached for t = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA57: further stress relaxation is negligible. 

G,,, a,.= and the trace 
oii for a pressure source with the Maxwell rheology. In this case, stress relaxation is faster if 
expressed in units of 7: only two maps for each component are shown, since stress attains its 
asymptotic value already at t = 7. 

Fig. 13(a-e) shows respectively the stress components or,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Application to volcanic areas 

The presence of incoherent materials, such as volcanic products, and high temperatures 
typical of volcanic areas produces effective viscosities orders of magnitude lower than the 
characteristic values of the ‘cold’ Earth’s crust, thus prompting one to take into account 
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468 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Bonafede, M. Dragoni and F. Quareni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0. 

0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.0 z / t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
15 

, \  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 1 2 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 15 10 0 5  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r/E E 
(c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d) 

Figure 13. Stress field components due to a pressure source located at depth x, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 at three different 
times. Stress values are expressed in units of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,/ lOO. Solid lines denote positive values, dashed lines 
denote negative values. Maxwell solid rheology. (a) urr, (b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu@@, (c) uzz, (d) urZ, (e) trace uii. 
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Displacement in a half-space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA469 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr T x c e  o f 4  

/ , , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 
- 

- 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
21 15 10 0 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcontinued 

viscoelastic effects. For instance, in Campi Flegrei the temperature is over 300°C at 1 km 
depth, in the Mofete area, close to the rim of the cladera (Cioppi et al. 1980). 

The pressure source model applies directly to the study of ground deformation in 
volcanic areas due to the presence of an insulated magma chamber where mechanisms of 
magma migration can provide a pressure increase on the surface of the chamber. We take as 
an example the volcanic area of Campi Flegrei, near Naples, Italy. In this region, two major 
ground deformation episodes occurred in the last 15 years and had a similar evolution. The 
first one began in 1970 and culminated in 1972 with a total uplift of about 60cm, followed 
by a deflation of about 20cm till the end of 1973. The second one started in 1982 and 
ended about two years later, producing a total uplift of 160cm (Berrino et a2. 1986) 
followed by a deflation at the rate of about 1 mm day-’ (Berrino et al., note presented at the 
‘Riunione Scientifica sui Campi Flegrei’, Naples, 1985 March 28). In Fig. 1 the ground uplift 
in the town of Pozzuoli (see map in Fig. 19) is shown from 1970 to 1986, while in Fig. 2b 
it is plotted against the distance from Pozzuoli (whlch is the point where the maximum 
uplift has been measured) at three different times. 

The model employed in this paper to represent Campi Flegrei is sketched in Fig. 14 where 
a spherical cavity of radius a, representing the magma chamber, is associated with the point- 
like source located at a depth t .  The medium surrounding the magma chamber has a Maxwell 
solid rheology: this choice is due to the great uncertainty affecting our knowledge of the 
two rigidity values appearing in the SLS rheology. A pressure A p o g ( t )  is applied to the 
spherical cavity surface and is responsible for the deformations in the medium. For the 
application to the Campi Flegrei, on the basis of geological evidence (Armienti et al. 1983; 
Berrino et ~ l .  1986) we take a = 1 km and = 3 km. The temporal behaviour of the applied 
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470 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABomfede, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Dragoni and F. Quareni 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14. Sketch of the viscoelastic pressure source model applied to  the study of a volcanic site. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
spherical magma chamber of radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is buried at  depth g in a medium endowed with a Maxwell rheology 
and a pressure A p  ( t )  is applied to the surface of the spherical cavity. 

pressure will be discussed and a source history will be chosen such that the produced ground 
uplift is in agreement with observations. 

However, the purpose of this paper is not the discussion of the magmatic processes which 
can produce the source history chosen, neither a close fit of the measured data, but the 
understanding of the mechanics of the deformation process. A quantitative fit of data will be 
possible only with a more realistic model which takes into account the stratification of the 
medium and viscosity variations. 

The results obtained in the case of a pressure suddenly applied to the surface of a spherical 
cavity, show that viscoelasticity plays a fundamental role. In fact, by virtue of viscoelasticity, 
the final displacements are amplified with respect to the initial elastic ones by about 120 per 
cent in the case of a pressure source with SLS rheology. Furthermore, the results are 
interesting in the case of a pressure source located in a medium characterized by a Maxwell 
solid rheology. In this case, for a sudden application of pressure, the vertical displacement at 
the surface grows indefinitely in time, at a rate which approaches a constant value, after a 
transient phase. The characteristic time of the process is: 

For t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> T,  the uplift rate is given by: 

where u3 is the ground uplift and V is the spherical volume (of radius a)  associated with the 
point-like source. The quantity VAp, has not necessarily to be considered as a volume times 
a pressure variation, but in a more general scheme, it represents an adiabatic variation of 
enthalpy. From (22), if the source has a radius a = 1 km and is located at a depth = 3 km and 
a Apo value of about 60 bar applied to the magma chamber surface, a viscosity p = 10” 
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Displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin a halfispace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

poise is required in the surrounding medium to produce an uplift rate of 1 m yr-', i.e. of the 
order of the uplift rate measured at Campi Flegrei (Berrino et al. 1986). Furthermore, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5 x 10"dyne cm-2 (as seismic data suggest), K = 7 3 ~ 1 ,  the characteristic time of the 
process is about 1 month, which compares favourably with the two months time lag between 
the drop of the geochemical anomalies detected at Campi Flegrei and the end of the uplift 
movement in late 1984 (Carapezza et aZ., note presented at the 'Riunione Scientifica sui 
Campi Flegrei', Naples, 1985 March 28). 

In this model, the stress components have a finite limit which does not differ considerably 
from the elastic value for the same Apo,  thus being in agreement with the nearly continuous 
seismicity that occurred at Campi Flegrei during the uplift process. 

In order to get a more realistic picture, in the present paper the convolution of the 
Green's functions with a different source history g ( t )  is performed. The source history 
chosen has a trapezoidal shape, since it increases linearly in time from 0 to 1 for t ranging 
between 0 and t l ,  remains then constant, equal to 1,  for t l  G t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs t2 ,  and finally decreases to 
0, for t2< t 4 t 3 :  

The time-dependent vertical displacement u3 (r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ,  t )  obtained by the convolution of the 
appropriate Green's function with the trapezoidal source history takes the following form: 

u3 (r. z ,  t )  = - [ u i ( r ,  z ,  t) - H(r - t l )  .",(I, z ,  t - t ,)] 
1 

tl 

(24) 

where u t  (r, z ,  t )  is the result of the convolution of the Green's function for the vertical dis- 
placement with a source history g ( t )  = t increasing 1inear:y with time. At the surface z = 0 
and at r = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu t  (0, 0, t )  takes the following form: 

The surface uplift at r = 0 is obtained by substituting (25) in (24) and the solution depends 
on the choice of tl, t2, t3 ,  which determine the source history, and mo, p, which measures the 
source intensity or, once the volume is fixed, the pressure applied to its surface. 

5.1 G R O U N D  D E F O R M A T I O N S  

In order to choose properly the values of the four unknown parameters t l ,  r2 ,  t3 and Apo,  
assuming that the radius of the source and its depth are known together with the rheological 
constants p l ,  K and 77, a more careful analysis is necessary. 

A simple expression of the uplift at r = 0 for t ,  t3,  which gives the value of the ground 
level after the deformation process is over, can be written, taking the asymptotic expression 
of (24) and (25): 
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60 

20 

0 
0 1 2 3 4 5 6 7 6  

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/z 

Figure 15. Ground uplift as a function of time obtained from the viscoelastic pressure source model. 
Trapezoidal source histories are employed with t ,  = 7/2, I , =  57 and t ,  = 5.57 (curve A); t 1  = 2.5 7, t ,  = 5 7  

and t, = 67 (curve B); t ,  = 7/2, f l  = 27 and t ,  = 67 (curve C ) ;  t ,  = 7, t ,  = 27 and t ,  = 2.27 (curve D). The 
radius of the source, located at a depth of 3 km, is 1 km. The rheological parameters for the surrounding 
medium are p ,  = 5 XlO’Odyne cm-’, K = y3 p l ,  r) = 10”P. The applied pressures is 100 bar. 

Fig. 15 shows four curves representing the ground uplift as a function of time obtained 
with p1 = 5 x 1 Gl’dyne cm-2, K = 5/3 pl, q = lO”poise, Ape= 100 bar (the radius of the source 
is equal to 1 km), but with different choices of the time values which characterize the source 
history. Curve (A) is obtained with t l  = 7/2, t 2=  57 and t 3 =  5.57; curve (B) has t l  = 2.57, 
t2 = 57 and t3 = 67; curve (C) has t l  = 7/2, r2 = 27 and t3  = 67; curve (D) has t l  = 7, t2 = 27 and 
t 3=  2.27. The first thing to be noted is that the peak representing the maximum uplift is 
sharper if t3  is close to t2, as in curves (A) and (D). The deflation, in this case, is more 
pronounced, being about 10 and 30 per cent in curves (A) and (D), respectively, and only 
about 6 and 2 per cent in curves (B) and ( C ) .  Curve (B) also exhibits a very slow initial 
gradient, due to  the fact that the pressure applied at the source increases with r l  = 2.5. 

The maximum value of the uplift also depends on the combination of t l ,  t2 and t3 ,  once 
VAp,  and the depth of the source are fixed. Among the four cases taken as examples in 
Fig. 15, the smallest uplift is given by curve (D) which has the lowest value of t2:  the vertical 
displacement does not have the time to grow as in the other cases, since the pressure at the 
source begins to decrease after only 27. Curve (A) exhibits the highest maximum uplift, since 
the time t,, during which the applied pressure increases or remains constant, is the longest, 
57. Curves (B) and (A) have the same t 2 ,  but the pressure increase is slower for curve (B), 
since t l  = 2.57, thus allowing a smaller uplift. 

For t l  = 7, f2  = 2.57, t3= 3.57 and Apo= 100 bar a value of 33 cm is obtained from (26), 
which is of the same order as the permanent ground deformation shown in Fig. 1. Fig. 16 
shows the plot of the theoretical curve obtained choosing the parameters t l ,  f 2  and t3equal to 7, 

2Sr ,  3.57 respectively. The theoretical curve is very similar to the trend of the uplift data 
(Fig. I), showing an inflation at a nearly constant strain rate which culminates with a 
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Displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin a half-space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA473 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 1 2 3 4 5 6 7  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 16. Ground uplift as a function of time obtained from the viscoelastic pressure source model and a 
trapezoidal source history with t ,  = T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 2  = 2.57 and t ,  = 3.57. 

maximum and, then, a deflation after which the ground level remains constant. Furthermore, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
with this choice for the parameters, a maximum uplift of about 35 cm occurs with the 
application of a pressure of only 100 bar at the source. This value constitutes a much more 
reasonable estimate than the one obtained from whichever kind of Mogi’s model. 

5.2 SEISMIC A C T I V I T Y  

From the solutions obtained for displacement in the viscoelastic pressure-source model, the 
stress field can be derived and from the analysis of the maximum shear stress information on 
seismic activity can be achieved. 

In this section a trapezoidal source history is employed with tl = 7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt2 = 2.57 and t 3 =  3.57. 
First, we suppose that fracture can start in the medium if the maximum shear stress, u,, 

is larger than the strength, oy . The value of the strength depends upon the material itself and 
its temperature and pressure. The determination of in field rock strength values is still an 
open question in seismology. The study of earthquakes allows one to estimate the stress 
drops produced (typically in the range between 1 and 100 bar), although it does not give any 
piece of information on the absolute values of the initial and final stresses. Laboratory 
experiments on rock specimens suggest strength values much higher than 100 bar. However, 
in situ conditions (pore pressure, fault gauge) should possibly decrease the values measured 
in the experiments (e.g. Kanamori 1980). We assume here that rock strength is constant, 
equal to 20 bar. 

Fig. 17 (a-d) shows a vertical section of the viscoelastic half-space in which the magma 
chamber is embedded (shaded area);r denotes the distance from the surface point above the 
centre of the magma chamber and z the depth. In the figure the isolines of the maximum 
shear stress uM are drawn at different times t = 7/3, 7 / 2 ,  3 r / 2  and 5 ~ / 2 .  The hatched area 
shows the region where the maximum shear stress is larger than the strength and earthquakes 
can occur. It is noteworthy that, since t = 7 / 3 ,  there exists a region - though of limited 
size - within which seismic events may originate: this region grows with the pressure applied 
to the magma chamber surface. The maximum distance from the centre to  which the seismo- 
genic region expands is of the same order as the depth of the magma chamber, as shown in 
Fig. 17c. When the pressure applied to the magma chamber begins to decrease, also the 
stress values in the surrounding medium become lower and the region where uM > uy 
contracts. In Fig. 17(d) we observe that, at t = 5/2 7, the maximum shear stress exceeds u,, 
only in a restricted region around the magma chamber. Since in our stress calculations we 

17 
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-_ - ---- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

t - a / 2  

't - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiar z/31 - 
I 1  5 ,)bar (br 

2 

Figure 17. Isolines of maximum shear stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOM in the medium surrounding the magma chamber (dashed 
half circle) at t = 7/3 (a), t = 7/2 (b), t = 3/2 7 (c), and t = 5/2 7 (d), obtained from the viscoelastic pressure 
source model with a trapezoidal source history (cf. Fig. 16). The hatched areas represent the regions 
where uM is larger than a fixed yield strength o,, = 20 bar, i.e. the seismogenic regions. 

did not subtract the stress drop from the earthquakes which occurred during the inflation of 
the volcanic area, the hatched area in Fig. 17d is possibly larger than the actual seismogenic 
region. Then, we can reasonably assess that volcanic areas can be seismically active during 
the high rate ground uplift phase and that seismic activity stops after the uplift rate starts 
decreasing. Furthermore, the region interested by seismicity extends at most to a distance of 
a few kilometres from the central point. 

In Fig. 18 (a, b) we show principal deviatoric stresses in the medium surrounding the 
magma chamber, at t = r/2, i.e. while the applied pressure increases, and t = "/z r ,  i.e. while 
the applied pressure remains constant. In the figure two components of the principal 
deviatoric stress are shown with their orientations; the third component is normal to the 
figure plane and its absolute value is lower than or intermediate between that of the two 
others. First, we note that stress orientations, and so the earthquake mechanism distribution, 
do not change in time. For this reason, one can expect that during all the time when the area 
is seismically active, normal earthquakes (vertical principal stress maximum) occur in the 
central region, within a distance of the order of the magma chamber radius, and that 
compressive earthquakes occur elsewhere. 

On the basis of our calculations, we then conclude that the seismogenic zone in Campi 
Flegrei extends at a distance of about 2.5 km from the town of Pozzuoli, which is the point 
where the maximum uplift has been measured (shaded and dotted areas in Fig. 19). Within 
this seismically active area, two distinct regions can be recognized, depending on the earth- 
quake mechanism type. In fact, within a distance of about 1.5 km from Pozzuoli, normal 
earthquakes occur, being this zone characterized by a maximum principal stress aligned 
along the vertical axis (shaded area in Fig. 19). On the other hand, in the outer part of the 
seismogenic region, from a distance of about 1.5 to about 2.5 km from Pozzuoli, one expects 
compressive mechanisms for earthquakes (dotted area in Fig. 19). From the maximum shear 
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0 

- z 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

2 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18. Principal deviatoric stress field in the medium surrounding the magma chamber (shaded half 
circle) obtained from the viscoelastic centre of pressure model with a trapezoidal source history zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(cf. 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16). The lighter area represents the region where compressive earthquakes can occur; the darker area 
is the region where tensile earthquakes must be expected. 

/ 
. 

Figure 19. Map of the Campi Flegrei, Italy. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo shaded areas around the town of Pozzuoli represent 
the region where seismic event can be expected, on the basis of our model: in the inner area compressive 
earthquakes can occur, while in the outer area tensile earthquakes must be expected. 
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eruption. Thus, both models are inadequate to represent the deformation in volcanic areas, 
although the introduction of viscoelasticity helps obtaining less unreasonable values for the 
pressure change responsible for the ground displacements. 

On the other hand, in the pressure source model with a Maxwell solid rheology, the beha- 
viour of the solution is different. In fact, the viscoelastic displacement has no finite limit for 
t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, but grows indefinitely in time. The geophysical observable which has to be explained 
by such a model is, then, the uplift rate, rather than the total uplift. The expression of the 
viscoelastic ground uplift, at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 = x2 = x3 = 0 reads (cf 9): 

Differentiation of (27) with respect to t ,  with the substitution of the explicit expressions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P(t)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, ( t ) ,  gives the uplift rate: 

After a transient phase, the uplift rate approaches the constant value: 

A 1 m uplift which occurs in a time 157 at the rate given by (29), requires a pressure change 
Apo of only 100 bar, which is compared favourably with petrological estimates of pressure 
released by differentiation of trachybasalts. 

With the introduction of viscoelasticity the required value of the pressure applied to the 
source surface is reduced by a factor of 10 or more, so that only a few tens of bars may be 
enough to produce the uplift. Furthermore, the behaviour of the ground level as a function 
of time is reproduced in a qualitative way by using a trapezoidal source history, as the 
comparison between Fig. 1 and Figs 15 and 16 shows. 

The larger discrepancy between our theoretical profiles and the data is in the deflation 
phase. In fact, with this model the decrease of the ground level is fast and pronounced (as 
with curves A and D in Fig. 15) or slow but very small (as with curves B and C). 

As concerns the seismicity, on the basis of the results obtained with our model with a 
trapezoidal source history, one can assess that seismic activity can Gnly start after the source 
pressure generates deviatoric stresses higher than a threshold for brittle fracture and should 
stop when the uplift rate decreases. Assuming a yield strength of 20 bar, the seismogenic 
zone extends at most to a distance of the order of the magma chamber depth from the 
maximum uplift point, i.e. about 3 km from the town of Pozzuoli in the case of Campi 
Flegrei. Furthermore, the study of seismic mechanisms from the analysis of principal stresses 
allows one to expect normal fault mechanisms within a distance of the order of the magma 
chamber radius and compressive mechanisms in the outer part of the seismogenic zone (see 
Fig. 19) as observed (De Natale & Zollo 1985). An interesting feature of our model is that 
the region where deviatoric stresses are in excess of rock strength has nearly constant 
extension during the uplift phase, while in a purely elastic medium its extension would 
steadily increase with time, leading to an outward migration of seismic activity which is not 
observed. 

Another mechanism has been suggested to explain ground deformation and seismicity at 
Campi Flegrei, which ascribes the inflation to a variation of pore pressure due to convective 
motion in an aquifer (Oliveri del Castillo & Montagna 1984). However, it is very hard to 
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explain in this way an axysimmetric uplift as observed at Campi Flegrei; furthermore, as 
time elapses, pore-fluid diffusion would increase the width of the uplift profde, which is not 
observed (Fig. 2), and seismic activity should also migrate outward. 

Although the model presented here cannot pretend to reproduce exactly the dynamics of 
Campi Flegrei since many simplifying assumptions have been made (the most crucial being 
the assumption of homogeneity), it solves a number of issues such as the pressure required to 
produce large uplifts, the relation between stress and strain in the area and, furthermore, 
describes approximately the gross features of the inflation episodes, such as the nearly 
constant uplift rate of the central uplift and the final deflation episode. Furthermore the 
predicted seismicity is in good agreement with the observations made during the last uplift 
episode. It is clear that it would be extremely premature at this time to pretend to fit quanti- 
tatively the data by the present model. However, since we believe that the mechanics of the 
problem has been understood in principle, several questions can be now addressed quantita- 
tively resorting to numerical techniques: more realistic source models can be devised in 
which all the available geophysical and geological information can be included. 
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Appendix A 

The displacement components w f r  are calculated from the Galerkin vectors given by 
Maruyama (1964) and following equation (7) in the text. They are given by: 
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480 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Bonafede, M. Dragoniand F. Quareni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 x l ( x 3 - E )  + x l ( x 3 + $ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs5 w33 - 

where 

p = x 3 + E  

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= J x p 2  

R = Jr2 + (x3 - Q2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3K+41.1 1 

P = - - -  
3K+1.1 a 

3K + 41.1 

3P 

- 

a1=-. 

More shortly, the components wik can be written as: 

Wlkk = a1 &c + d l k k  

where 

4n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
with E2 = 0, ( 3  = E.  

The displacement components ail calculated from (8) are given by: 

x: P 
a:1 = 

- - SA +- SB + x1 E 
,,6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n r4 

~ ~ l = - { - S C + - S 1 3 + ~ 2 ~  1 x2 x2x: 

2n r4 r6 

p21 57 
1 D x: 1 P 2  xt 

4r r2 r4 s5 s5 a!1 = - {- +- E + +6(3a -1)- +6(a -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2)- - 3kx;- 

1 xi  xlx; 
sC+---SB+x,T 

2n r4 r6 
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Displacement in a halfspace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA481 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 x2 x: P P 1 

2n r4 r6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA55 57 0i2= - {- SA +- SB+x2( - 15ax:--] t x 2 t 2  I- 9a- +15as]] (A23) 

p21  57 
1 D xi: 1 P 2  xi: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w;2 = - {: +- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE + E 6 (1 - a) - + 6 (3a - 1)- + 6 (a - 2)- - 3&xi - 
4n r r4 I s3 S5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 5  

t t2 [- 601 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP + 3&x; 'I} 
S5 S7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w g 3 = -  1 { - F ' -  x2 x2E 

2n s3 s 

where A ,  B, C, D, E, F, G, I ,  J ,  L, M are polynomials in the variable PIS: 

P P 2  P4 P5 
= (a - 3 t 213) + 6 (1 - 0)- + (513 - 8a)- + (1 3a - 6 - 13)- + 3 (1 - 2a) 7 

S S2 s4 5 

P P 2  P4 P 5  
= 3 (28 -  a)  + 8 (13 - 1) - t 3 (3a - 1 - 28)- + (13 t 8 - 9a)- t 3 (a - 1 ) ~  

S S2 s4 5 

P P 2  P4 P 5  
= (1 - a) + 2 (1 -0)- + (36 - 2 - k)- + (1 la - 4 - 13) - + 3 (1 - 2 ~ ) 7  

S S 2  s4 5 

P P 3  P 5  
= 2 (1 - 8) + 2 (3a - 5 t 213) - + 2 (- 9a + 7 - 13)- + 6 (2a - 1)- 

S s3 55 

P P 3  P 5  
= 4 (8 - 1) + 6 (2 - - 13) - + 2 (6a - 7 t 13) - t 6 (1 - a)  - 

S s3 S5 

P 2  
=(1-&)-3a- 

s2 

P P 3  
=3(&+1)--15a- 

S s3 

P 2  
= ( l - a ) + 3 ( k - l ) -  

S2 
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Appendix B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We call zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd , n ,  and respectively the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, a, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 in which the substitution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp-+P(s) 
has been performed. I t  is noteworthy that the complex variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs in the expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
%jik and zjikk appears only in the coefficients i ~ ,  6, and g, so that the only Laplace inversions 
which are needed are: 

a = L-' [E ( s ) ~  (s) iT (s)] (B1) 

a ,  = L-' 1% (s)Z (s) d1 (s)] 032) 
b =L-' [% (s)g"(s)p"(s)] 033) 

g ,  = L-' [% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s)Z(s)]. (B4) 

(B5) 

M. Bonafede, M. Dragoni and F. Quareni 

The quantities ii$k and CJik in the time domain are then: 

5 
x2x: 

-,S W t - S 9 + x 2 g  
r6 

+ t 2  [ -6a - P + 30ax; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"I} 
S5 s7 
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484 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,t+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M. Bonafede, M. Dragoni and F. Quareni 

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 

: 

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
il zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

I1 

.s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACI 

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa half-space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA485 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where, if X is a generical polynomial given in Appendix A, we have used italics to denote 

s(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= L-' [X(s)l. (B15) 

For a centre of dilation the expressions to be inverted in (Bl) ,  (B2), (B3) and (B4) can be 
written as a function h (s): 

(s-cJ(s - c 2 )  . . . (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS-c,) 

(s - U ' l )  (s - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd,) . . . (s - d,) 

( s - e e ) ( s - e , )  ...( s - e l )  
+ h l  

P ( s )  P l @ )  
h"(s)=:+--- =ho 

q (s) (s -f)" (s - fY  
@16) 

with n < m, I < n and d l  # d ,  # . . . = d,. Their Laplace inverse are given by: 

where q' is the first derivative and p i n  - i )  is the (n - j)-th derivative with respect to s. The 
coefficients are given in Table 1 for the relevant Laplace inversions. 

For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa centre of pressure, the expressions to be inverted in (Bl), (B2), (B3) and (B4) can 
be written, as in (B16), as a polynomial p (s) of degree n divided by a polynomial q (s) of 
degree m > n .  For a SLS rheology the roots dl,  d,, . . .d, of q (s) are different so that the 
Laplace inverse can be written as in (B17) (m, n, ci, di are given in Table B2). However, for a 
Maxwell solid rheology, q f s )  has multiple zeros and the quantity to be inverted can be 
written as: 

(S-C1)(S-C,)  ...( s-cc,) 1 1 1  1 1 
= hl + h ,  * - +h3 - - - + h 3 - + h q -  

(S - d J ( s  - d,) . . . (S - d,) s2 s3 s2 s3 s3 

with n < m and d l  # d ,  # . . . d,. The Laplace inverse of (B18) is then written as: 

rn t2 
exp (d i t )  + h ,H( t )  t h3 t  + h4 - h ( t )  = 1 h ,  

j = l  4 (dj)  2 

The coefficients ci ,  di ,  hi, m and n are given in Table B3. 
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