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Abstract 

Rocking can be used as a seismic isolation strategy for bridges and buildings. Letting a structure uplift works as a 

mechanical fuse and limits the design forces of both the foundation and the superstructure. Interestingly, there is no 

correlation between the rocking oscillator and the elastic one. Therefore, there is not any “equivalent linear system” and 

the elastic spectra are useless when it comes to rocking. Thus, there is no simplified design procedure that a practicing 

engineer could use. In order to create design rocking spectra, the rocking oscillator should be described with the 

simplest possible way and the least necessary parameters. Since Housner’s seminal paper in 1963 the traditional DOF 

chosen to describe the motion of a rocking block has been its tilt angle. This description uncovers that out of two blocks 

with the same slenderness ratio, the larger one is more stable. This tilt-based description is mathematically correct, but 

not optimal. 

This paper shows that the top displacement is a better descriptor of the rocking oscillator, because it uncovers a 

fundamental property useful for design: As long as the blocks are not close to overturning, the top displacements of a 

large and a small block of the same slenderness are going to be roughly equal. This property is proven for both 

analytical pulses and for recorded ground motions. In mathematical terms, the displacement demand on a rocking block 

is a unary function of its slenderness angle. In practical terms, this means that the displacement demand of any block 

can be computed by the displacement of a block of the same slenderness, yet very large size – likewise the displacement 

demand of a yielding oscillator can be computed based on the displacement of an equivalent linear system. Thus, the 

rocking-related seismic hazard can be computed by much simpler rocking spectra. 

As an example, the proposed method is applied for the preliminary design of a rocking frame having the dimensions of 

a typical overpass bridge. 

Keywords: rocking; uplifting structures; dimensional analysis; dimensionality reduction; displacement-based design 
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1. Introduction 

The systematic study of the rocking oscillator started with Housner’s seminal paper in 1963 [1]. Since then, 

it has attracted the interest of many researchers either studying it from a theoretical perspective [2-12] or 

focusing on using rocking as a seismic isolation technique for bridges [13-24] or buildings [25-28], and on 

understanding the response of equipment [29-35], ancient temples [36-39], and of masonry walls [40-46]. 

Unlike the archetype elastic oscillator, which is traditionally described in terms of displacements, the 

rocking one is usually described in terms of rotations. This emerges naturally as it facilitates the algebraic 

manipulations to derive the equation of motion. This approach is, of course, mathematically correct. This 

paper suggests that using displacements instead of rotations to describe the rocking block is physically more 

meaningful and it simplifies the problem because it reduces its dimension. 

2.  Rotation based dimensional analysis of the rocking oscillator 

The equation of in-plane motion for a rigid rectangular rocking column with slenderness α and a semi-

diagonal of length R (Fig. 1) is:  

 [ ] [ ]2 sin cos
gu

p
g

θ α θ α θ
 

= − ⋅ ± − + ± − 
 

    (1) 

where  

 (3 ) / (4 )p g R=   (2) 

 is the frequency parameter of the rocking column. The upper sign in front of α corresponds to a positive, and 

the lower to a negative rocking angle θ with respect to the defined coordinate system (Fig. 1). 

It is assumed that energy is only dissipated during impact. Under Housner’s assumptions [1] the ratio 

of post to pre impact rotational velocities is 

 23
1 sin

2
r α= −   (3) 

By inspecting Eq. (1) and (2) one can conclude that the rotational response of a rocking block to a 

ground motion is a function of 

  ( )( )max 1 , , , gf R g ü tθ α=   (4) 

As the gravity acceleration, g, is constant, the rotational response to a given ground motion is a 

function of 2 parameters α and R, likewise for the elastic oscillator the response is a function of the 

eigenperiod, T, and damping ratio ζ. Therefore, keeping one parameter constant (R or α) one can construct 

rotational spectra for rocking structures. However, unlike the elastic oscillator, where for ordinary structures 

one parameter (T) is more influential than the other (ζ), in the case of rocking structures, both R and α 

strongly influence the rotational response. 

Since ground motions containing distinguishable acceleration and/or velocity pulses are particularly 

destructive, Zhang and Makris [47] have studied the response of a planar rocking block to acceleration pulses 

given by analytical expressions. A pulse of a given waveform can be described by two parameters. Zhang 

and Makris [47] chose the acceleration amplitude ap and the dominant cyclic frequency ωp. Then, the 

response will be a function of 
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 ( )max 2 , , , ,p pf R g aθ α ω=   (5) 

Eq. (5) involves 6 quantities with 2 reference dimensions (Time and Length). Therefore, according to 

Buckingham’s Π-Theorem of Dimensional Analysis [48], the number of dimensionless parameters 

describing the problem is 6 – 2 = 4. There is not a unique solution on how these four parameters can be 

chosen. Zhang and Makris [47] and subsequently Dimitrakopoulos and DeJong [49] suggested to describe 

the problem as 

 max 1 , ,
tan

p pa

p g

ω
θ ϕ α

α
 

=  
 

  (6) 

Therefore, dimensional analysis has succeeded to reduce the dimensionality of the problem from 6 to 

4. Hence, by keeping the slenderness parameter α constant, one can produce contour plots of the maximum 

tilt angle θ as a function of ωp/p and ap/gtanα, the so called “rocking spectra”. Fig. 2 shows the rocking 

spectra of symmetric and antisymmetric Ricker wavelets. Ricker wavelets are defined as the 2nd and 3rd 

derivative of the Gaussian [50]. 

The spectra confirm the remarkable observation that larger structures are harder to overturn 

dynamically and that higher frequency pulses have a lower overturning potential. Interestingly, they show a 

heavy dependence of the response to both ωp/p and ap/gtanα. 

 

Fig. 1 –  Geometric characteristics of the rigid rocking block 

 

Fig. 2 – Non-dimensional rocking spectra based on rotations. α = 0.1 
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3. Displacement based dimensional analysis of the rocking oscillator 

The dimensional analysis in the previous section is one of the many correct solutions to describe the 

problem. It is based on rotations. This section suggests that there is an alternative, displacement based basis 

of describing the problem, which is also mathematically correct and more convenient. The convenience does 

not lie only in the fact that earthquake engineers are more used to displacements than rotations: A 

displacement based analysis further reduces the dimensionality of the problem allowing the construction of 

2D overturning spectra. 

Indeed, the rotation based analysis of the problem is based on the “recipe for similarity analysis” 

described in Chapter 5 of the well-known Dimensional Analysis textbook of  G. I. Barenblatt [51]: “If the 

problem has an explicit mathematical formulation, the independent variables in the problem and the 

constant parameters that appear in the equations, boundary conditions and initial conditions, etc., are 

adopted as the governing parameters.” However, as this section shows, choosing the parameters that appear 

in the analytical equation might not be the most convenient way of describing this particular problem. 

The top displacement of the rocking block can be obtained by a one-to-one mapping of the rotations: 

 ( ) ( )2 sin 2 sinu R Rα α θ= ± − ± −  (7) 

The upper sign in front of α corresponds to a positive, and the lower sign to a negative tilt angle θ with 

respect to the defined coordinate system. 

If we use the top displacement as the single DOF of the problem, then the maximum response can be 

described as: 

 ( )max 3 , , , ,p pu f R g aα ω=   (8) 

To numerically compute the response of the block, we will resort to Eq. (1), which is given in terms of 

rotation θ. Then, using Eq. (7) we compute the displacement response. 

Applying Buckingham’s Π-theorem on Eq. (8), one possible non-dimensionalization is  

 

2

max

2 , ,
tan

p p p

p

u a

a p g

ω ω
ϕ α

α
 

=  
 

  (9) 

Fig. 3 shows the contour plots of 

2

max p

p

u

a

ω
as a function of 

p

p

ω
and 

tan

pa

g α
for a given  α = 0.1. The 

remarkable observation is that within the non-overturning region the non-dimensional displacement depends 

heavily on the non-dimensional strength  
tan

pa

g α
, but only loosely on the size-frequency parameter 

p

p

ω
. 

When the block is not close to overturning, the influence of 
p

p

ω
is practically negligible. 
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Fig. 4 plots 

2

max p

p

u

a

ω
 as a function of 

tan

pa

g α
 for different values of 

p

p

ω
 (and a constant slenderness α 

= 0.1). Fig. 5 plots 

2

max p

p

u

a

ω
as a function of 

p

p

ω
 for different values of 

tan

pa

g α
 (and slenderness α = 0.1). 

Again, it is observed that the dominant factor that influences 

2

max p

p

u

a

ω
 is 

tan

pa

g α
; not 

p

p

ω
. 

In other words, a small and a large block, geometrically similar to each other, will have roughly equal 

top displacement, provided that the displacement is not enough to bring them close to overturn. A given 

earthquake will induce the same displacement demand. The larger block is more stable simply because its 

displacement capacity (i.e. the displacement needed to cause overturn, i.e. its width) is larger. 

Therefore, using a displacement basis to describe the problem further decreases the number of 

parameters needed to define it. Practically, the displacement demand on a rocking oscillator is only a 

function of its non-dimensional strength
tan

pa

g α
; not of its size. 

Going back to dimensional quantities, Fig. 6 plots the displacement response to a symmetric Ricker 

pulse with ap = 1g and Tp = 0.5s and to an antisymmetric Ricker pulse with ap = 1g and Tp = 1s. The plots 

confirm that the displacement demand only loosely depends on the size. The dominant factor is the 

slenderness. Therefore we can define the displacement demand rocking spectrum of a ground motion as a 

unary function  

 ( )demandu f α=  (10) 

that is computed via Eq. (1) and (7) for a large enough block size. To check the stability of a block, one has 

to compute the maximum displacement demand via Eq. (10) and compare it with the displacement capacity 

(i.e. the block width). 

Therefore, the reduction of the dimension of the problem follows two steps: a) Applying 

Buckingham’s theorem and b) Observing that the displacement demand is roughly independent of the size. 

The first step is exact and follows from dimensional analysis. The second step is approximate and in this 

section illustrated for analytical pulses. Blöchlinger [52] gives a first indication, that the approximation also 

works for recorded ground motions. Further evidence supporting this approximation and highlighting its 

limitations are given in a next section of this paper. 

4. Displacement based analysis of a rocking oscillator excited by recorded ground 

motions 

Analytical pulses can be used to qualitatively study the rocking oscillator. However, as the rocking problem 

is very sensitive to all of its parameters, pulses would not suffice to prove that the displacement demand on a 

rocking structure depends only on its slenderness and not on its size. Therefore, this section examines the 

displacement response of a rocking block excited by recorded ground motions. 

 

4.1 FEMA P695 Ground motions 

There is no consensus in the engineering community on what ground motions should be used in time history 

analysis. Several approaches exist including using recorded (scaled or unscaled), artificial, or synthetic 

ground motions. In this paper we choose to use the 3 sets of ground motions proposed by FEMA P695 [53] 

(far field, near field pulse-like, and near field non-pulse-like) only as a means to illustrate our rocking-related 

argument, without taking stance on the debate around ground motions. It is evident that any ground motion 
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Fig. 3 – Displacement based non-dimensional rocking spectra. α = 0.1 

 

Fig. 4 – 
2

max p

p

u

a

ω
vs tan

pa

g α plots for constant p

p

ω
. α = 0.1. 

 

Fig. 5 –
2

max p

p

u

a

ω
vs p

p

ω
plots for constant tan

pa

g α . α = 0.1. 

 

Fig. 6 – Maximum displacement vs block size for Symmetric and Anti-Symmetric Ricker excitation. 
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selection method based on the response of an elastic system is in principle not applicable in the case of the 

rocking oscillator, as the elastic and rocking oscillator are uncorrelated. More information on the FEMA 

P695 ground motions can be found in FEMA [53]. 

 

4.2 Equal displacement rule for rocking structures and displacement demand spectra 

Vassiliou et al. [54] have proven that rigid rocking oscillators of equal height attached to massless 

foundations of the same size behave identically, no matter what their actual column width is (Fig. 7). 

Therefore, the design question of a rocking structure would be: Find the size, 2B’, of the foundation for a 

given oscillator height 2H. Hence, it is more meaningful to use H as a size parameter instead of R, even if the 

former does not explicitly appear in the equation of motion. 

Fig. 8 (a-c) offers the displacement of a rocking oscillator as function of its slenderness α, and for 

2H=2, 4, 10, 20, 80, and 1000m, for a selection of the FEMA P695 ground motions. The 2H=1000m is 

offered only for reasons of mathematical completeness, to study the limit case of H →∞ . For reasons of plot 

clarity, each line is plotted only for α > αcrit, where αcrit is the minimum slenderness angle for which the block 

overturns. We observe that all blocks of same slenderness angle present roughly the same displacement, as 

long as they are not close to overturning. The same observation holds for all the ground motions of FEMA 

P695.  

As analysis and design of a rocking structure would not involve a single ground motion, but a set of 

design motions, it makes sense to study the problem by applying sets of multiple excitations and comparing 

the statistics of the results [10] (e.g. the median displacement among all the ground motions of the excitation 

set).  To this end, this paper examines the spectra of the median of the  displacement for 7 variations of the 

near-field pulse-like FEMA P695 set: a) Unscaled ground motions, b) scaled so that their PGA is equal 

to 0.5PGA , or PGA , or 2PGA , c) scaled so that their PGV is equal to 0.5PGV , or PGV , or 2PGV , where 

PGA , PGV  are defined as 

 ( )
1... x yi i

i N
PGA median PGA PGA

=
= ×   (16) 

 ( )
1... x yi i

i N
PGV median PGV PGV

=
= ×   (17) 

where N is the number of the ground motions and x and y are the two components of each ground motion. 

Note that each horizontal component of each ground motion is treated as an independent motion. Fig. 8 (d-i) 

plots the spectra for some of the above cases: Ground motions scaled so that their PGA is equal to PGA  (d-f) 

and scaled so that their PGV is equal to PGV (g-i). The rest of the scaling combinations can be found in 

[50]. 

The following observations can be made: 

a) The median spectra are smoother, likewise design elastic spectra that were derived by statistical 

processing of elastic spectra of single ground motions are smoother than single ground motion 

spectra 

 
Fig. 7 –  Rocking oscillators of equal height 
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b) As long as the system is not close to overturning, the displacement does not depend on the size of 

the block. For this part of the spectrum, instead of computing a different spectrum for each block 

size, one can compute the design spectrum for 2H →∞  (2H = 1000m seems an adequate value) 

and use it to calculate the displacement demand on any rocking structure (i.e. umax=f(α)). We name 

the above finding “equal displacement rule” for rocking structures. 

c) As the system gets closer to overturning the equal displacement rule does not apply: smaller 

systems present larger displacements than larger ones. Moreover, as the system approaches 

overturning, the slope of the spectrum increases dramatically i.e. a small decrease in tanα leads to 

very large increase in displacement. This trend dictates that a rational design of a rocking structure 

would require that this steep part of the spectrum be avoided, because an earthquake slightly 

stronger than the design one would cause a tremendous increase in displacement. Therefore, the 

equal displacement rule applies to the rational design region. 

d) The form of the spectrum for all 3 sets of ground motions presents some repetitive pattern: 

i. As α tends to zero, umax tends to a finite value. For spectra of individual ground motions, this 

value is 3
2 PGD .  

ii. As α increases from zero, the displacement demand amplifies 2-2.5 times and reaches a 

plateau. 

iii. Further increase of α leads to a monotonic decrease of the displacement demand. 

iv. Naturally, when tanα reaches PGA/g, the displacement demand becomes zero, as there is no 

uplift. 

 

4.3 Preliminary design based on the equal displacement rule 

If not for a final design, the equal displacement rule can be used for preliminary calculations. Indeed, it is not 

an exact method, but a preliminary design method that does not aim at being exact, but at providing a tool for 

initial calculations, that for certain cases and required degree of accuracy can be enough. The same holds for 

yielding structures, where the “equal displacement rule” is used for many structural systems, while for more 

complicated systems it is used only for preliminary design and then more refined methods are applied. It 

could be stated that the findings of this paper constitute the generalization of equal displacement rule from 

yielding to rocking systems. This section proposes a methodology to design a rocking structure based on the 

equal displacement rule: 

a) On the umax – tanα curve, we plot the capacity line uC = 2Htanα. 

b) We determine the intersection of the capacity line and the 2H = ∞ line. We define the abscissa of this 
point as tanαk. 

c) We use a multiplier of 2.5 to determine the design slenderness: tanαD = 2.5tanαk. The multiplier serves 

as a safety factor to move the design point away from the steep part of the spectrum. 

Fig. 9 outlines the design procedure applied for a rocking bridge with columns of 6.7m height (2H = 

6.7m). Based on Makris and Vassiliou [13] the response of the frame is equal to the response of a solitary 

block of 2H = 10m. For this bridge, 21 design scenarios are explored, corresponding to the different scaling 

of the ground motions described in section 4.2. Fig. 10 summarizes the findings for the 21 design scenarios 

and compare the displacement predicted by the demand spectrum (2H = 1000m) to the displacement 

predicted by the 2H=10m spectrum. We observe that in all but two cases (near fault pulse-like scaled to 

0.5PGA  and near fault non-pulse-like scaled to 2PGA ) the error in predicting the median displacement is 

less than 20%. In all cases, the error is smaller than 40%, and no system overturned. 
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Fig. 8 – Displacement of a rocking oscillator as function of its slenderness α (a-c); Median Displacement 

Spectra (d-i) 

5. Conclusions 

The widely used description of the rocking block via its rotation is correct, but not optimal. It reveals that 

larger blocks are more stable and that higher frequency pulses present less overturning potential. However, it 

does not reveal the “equal displacement rule of rocking structures”, namely that a large and a small block of 

the same aspect ratio will present the same top displacement, if they both are not close to overturning. Not 

being close to overturning is a design necessity anyway, therefore, for the scope of design, we can claim that 

the displacement demand is the same and it only depends on the slenderness, not on the size of the block. 

The above is illustrated for both analytical pulse excitations and for sets of recorded ground motions. Based 

on the above, a design method that uses a size-independent rocking spectrum is suggested. This should be 

taken into account when intensity measures for rocking structures [55-58] designed not to get close to 

overturning  are explored. 
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Fig. 9 – Design procedure 

 

 
Fig. 10 – Comparison of the displacement response at the design point. Predictions based on the 2H=1000m 

and on the 2H=10m spectra.  
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