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Abstract

Many applications are based on the use of materials with heterogeneous

microstructure. Prominent examples are fiber-reinforced composites, multi-phase

steels or soft tissue to name only a few. The modeling of structures composed of such

materials is suitably carried out at different scales. At the micro scale, the detailed

microstructure is taken into account, whereas the modeling at the macro scale serves

to include sophisticated structural geometries with complex boundary conditions. The

procedure is crucially based on an intelligent bridging between the scales. One of the

methods derived for this purpose is the meanwhile well established FE2 method which,

however, leads to a very high computational effort. Unfortunately, this impedes the use

of the FE2 method and similar methodologies for practically relevant problems as they

occur e.g. in production or medical technology. The goal of the present paper is to

significantly improve computational efficiency by using model reduction. The

suggested procedure is very generally applicable. It holds for large deformations as well

as for all relevant types of inelasticity. An important merit of the work is the

computation of the consistent tangent operator based on the reduced stiffness matrix

of the microstructure. In this way a very fast (in most cases quadratic) convergence

within the Newton iteration at macro level is achieved.
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Background

Many applications are based on the use of materials with heterogeneous microstructure.

Prominent examples are fiber-reinforced composites, multi-phase steels or soft tissue

to name only a few. The modeling of structures composed of such materials is suitably

carried out at different scales. At the micro scale, the detailed microstructure is taken into

account,whereas themodeling at themacro scale serves to include sophisticated structural

geometries with complex boundary conditions. The procedure is crucially based on an

intelligent bridging between the scales. This challenge, commonly denoted as multiscale

modeling, has been in the center of international research for several years.

Among the methods which have been established for this purpose are the so-called FE2

method (see e.g [1,2]) and the multiscale LATIN method (see e.g. [3,4]). A disadvantage
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of the FE2 method is the relatively high computational effort. The main reason for that

is the fact that in every evaluation point of the macroscopic structure a boundary value

problem has to be solved. This impedes the use of FE2 for practically relevant problems

as they occur e.g. in production or medical technology.

In the recent years, several methodologies have been developed to overcome this prob-

lem.One possibility is to take advantage of parallel computing e.g. like Feyel andChaboche

[1]. Another approach is to work with very efficient semi-analytical methods at the micro

scale, for example, the generalized method of cells (GMC). This method has been devel-

oped, extended and widely used in the field of composites by Aboudi [5], Aboudi and

Arnold [6]. In the GMC, the underlying repeating composite unit cell is discretized into

sub-cells and the microscopic field equations of each sub-cell are explicitly coupled with

the macroscopic constitutive equations without using finite elements. Michel and Suquet

[7] embed the so-called nonuniform transformation field analysis (NTFA), introduced by

the same authors in [8] and based on the early work of Dvorak and Benveniste [9], into

a macroscopic finite element analysis for elastoplastic behavior with nonlinear isotropic

hardening. The idea of the method is to create an effective constitutive relation for the

nonlinear microstructure based on a reduced number of internal variables with inelastic

modes to be defined by precomputed inelastic strain fields. Themethod is steadily further

developed. Fritzen and Böhlke [10] show that the reduced basis order-reduction tech-

niques applied in the NTFA can be very much improved by micromechanical considera-

tions. Theirmethod captures the anisotropic transient response of viscoelastic composites

with a high gain in CPU time effort. Using a mixed variational framework, Fritzen and

Leuschner [11] extend the previous concept to generalized standard materials. Further,

consistency of the method is improved in the sense that an increasing number of basis

functions leads to a monotonic increase of accuracy. In a very recent paper, Fritzen et al.

[12] raise the speed-up of the method enormously by incorporating a parallel GPU imple-

mentation. The homogenization method of Fritzen and Leuschner [11] is additionally

extended by nonuniform hardening modes which can account for locally varying harden-

ing states. Largenton et al. [13] investigate several versions of the NTFA and apply their

method to viscoelastic composites in the presence of aging and swelling. Another variant

of the transformation field analysis is found in the paper of Oskay and Fish [14] and the

follow-up work of Sparks and Oskay [15], where the evolution of failure is modeled by

means of the eigen deformation.

Among the most common strategies to achieve model reduction in general are reduced

basis (RB), proper orthogonal decomposition (POD) and proper generalized decomposi-

tion (PGD) techniques.Whereas the NTFA is either combined with RB, POD or mixtures

of the two, there is a small group of authors who manage to incorporate the PGD into a

multiscale framework. A good overview of the PGD is given by Chinesta et al. [16]. The

procedure presented in Ladeveze et al. [17] is crucially based on the LATINmethodwhich

splits the entire problem into amacro problemdefinedover thewhole structure and coarse

sub-intervals which are treated along with linear micro problems. The PGD is applied on

the latter which results into significant computational savings. In Ladeveze et al. [17] a

viscoelastic fiber-reinforced structure is investigated. In a recent paper (Cremonesi et al.

[18]), the method has been further refined by the derivation of the so-called homogenized

operator and the extension of the PGD representation to the interface macro displace-

ments. The, according to the knowledge of the authors, only combination of the FE2
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method with PGD is found in Halabi et al. [19], where a two-dimensional linear-elastic

structure of simple geometry is investigated. Both the reduction in CPU time effort as well

as the accuracy of the results show the high potential of this method.

Oneof thefirst papers ona “reduced”multiscalemethodology involves the reduced-basis

approach but is restricted to linear elasticity [20]. The very interesting question of error

estimation has been investigated by Kerfriden et al. [21] in the context of projection-based

reduced order modeling. By means of the derivation of upper and lower error bounds, the

authors enable adaptive computations of random linear-elastic composites. The coupling

of a reduced basis method to multiscale finite element methods for elliptic problems with

highly oscillating coefficients can be found in Hesthaven et al. [22]. A finite element-based

heterogeneousmultiscalemethod applied to crack domains has been published inAbdulle

and Bai [23].

Concerning nonlinear constitutive modeling, the work of Goury et al. [24] should be

mentioned, where a FE2 framework with damage is set up and the representative volume

element (RVE) ismodeled byPOD.The investigation is restricted to aRVEwith prescribed

macroscopic strains. Highly interesting is the incorporation of the gappy method which

allows to evaluate the internal force vector in only a small set of points of the structure.

The selection of the points (“controlled” elements) is performed by means of the discrete

empirical interpolation method. The example shows that—as expected—the maximum

damage values are found between the inclusions. These are also the regions where the

controlled elements are placed. A further development of the so-called gappy POD is

found in the paper of Miled et al. [25] who couple the approach with the a priori hyperre-

duction method of Ryckelynck [26] to come to adaptive strategies for the computation of

viscoelastic-viscoplastic composites. Closely related to hyperreduction is the method of

empirical interpolation used by Hernandez et al. [27]. The latter authors apply POD at the

level of their RVEwhich is assumed to behave elasto-plastically. An importantmerit of the

paper is the development of a new interpolatory integrationmethod which overcomes the

well-known problem of ill-posedness when replacing the non-affine term only by POD

terms. In the work of Monteiro et al. [28] nonlinearly electrical as well as nonlinearly

thermal transient conduction problems are solved bymeans of a POD-reducedmultiscale

approach.

According to the knowledge of the authors there are hardly any contributions, where

reduced multiscale modeling is applied to hyperelastic solids undergoing large deforma-

tion. In this context, it is important to mention the work of Yvonnet and He [29], who

combine the FE2 methodwith PODat themicro scale. Themethod shows very convincing

results, whereby the reduction in CPU time effort leaves room for improvements. One

reason for that could be the missing “analytical” (consistent) tangent which is replaced

by a numerical tangent. Obviously, the computation of the latter is elaborate and leads

to additional numerical effort. Very interesting is also the work of Xia and Breitkopf [30],

where POD (at RVE level) and diffuse approximation techniques are combined to arrive

at structural topology optimization of nonlinearly elastic structures. In order to cope with

this challenging problem, the linearized strain measure is used throughout the paper.

The present work follows the line suggested by Yvonnet and He [29]. In the first part

of the paper, the FE2 method is presented in its standard format using periodic boundary

conditions at the micro scale (not considered by Yvonnet and He [29]). The derivation

incorporates large deformations, inelasticity as well as the formulation of the consistent
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tangent to achieve approximately quadratic convergence in the Newton–Raphson iter-

ation at the macro scale. In the second step, model reduction, more specifically POD,

is brought into play which means to split the multiscale simulation into an offline and

an online procedure. In the offline step, the so-called representative volume element or

unit cell is subjected to nine characteristic deformation states additionally varied over

time in order to compute a physically meaningful projection subspace. The latter is then

used in the online step to significantly reduce the dimension of the equation system to

be solved at the micro level. The work is crucially based on using the FE2 interface of the

finite element solver FEAP [31]. In this way, a very general multiscale solver is created. An

important contribution of the work is the consistent tangent operator which is modified

to incorporate the process of model reduction. The example computations performed in

the third part of the paper show that speed-ups of two orders ofmagnitude can be reached.

Very good results with negligible deviations from the reference simulation are achieved

by means of only a small number of modes.

POD-based reducedmultiscale method

Classical multiscale approach based on finite elements (FE2)

Before presenting the reduced multiscale approach, attention is devoted to the classical

first-order computational homogenization scheme. For detailed information please refer

to e.g. Feyel [32], Kouznetsova [33], Miehe and Koch [34] and Geers et al. [2]. The local

macroscopic constitutive response—for example given in termsof the first Piola-Kirchhoff

stress tensor PM in dependence of the macroscopic deformation gradient FM—is derived

from the solution of a micro-structural boundary value problem in every evaluation point

of the macroscopic structure. Speaking of FE2 means that the spatial discretization at

both scales is performed by means of finite elements. The volume to be considered at

micro level should represent the usually heterogeneous microstructure sufficiently well.

If this is the case, for a clear definition see the work of e.g. Kanit et al. [35], one speaks

of a representative volume element (RVE). In the present work, we assume that a RVE

is available. However, the present multiscale approach could be equally applied, if the

conditions for the presence of a RVE were not fulfilled. Certainly then, the meaning of the

results would have to be discussed with care.

In the following the three steps—macro-to-micro scale transition, solution of RVE

boundary value problem, micro-to-macro scale transition—are briefly summarized.

Macro-to-micro scale transition

Themacroscopic deformation gradient FM which varies frompoint to point of themacro-

scopic structure is used to define the boundary conditions of the corresponding RVE

problem:

x = FM X + w. (1)

In the latter relation (restricted to first order homogenization), x andX denote the position

vectors of a material point in the current and the reference configuration, respectively.

The vector w represents the so-called micro-fluctuation field imposed on the otherwise

homogeneous deformation FM X. The boundary conditions of the RVE can generally be

derived from prescribed displacements, prescribed tractions or prescribed periodicity.
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Periodic boundary conditions lead to more realistic modeling of the multiscale behavior

which has been confirmed by several authors (see e.g. [36–38]). The periodicity conditions

for the RVE are formulated as periodic displacements

u+ − u− = (FM − I) (X+ − X−) (2)

and anti-periodic tractions

T+ = −T−. (3)

The superscripts + and − correspond to opposite boundary surfaces ∂+ and ∂−. Using

such boundary conditions the volume average theorem

FM =
1

V0

∫

V0

Fm dV0 (4)

for the microscopic deformation gradient Fm is automatically fulfilled (see e.g. [33] for a

detailed derivation).

Solution of RVE boundary value problem

The RVE problem at the micro scale is a standard nonlinear quasi-static boundary value

problem which requires to fulfill the balance of linear momentum

div Pm = 0. (5)

In the latter equation, dead load and inertia are neglected. Further, the tensor Pm repre-

sents the microscopic first Piola-Kirchhoff stress tensor. Pm is computed by means of the

constitutive laws specifying the mechanical behavior for each micro-structural material

constituent. FE2 and also the reduced FE2 approach presented in the next Section are in

general applicable for arbitrary material laws. In the present paper, we concentrate our-

selves on hyperelastic as well as elastoplastic material behavior. Thus, the stress tensorPm

is a function of the deformation gradient Fm as well as R internal variables Qr (covering

the elastoplastic behavior):

Pm = f (Fm, Qr) r ∈ [1, . . . , R]. (6)

The internal variables are determined by evolution equations of type Q̇r = g(Fm, Qr) or

Q̇r = g(Fm, Qr , Q̇r) if rate-independent material behavior is considered.

Using a displacement-based finite element discretization, the following general nonlin-

ear vector equation has to be solved:

G(Ū) = R(Ū) − L (Ū) = 0. (7)

In the latter relation, Ū denotes the vector of all nodal displacements, R(Ū) includes

the internal forces and L (Ū) the boundary forces. The boundary forces are here nodal

reactions resulting from the prescribed displacement values at the boundary (periodic

boundary conditions). It is assumed that the internal variables Qr (r = 1, . . . , R) are

already determined at each Gauss point of the RVE. In this way, they can be seen as

implicit functions of Ū and do not show up as independent variables in (7).
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The size of the equation system is the total number n̄ of degrees-of-freedom of the RVE.

The linearization of the nonlinear system (7) can be written as

G(Ūj) + Kj �Ūj+1 = 0,

Ūj+1 = Ūj + �Ūj+1 (8)

with the nonlinear stiffness matrix Kj = ∂G/∂Ū|Ūj . In case of prescribed periodicity, the

displacements of nodes on opposite RVE edges are assumed to be equal. For this reason,

the nodal displacement vector Ū is split into a part Ud which contains the nd dependent

degrees-of-freedom and a second part Ui where the n independent degrees-of-freedom

are stored:

Ū =

[
Ud

Ui

]
. (9)

The two parts are connected by the constant matrix C leading to the relation Ud = CUi.

Thus, the vector Ud can be eliminated from the system by means of condensation. One

finally obtains the following linearized system for the n independent degrees-of-freedom

included in Ui:

G̃j + K̃j �U
j+1
i = 0,

U
j+1
i = U

j
i + �U

j+1
i . (10)

The n × n dimensional stiffness matrix K̃j is defined by K̃j = K
j
ii + K

j

id
C + CT K

j

di
+

CT K
j

dd
C and the n×1 vector G̃j by G̃j =Gi(Ū

j)+CT Gd(Ū
j), resulting from the decom-

position (9). Note thatK
j

id
is the sub-matrix ofKj which contains the elements (K j)ab with

the indices a, b running according to a = nd + 1, . . . , n̄ and b = 1, . . . , nd , respectively.

The other quantities in the equations for K̃j and G̃j are determined analogously.

Furthermore, the displacement vector Ui is split into

Ui =

[
Ub

Uf

]
. (11)

Thenb×1vectorUb contains theprescribednodal displacements at the specifiedboundary

nodes, whereas the unknown nodal displacements of the remaining nodes are described

by the nf × 1 vector Uf . Note that the sum of nb and nf is equal to n (n = nb + nf ). The

linearization (10) including the decomposition of the displacement components into Ub

and Uf (11) is written as

[
Kbb Kbf

Kfb Kff

]j

︸ ︷︷ ︸
K̃j

[
�Ub

�Uf

]j+1

= −

[
Gb

Gf

]j

︸ ︷︷ ︸
G̃j

. (12)

The displacements at the boundary are prescribed so that �Ub vanishes in the iterative

solution process. On the right hand side, Gf can be expressed by

Gf = Rf − Lf , (13)
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where Lf is zero, because reaction forces only occur at the boundaries. Solving (12) for

the unknown displacement vector Uf leads to the following iterative solution algorithm

at the micro scale:

K
j

ff
�U

j+1
f

= −R
j

f
,

U
j+1
f

= U
j

f
+ �U

j+1
f

,

||R
j+1
f

|| ≤ tol,

j ← j + 1. (14)

Micro-to-macro scale transition

Upon the solution of the RVE problem, the macroscopic stress tensor PM is obtained

by computing the volume average of the micro-structural stress field Pm. In addition, to

achieve quadratic convergence at the macro level, the correct macroscopic tangentCM in

�PM = CM : �FM is needed. Note that CM includes in general geometric and material

parts (see e.g. [39]).

For the derivation of the tangent the macroscopic stress tensor PM is expressed as the

volume average

PM =
1

V0

∫

V0

Pm dV0 =
1

V0

∫

B

T ⊗ X dB (15)

of the microscopic stress tensor Pm, where T is the stress vector defined by Cauchy’s

lemmaT = PN (N outward unit normal vectorwith respect to the surface of the reference

configuration). Here, it is exploited that firstly the volume integral (15) can be reduced to

a integral over the boundary B by using the divergence theorem and, secondly, that the

divergence of Pm vanishes in the micro-structural equilibrium. For a detailed derivation

of this step, we refer to Kouznetsova et al. [38] and Kouznetsova [33]. In the case of a finite

element discretization of the RVE, the boundary integral in Eq. (15) is computed as sum

of the products of the 3 × 1 nodal reaction vector LA
b
and the 3 × 1 position vector XA at

the Nb prescribed boundary nodes A ∈ [1, Nb]:

(PM)nm =
1

V0

Nb∑

A=1

(Lb)
A
n XA

m. (16)

To extract the macroscopic tangentCM based on the RVE solution, we follow the scheme

presented by Kouznetsova [33] and Kouznetsova et al. [38]. Using the latter relation, we

can state

(�PM)nm =
1

V0

Nb∑

A=1

(�Lb)
A
n XA

m. (17)

The next task is to obtain (�Lb)
A
n . At the end of the Newton iteration at the micro level,

the relation Gf = 0 holds. Thus, at this stage the increment �Uf is simply given by

�Uf = −K−1
ff

Kfb �Ub. (18)
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Further, Gb = 0 must be fulfilled resulting into �Gb = �Rb − �Lb = 0 and conse-

quently �Lb = �Rb. Exploiting (18) lets us finally write

�Lb = �Rb = (Kbb − Kbf K
−1
ff

Kfb)�Ub = K⋆ �Ub, (19)

whereK⋆ has the dimension nb ×nb. The latter equation provides a relation between�Lb

and �Ub. Due to periodicity, the increment �UB
b
is given at each node B by the relation

�UB
b = �FM XB. (20)

It remains to fill this information into (17) which leads to

(�PM)nm =
1

V0

Nb∑

A=1

(�Lb)
A
n XA

m

=
1

V0

Nb∑

A=1

Nb∑

B=1

(K ⋆)ABnx XA
m XB

y

︸ ︷︷ ︸
(CM)nmxy

(�FM)xy. (21)

Index notation is used for the sake of better readability. The summation over lower-case

letters is defined by Einstein’s summation convention. It should be emphasized that the

presented FE2 concept is generally valid for large strain inelasticity. The microscopic

consistent tangent tensorCm in�Pm = Cm : �Fm is hidden in the matrixK⋆. Obviously,

quadratic convergence at the macro level can only be achieved if Cm as well as CM are

correctly computed.

POD-based multiscale method (FEPOD)

The ideaof theproposedPOD-basedmultiscale approach is to couple aPOD-reducedRVE

simulation at the micro scale to a finite element computation (without any reduction) at

the macro scale. Therefore, in each evaluation point of the macroscopic system, a reduced

RVE computation is performed to define the current stress state instead of a standard

finite element computation as in the classical approach.

Themacro-to-micro scale transition as explained above canbeusedwithout any changes

for the reduced approach. In contrast, the RVE problem as well as the macro-to-micro

scale transition differ from the classical approach.

Solution of reduced RVE boundary value problem

The computation is split as usual into an offline and an online part, to apply POD-based

model reduction at the micro scale. The offline part is used to define a suitable lower

dimensional subspace. In the computationally efficient online step the reduced computa-

tion of the RVE based on this subspace is performed.

In the offline step, the RVE is analyzed for each independent deformation mode sepa-

rately. In the case of small deformations, we use six precomputations: the three tension

modes and the three shear modes. In the case of large deformations, nine precomputa-

tions are investigated corresponding to the nine entries in the deformation gradient FM .

The subspace is computed by using the method of snapshots [40,41]. A snapshot is one

computed solution vector Uf of a full-dimensional microstructural FE simulation. Obvi-

ously, for each precomputation, arbitrarily many snapshots can be stored. The choice of
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the number of snapshots is very much dependent on the problem under investigation.

In particular, the material behavior plays a major role. In the context of inelasticity, it

becomes necessary to store snapshots on loading as well as on unloading paths. Also the

time dependence of the material behavior is an aspect which deserves special attention.

If the number of snapshots is lower than their dimension (which is usually the case),

the method of snapshots is very efficient to compute the lower-dimensional subspace.

The l computed solution vectorsUf of the unknown displacement dofs in these evaluated

full-field simulations according to Eq. (14) are saved in the nf × l-dimensional snapshot

matrix D = [U1
f
, U2

f
, · · · , Ul

f
]. The computation of the lower-dimensional subspace is

based on the minimization of the approximation error of the collected snapshots and

their new approximation. In addition orthogonality is claimed. These conditions lead to

an eigenvalue problemof the correlationmatrix 1/l DT D. Thenf ×m projectionmatrix�

is then filledwith them eigenvectors—multiplied byD and normalized—corresponding to

the firstm largest eigenvalues of the correlationmatrix. The offline part has to be evaluated

once for each type of RVE and has to be performed before the multiscale simulation.

In the online step of the multiscale simulation, the reduced RVE is called in each

material point of the macroscopic system. Therefore, the unknown displacements of the

RVE boundary value problem (14) are approximated by

Uf = �Ured (22)

where � is the nf × m-dimensional subspace matrix. In this way the nf -dimensional

displacement vectorUf is reduced to them-dimensional unknown vectorUred . Typically,

the reduced dimensionm is much smaller than the full dimension nf :m ≪ nf .

Inserting the approximation (22) into the nonlinear boundary value problem of the RVE

(14) and using a Galerkin projection, leads to the following iterative solution algorithm:

�
T K

j

ff
�

︸ ︷︷ ︸
Kred

�U
j+1
red

= −�
T R

j

f︸ ︷︷ ︸
Rred

,

U
j+1
f

= U
j

f
+ ��U

j+1
red

,

||R
j+1
red

|| ≤ tol,

j ← j + 1. (23)

The dimension of the reduced equation system ism instead of the full dimension nf , thus

solving the RVE problem is computationally much more efficient than in the classical

approach. In the caseofnonlinearmechanicalRVEproblems, it is still necessary to evaluate

all local quantities (stress and material tangent) in each evaluation point of the RVE (see

for a more detailed derivation of the presently used PODmethod in the nonlinear context

[42,43]). In order to reduce the computational effort further, extended projection-based

reduction methods have been developed (e.g. [26,27,44–49]). The idea of such methods

is in general to significantly reduce the number of evaluation points. This important step

could be also integrated into the present method but goes beyond the scope of this paper.

Reducedmicro-to-macro scale transition

To couple the reduced RVE computation with the finite element computation on the

macro scale, we use the same ansatz as in the classical approach (see “Classical multiscale
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approach based on finite elements (FE2)” section). Since now a reduced RVE computation

is used, the computation of the matrix K⋆ differs from the classical approach. It is evident

that eq. (18) (see “Classical multiscale approach based on finite elements (FE2)” section)

has to be replaced by

�Ured = −(Kred)
−1

�
T Kfb �Ub. (24)

Since the relation �Rb = �Lb remains, we only need to exploit that �Rb reads in the

reduced case

�Rb = Kbf � �Ured + Kbb �Ub. (25)

Using Eq. (24) one arrives at

�Rb = (Kbb − Kbf � (Kred)
−1

�
T Kfb)�Ub = K⋆ �Ub. (26)

With the matrix K⋆ being determined in this way, the macroscopic tangent CM =

(CM)ijkl = ei ⊗ ej ⊗ ek ⊗ el can be computed exactly in the same way as before:

(CM)ijkl =
1

V0

Nb∑

A=1

Nb∑

B=1

(K ⋆)ABik XA
j XB

l . (27)

Summary of FEPOD

Table 1 summarizes the presented reduced multiscale approach. In the offline step, the

RVE is analyzed for prescribed independent deformation modes separately. These are

standard mechanical simulations of the microstructural boundary value problem. Based

on the computed solutions (snapshots) the subspace � is computed for the RVE. After-

wards, in the online step the multiscale simulation with reduction is done. Therefore, in

a first step the macroscopic model has to be defined. The material behavior is defined

by coupling RVEs to the macroscopic material constituents, which have to be initialized.

Then the nonlinear mechanical simulation of the macroscopic model starts. A load incre-

ment is applied to the macroscopic structure and the nonlinear deformation response is

computed in aNewton–Raphson scheme. Thereby, a nested reduced nonlinear FE simula-

tion of the RVE problem is called in each integration point of themacroscopic model. The

current macroscopic deformation gradient sets the boundary conditions for the current

reduced RVE computation. The RVE problem is then calculated using POD reduction. If

the RVE boundary value problem is converged, the macroscopic stress tensor as well as

the material tangent are computed by means of averaging the microscopic data using the

equations derived in the previous subsections. After the problem has converged on the

macro scale the next load increment is applied.

Numerical results

Multiscale problem settings

To investigate the proposed multiscale approach, the following bending problem of a

cantilever sheet is investigated. Geometry and boundary conditions are shown in Fig. 1.

The sheet has the dimensions 240mm × 120mm × 0.1mm and is fixed at x = 0mm.
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Table 1 Solution scheme of FEPOD

Macroscale Microscale

Offline Set up RVE

Apply predefined idenpendent deformation states

Run and save solutions for each case

Calculate subspace for each RVE separately

Online 1. Set up macroscopic model

Geometry, boundary conditions Initialize RVEs

FE discretization Load subspace

Set RVEs for each material

2. Run simulation

Loop time or load step

Apply load increment

Loop Newton iteration

Loop elements

Loop material points

CalculateFM

Load history variables

⇒ Calculate boundary conditions for RVE

Solve RVE with POD reduction

If convergence is reached:

CalculatePM

CalculateCM

Save local history variables globally

StorePM ,CM and history ⇐

End (material points)

End (elements)

Global assembling

Check convergence

If converged: BREAK

End (Newton iteration)

Update displacements

End (time/load step)

At x = 240mm it is loaded by a prescribed displacement in y-direction. The macro

model is discretized with 6 × 3 × 1 elements leading to a number of 152 not constrained

displacement degrees-of-freedom.

The underlying micro scale system, which will be active at each integration point in the

macro scale sheet problem, is given in Fig. 2. A random arrangement of four fibers in a

matrix is used (see [50]). Thefiber volume fraction is 42.6%and theRVEmeasures 19×19×

0.95mm3. The RVE is discretized in all three dimensions and as such solved as a full 3D

problem. In the third direction, 2 elements are used. The microscopic problem includes

3286 elements, 5088 nodes with 3 degrees-of-freedom and in total 9858 independent

displacement degrees-of-freedom. In the following, an elastic composite as well as an

elastoplastic metal matrix composite are investigated.

Linear elastic material behavior

To demonstrate the offline step and to validate the proposed approach of a POD-reduced

RVE computation in the framework of FE2 (FEPOD), first purely linear elastic material

behavior is assumed for both, the fiber and matrix constituents. The matrix is modeled
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240

120

x

y

u

Fig. 1 Geometry and boundary conditions of the bending test. A cantilever sheet with dimensions

240mm × 120mm × 0.1mm is investigated

Fig. 2 RVE geometry. The RVE contains four randomly arranged fibers (blue) and the matrix (red). Dimensions

are arbitrary

as isotropically elastic (Young’s modulus Em = 3600N/mm2, Poisson’s ratio νm = 0.38).

The contribution of the fibers is represented by orthotropic elasticity (Young’s modulus

parallel to the fibers E‖ = 230000N/mm2, Young’s modulus perpendicular to the fibers

E⊥ = 15000N/mm2, shear moduliG⊥‖ = G‖⊥ = 15000N/mm2, Poisson’s ratios ν⊥⊥ =

0.4 and ν‖⊥ = 0.2). Thesematerial parameters were determined experimentally (see [51]).

To compute the snapshots for the POD reduction of the RVE, the six independent

strain states are investigated in the offline step. Deformations for each of the six applied

strain modes are shown in Fig. 3. In each precomputation one displacement vector is

collected and saved into the snapshot matrix D. From these six displacement vectors, six

POD modes are computed. The eigenvalue problem of the correlation matrix results in

six nonzero eigenvalues (eigenvalues range from 0.0025 to 1.65).

To investigate the accuracy of the POD-reduced RVE computation, we apply three arbi-

trary macroscopic loading conditions εM onto the RVE and compare the results with an

unreduced RVE computation. Figure 4 shows the approximation error in themacroscopic

stress response (Cauchy stress matrix σM) of a reduced RVE computation with six POD

modes. The stress approximation error is computed by means of the relation
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Fig. 3 Deformation plots of the precomputations (scale factor 10) for the linear elastic composite. The RVE is

simulated for the six independent strain modes in the offline step. The macroscopic strain matrices for these

precomputations are zero in all entries besides the declared value
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Fig. 4 Relative stress approximation error of a linear elastic composite. The error (28) of each macro stress

component by means of the POD RVE simulation is given for the three arbitrary loading conditions

εM
(1) = [0.010, 0.000, 0.000; 0.000, 0.000, 0.000; 0.000, 0.000, 0.000],

εM
(2) = [0.010, 0.005, 0.000; 0.005, 0.020, 0.000; 0.000, 0.000, 0.000] and

εM
(3) = [0.007, 0.005, 0.014; 0.005, 0.008, 0.004; 0.014, 0.004, 0.012]

error σMij =
|σMij − σMij|

|σMij|
(28)

where σMij denotes the approximate solution of the POD computation and σMij the

solution of the unreduced simulation serving as reference solution. The indices i and j refer

to the components of the matrix. As expected, the comparison shows a perfect agreement

between the unreduced and the reduced solution (effectively zero approximation errors).

Of course, this can only be reached in the case of linear elasticity where the principle of

superposition holds. At the RVE scale, the POD simulation runs around 60 times faster

than the unreduced simulation.
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Table 2 Relative displacement and relative stress deviations of themultiscale problem

with a linear elastic RVE

ux uy uz

Min (error) 0 0 0

Max (error) 0 0 1.86 · 10−8

σxx σyy σzz σxy σyz σzx

Min (error) 0 0 1.98 · 10−14 0 4.58 · 10−9 2.05 · 10−8

Max (error) 9.06 · 10−10 8.52 · 10−10 1.16 · 10−9 6.17 · 10−10 6.30 · 10−5 1.89 · 10−3

The table gives the extreme values of the relative deviation |�(∗)|∗ = |(∗) − (∗)|/max(|(∗)|) of each displacement

component ui and stress field σ ij computed in the FEPOD computation in comparison with the corresponding values (∗) of

the reference FE2 computation for the multiscale example with linear elastic material behavior

The previous computation took place only at the micro scale. In the next step, the accu-

racy and computational efficiency of the reduced multiscale simulation is investigated.

For this purpose, the macro model shown in Fig. 1, coupled with the reduced RVE com-

putation discussed above, is investigated. As expected, the displacement as well as the

stress deviations on the macro level summarized in Table 2 are vanishingly small. The

relative stress deviations in the main directions (x − y) are in the range of 10−10. The

higher deviations of the shear stresses concerning the third direction are located close to

the clamped boundary. An enormous speed-up of 255 is reached. The linear multiscale

problem converges in one step, as expected.

This first example shows the validity of the presented reduced multiscale approach,

especially the computation of the consistent tangent based on the reduced stiffnessmatrix

and its implementation in the FE2 framework of the finite element solver FEAP [31], in

the context of linear elasticity.

Elastoplastic material behavior

In the next step, we investigate ametalmatrix composite. Thematrix ismodeled as elasto-

plastic material with a Young’s modulus of E = 110300N/mm2 and a Poisson’s ratio of

ν = 0.26. The yield stress is σy = 371.5N/mm2 and the linear hardening modulus is

H = 28921.5N/mm2. The isotropic fibers behave linearly elastically with a Young’s mod-

ulus of Ef = 393000N/mm2 and a Poisson’ ratio of νf = 0.25. The elastoplastic behavior

of the microstructure is represented in Fig. 5. The stress-strain relation of the RVE for

uniaxial loading in x-as well as in y-direction is shown. The curves show a pronounced

hardening effect and a high degree of plastification.

 0

 400

 800

 0  0.005  0.01

σ
i

εi

σx
σy

Fig. 5 Stress–strain relation of the metal matrix composite RVE. The plastic behavior of the microstructure is

plotted based on uniaxial loading tests in x- and y-direction
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Again, to compute the snapshots, the six independent strain states are simulated in the

offline step. In order to account for the plastic behavior, in each precomputation, the strain

state is applied over a time interval t ∈ [0, 1] and five snapshots over the time interval are

stored into the snapshot matrix D. In this way, in total 30 snapshots are collected in the

offline step. The PODmodes are again computed from this data set by solving the above-

mentioned eigenvalue problem of the correlation matrix. The decay of the eigenvalues

is shown in Fig. 6. In contrast to the previous elastic example, the number of nonzero

eigenvalues is larger than the six investigated independent strain states. Nevertheless, a

rapid decay can be observed, which guarantees good results using the POD reduction.

Consideringfirst themetalmatrix compositeRVEalone, Fig. 7 shows the approximation

error (Eq. (28)) in the macroscopic stress response (Cauchy stresses) of a POD-reduced

RVE computation using different numbers of POD modes. The RVE is arbitrarily loaded

by the macroscopic strain state (given in matrix form)

εM =

⎡
⎢⎣
0.007 0.005 0.014

0.005 0.008 0.004

0.014 0.004 0.012

⎤
⎥⎦ . (29)
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Fig. 6 Decay of the normalized eigenvalues in case of a metal matrix composite. The normalized

eigenvalues of the correlation matrix based on the snapshots of the six independent strain states of the metal

matrix RVE decrease rapidly
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Fig. 7 Relative stress approximation error of a metal matrix composite. The error (28) in the macroscopic

stress response of a POD-reduced RVE computation using different numbers of POD modes is shown for

loading case (30)
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As expected the errors are larger than in the previous purely elastic example. The error

depends on the number of POD modes computed in the offline step. Using more than

six POD modes leads to significantly smaller errors. In summary, a good accuracy with

errors smaller than one per cent can be reached by using only 12 POD modes. This

POD-reduced RVE computation with 12 POD modes runs around 220 times faster than

the unreduced reference solution. Of course, the speed-up depends on the number of

POD modes. It decreases from 260 to 60 by increasing the number of POD modes from

6 to 30.

In the next step, we focus on the multiscale simulation. In case of elastoplastic behavior,

the macrostructural bending test described in the previous Section is investigated under

loading as well as unloading. The influence of the number of POD modes for the RVE

reduction is investigated. Tables 3 and 4 show the deviation of the displacement, the stress

fields as well as the accumulated plastic strain field of a FEPOD simulation with 6, 12 and

24 POD modes with respect to a standard FE2 simulation. Tables 3 compares the values

at the end of the loading time and Table 4 the values at the end of the unloading time.

The results of the FEPOD multiscale approach fit those of the reference FE2 approach

very well. Again, using more POD modes leads to better agreement with the reference

results, but of course, also with a smaller speed-up. With 6 PODmodes a speed-up of 225

can be reached. This speed-up falls to 165 by using 24 POD modes. The loading part is

captured more precisely compared to the unloading part. This is due to the chosen RVE

precomputations which do not explicitly include unloading. Nevertheless, relative devi-

ations smaller than 5% are reached in the end of the multiscale simulation. At the point

of maximum loading the relative deviations are in the range of 10−4. Higher maximal

deviations can be observed for the displacement in the third direction as well as the shear

stresses concerning this direction. Themain deformation of the example takes place in the

x − y plane so that the POD modes (concerning the highest eigenvalues) cover the main

behavior as well as possible. In other directions the reduced system can lead to higher

deviation, but the high error values occur only in a few points.

The comparison of the overall behavior is shown in the reaction force versus displace-

ment plot in Fig. 8 as well as in the zoomed part of Fig. 9. The sum of the reaction forces

is plotted against the prescribed displacement uy. Again a very good agreement of the

FEPOD results for 12 or more POD modes is shown. The FEPOD method can capture

Table 3 Relative displacement, accumulated plastic strain and stress deviations of the

multiscale problemwith a elastoplastic RVE for different numbers of PODmodes at time

point of maximum loading

ux uy uz εpl

m = 6 2.8 · 10−3 5.5 · 10−4 16.5 4.8 · 10−3

m = 12 5.0 · 10−4 1.6 · 10−4 4.5 7.0 · 10−4

m = 24 1.5 · 10−4 4.5 · 10−5 0.7 1.5 · 10−5

σxx σyy σzz σxy σxz σyz

m = 6 1.3 · 10−2 2.5 · 10−3 4.3 · 10−3 1.1 · 10−2 12.8 1.0

m = 12 1.9 · 10−3 7.4 · 10−4 9.5 · 10−4 2.4 · 10−3 2.3 0.4

m = 24 6.6 · 10−5 2.9 · 10−4 5.3 · 10−5 2.2 · 10−4 0.15 0.19

The table gives the maximum values of the relative deviation |�(∗)|∗ = |(∗) − (∗)|/max(|(∗)|) of each field (∗) computed in

the FEPOD computation in comparison with the corresponding field (∗) of the reference FE2 computation for the multiscale

example with elastoplastic material behavior and a different number of PODmodes
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Table 4 Relative displacement, accumulated plastic strain and stress deviations of the

multiscale problemwith a elastoplastic RVE for different numbers of PODmodes after

unloading

ux uy uz εpl

m = 6 2.1 · 10−1 2.2 · 10−1 289 1.1 · 10−1

m = 12 3.0 · 10−2 1.4 · 10−2 13.14 2.3 · 10−2

m = 24 3.0 · 10−2 3.8 · 10−2 18.23 2.7 · 10−2

σxx σyy σzz σxy σxz σyz

m = 6 7.6 · 10−2 2.1 · 10−1 2.8 · 10−2 6.2 · 10−2 43 1.99

m = 12 7.0 · 10−3 5.1 · 10−2 3.8 · 10−2 2.2 · 10−2 5.6 0.165

m = 24 1.0 · 10−2 3.9 · 10−2 3.9 · 10−2 2.5 · 10−2 1.28 0.81

The table gives the maximum values of the relative deviation |�(∗)|∗ = |(∗) − (∗)|/max(|(∗)|) of each field (∗) computed in

the FEPOD computation in comparison with the corresponding field (∗) of the reference FE2 computation for the multiscale

example with elastoplastic material behavior and a different number of PODmodes
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Fig. 8 Sum of reaction forces versus displacement in case of the elastoplastic multiscale simulation. The sum

of the reaction forces in y-direction resulting from a FE2 computation is compared to the sum of reaction

forces computed by means of a FEPOD computation using different numbers of POD modes (m) for the

elastoplastic multiscale example
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Fig. 9 Segment of the reaction force Fig. 8. The sum of the reaction force in y-direction resulting from a FE2

computation is compared to the sum of reaction forces computed by means of a FEPOD computation using

different numbers of POD modes (m) for the elastoplastic example

the overall behavior very precisely with a few PODmodes at the micro scale. The loading

and the unloading path are captured. The plot of the reaction force also shows that the

deformation is accompanied by significant plastification of the structure. Of course, the

example shows only linear hardening based on the used RVE.

To summarize, the second example of ametalmatrix composite shows that the proposed

FEPOD multiscale approach leads to good results with errors smaller 5% for the relevant
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data and a high speed-up of around 180 (m = 12). Note also that working with the

FEPOD approach does not significantly change the number of iterations per Newton step

compared to the FE2 approach. Similarly to the FE2 approach, the FEPODmethod shows

quadratic convergence in the Newton iteration.

Hyperelastic material behavior

The derived FEPOD method is finally applied to a hyperelastic microstructure. In this

example a simplified microstructure with four cubic material domains and 384 free

degrees-of-freedom is investigated. Two of them contain a rather stiff material with a

Young’s modulus of 100N/mm2 and a Poisson’s ratio of 0.3. The other two are filled with

a soft material (Young’s modulus equal to 1N/mm2, Poisson’s ratio equal to 0.45).

In the case of large deformations, the POD subspace of the RVE is computed by means

of precomputations of the nine independent deformation states. The microstructure is

loaded separately by means of macroscopic deformation states where only one compo-

nent is unequal to zero and increased until 1. For each of the nine precomputations 100

snapshots over loading time are collected. Based on the joined snapshot matrix, the POD

subspace for the micro scale is computed. The decay of the normalized eigenvalues is

shown in Fig. 10. The decay is similar to the previous example. After around 40 modes a

further benefit by using more modes cannot be expected.

Again, the first investigation concerns the RVE. Figure 11 shows the approximation

error (Eq. (28)) in the macroscopic stress response (Cauchy stresses) of the POD-reduced

hyperelastic RVE using different numbers of POD modes. The RVE is arbitrarily loaded

by the macroscopic deformation state

FM =

⎡
⎢⎣
1.0 0.2 0.6

0.0 0.2 0.5

0.0 0.7 0.0

⎤
⎥⎦ . (30)

As expected, the error decreases with increasing number of PODmodes. Using around 27

PODmodes yield errors in the range of 10−3, which promises good results in the reduced

multiscale simulation.

Now the multiscale problem is studied by means of the hyperelastic RVE. A different

macrostructure is investigated to take the hyperelastic behavior into account. For that pur-
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Fig. 10 Decay of the normalized eigenvalues in case of the hyperelastic matrix composite. The normalized

eigenvalues of the correlation matrix based on the snapshots of the nine independent deformation states of

the hyperelastic RVE decrease rapidly
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Fig. 11 Relative stress approximation error of a hyperelastic matrix composite. The error (28) in the

macroscopic stress response of a POD-reduced RVE computation using different numbers of POD modes is

shown for loading case (29)

pose, a cube under tension shown in Fig. 12 is created. As a consequence of symmetry only

one quarter of the whole cube is simulated. The dimensions of the quarter are 100mm ×

100mm × 100mm leading to 1800 unknown degrees-of-freedom. Symmetry conditions

are usedon theplanes x1 = 0 and x2 = 0.On thebottom the system is fixed in x3-direction.

The nodes on the top are constrained in x1- and x2-direction. The tension load is applied

linear in time on one quarter of the top plane (black area in the Fig. 12). The system is

discretized by 8×8×8 elements. As a first test a FEPOD simulationwith nine PODmodes

is compared to a full multiscale FE2 simulation. In a study of convergence, it was checked

that nine PODmodes are sufficient to yield a result which is very close to the result of the

FE2 method. With this basis a very good approximation of the reference results can be

reached. The relative displacement error in x3-direction as well as themost relevant stress

error are shown in Table 5 over the simulation time. The errors increase with increasing

time because the degree of nonlinearity increases. In total, a very good approximationwith

errors smaller than 7% are reached. The comparison of the FEPOD results and the ones of

FE2 are summarized in Fig. 13. Of course, more investigations shall be carried out in the

future.Thesewill concern thedependenceof the results on e. g. thenumberof chosenPOD

modes and the choice of the precomputations (inclusion of mixed deformation states).

1
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100
100

x1
x2

x3

t3

Fig. 12 Hyperelastic multiscale simulation: Geometry and boundary conditions of the cube under tension.

For the hyperelastic example, a macro scale system of a quarter cube with symmetry conditions and

dimensions 100mm × 100mm × 100mm is investigated under the tension load t3 in x3-direction on a part

of its topplane (black area). The nodes on the top are constrained in x1- and x2-direction
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Table 5 Relative displacement and relative stress error of themultiscale problemwith a

hyperelastic RVE

t u3 σ33

1000 0.000 0.000

2000 0.000 0.008

3000 0.009 0.010

4000 0.028 0.024

5000 0.048 0.045

6000 0.071 0.064

The table gives the error values over time of the relative deviation |�(∗)|∗ = |(∗) − (∗)|/(|(∗)|) of the displacement

component u3 and stress field σ 33 computed in the FEPOD computation in comparison with the corresponding values (∗) of

the reference FE2 computation for the multiscale example with hyperelastic material behavior
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Fig. 13 Comparison of the FE2 (left) and the FEPOD (right) multiscale simulation with a hyperelastic RVE. The

contour plots show the displacement u3 as well as the stress fields σ33 and σ12 for the standard FE2

simulation (left) and the FEPOD simulation (right). The approximation is very good
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Conclusions

This paper presents a newmultiscale concept FEPODwhere a reduced RVE computation

is embedded into a finite element-based macro-mechanical simulation. Therefore, the

POD reduction is carried out for the micro-mechanical boundary value problem. After

this offline step, the RVE is represented by only a few POD modes. In this way it is

possible to decrease the computational demands of a multiscale simulation enormously.

Furthermore, the consistent macroscopic tangent for the FEPOD has been derived.

In case of a linear elastic composite, the FEPOD approach with only six POD modes

leads to the same accuracy as a classical FE2 approach. This is due to the principle of

superposition which holds for linear elasticity. In case of plasticity, a few more POD

modes are necessary to reach good accuracy. It is shown that also unloading phases are

approximated in a very good way. In the investigated examples, speed-ups of around 250

times are possible while maintaining a high level of accuracy with errors less than 1% on

the micro scale and less than 5% on the macro scale. Furthermore, a first test example

concerning hyperelastic RVEs is shown. The example shows the successful application of

FEPOD to large deformation. Of course, this topic has to be investigated in more detail in

further research.

The computation of the reduced modes in the offline step is one important part of the

proposed FEPOD approach, because the quality of the computed subspace significantly

influence the accuracy of the reduced computation. In that offline step, the RVE has to

be solved at least for the independent deformation states. This set-up was shown in the

examples. In some cases, more than the six or nine independent deformation states have

to be precomputed. This holds in particular for the case of highly nonlinear behavior

where it is not possible to work with the assumption of superposition. It will be addressed

in further investigations which states are most useful and how these states can be chosen.

Also updating strategies of the modes on the fly during a FEPOD simulation should be

further explored.

In summary, the proposed FEPOD method is able to increase the computational effi-

ciency of a finite element based multiscale simulation significantly while maintaining a

high level of accuracy. Therefore it is a promising approach for future research in mul-

tiscale modeling of not only fiber-reinforced composites but also other heterogeneous

materials.
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