DISPLACEMENT-BASED SEISMIC DESIGN OF STRUCTURES

M.J.N. PRIESTLEY

Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy

G.M. CALVI

Department of Structural Mechanics, Università degli Studi di Pavia, Pavia, Italy

M.J. KOWALSKY

Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, USA

IUSS PRESS, Pavia, ITALY

CONTENTS

Preface

1.1		I: The Need for Displacement-Based Seismic Design ical Considerations	1	
1.2	Force-Based Seismic Design			
1.3	Problems with Force-Based Seismic Design		5 8	
	1.3.1	Interdependency of Strength and Stiffness	8	
	1.3.2	Period Calculation	10	
	1.3.3	Ductility Capacity and Force-Reduction Factors	12	
	1.3.4	Ductility of Structural Systems	13	
	1.3.5	Relationship between Strength and Ductility Demand	21	
	1.3.6	Structural Wall Buildings with Unequal Wall Lengths	23	
	1.3.7	Structures with Dual (Elastic and Inelastic) Load Paths	24	
	1.3.8	Relationship between Elastic and Inelastic		
		Displacement Demand	26	
	1.3.9	Summary	30	
1.4	Develo	opment of Displacement-Based Design Methods	30	
	1.4.1	Force-Based/Displacement Checked	30	
	1.4.2	Deformation-Calculation Based Design	31	
	1.4.3	Deformation-Specification Based Design	32	
	1.4.4	Choice of Design Approach	34	
Seismic Input for Displacement-Based Design				
2.1		uction: Characteristics of Accelerograms	37	
2.2		nse Spectra	43	
	2.2.1	Response Spectra from Accelerograms	43	
	2.2.2	Design Elastic Spectra	45	
	2.2.3	Influence of Damping and Ductility on Spectral		
		Displacement Response	57	
2.3	Choice	e of Accelerograms for Time History Analysis	61	
Direct Displacement-Based Design: Fundamental Considerations				
3.1	Introd		63	
3.2		Formulation of the Method	63	
	200101		00	

xv

	3.2.1	Example 3.1 Basic DDBD	67		
3.3	Design	Limit States and Performance Levels	67		
	3.3.1	Section Limit States	69		
	3.3.2	Structure Limit States	70		
	3.3.3	Selection of Design Limit State	72		
3.4	Single-	Degree-of-Freedom Structures	73		
	3.4.1	Design Displacement for a SDOF structure	73		
	3.4.2	Yield Displacement	75		
	3.4.3	Equivalent Viscous Damping	76		
	3.4.4	Design Base Shear Equation	90		
	3.4.5	Design Example 3.3: Design of a Simple Bridge Pier	91		
	3.4.6	Design When the Displacement Capacity Exceeds the			
		Spectral Demand	92		
	3.4.7	Example 3.4: Base Shear for a Flexible Bridge Pier	93		
3.5	Multi-I	Degree-of-Freedom Structures	95		
	3.5.1	Design Displacement	96		
	3.5.2	Displacement Shapes	97		
	3.5.3	Effective Mass	99		
	3.5.4	Equivalent Viscous Damping	100		
	3.5.5	Example 3.5: Effective Damping for a Cantilever Wall Building	103		
	3.5.6	Distribution of Design Base Shear Force	104		
	3.5.7	Analysis of Structure under Design Forces	105		
	3.5.8	Design Example 3.6: Design moments for a			
		Cantilever Wall Building	106		
	3.5.9	Design Example 3.7: Serviceability Design for a			
		Cantilever Wall Building	108		
3.6	$P-\Delta$ Effects				
	3.6.1	Current Design Approaches	111		
	3.6.2	Theoretical Considerations	112		
	3.6.3	Design Recommendations for			
		Direct Displacement-based Design	114		
3.7	Combi	nation of Seismic and Gravity Actions	115		
	3.7.1	A Discussion of Current Force-Based Design Approaches	115		
	3.7.2	Combination of Gravity and Seismic Moments in			
		Displacement-Based Design	119		
3.8	Consid	eration of Torsional Response in Direct			
		cement-Based Design	120		
	3.8.1	Introduction	120		
	3.8.2	Torsional Response of Inelastic Eccentric Structures	122		
	3.8.3	Design to Include Torsional Effects	124		
3.9	Capaci	ty Design for Direct Displacement-Based Design	125		
3.10		implications of DDBD	127		
	3.10.1	Influence of Seismic Intensity on Design Base Shear Strength	127		

		3.10.2	Influence of Building Height on Required Frame	
			Base Shear Strength	129
		3.10.3	Bridge with Piers of Different Height	130
		3.10.4	Building with Unequal Wall Lengths	132
4	Anal	ysis Too	ols for Direct Displacement-Based Design	133
	4.1	Introdu	uction	133
	4.2	Force-I	Displacement Response of Reinforced Concrete Members	133
		4.2.1	Moment-Curvature Analysis	134
		4.2.2	Concrete Properties for Moment-Curvature Analysis	136
		4.2.3	Masonry Properties for Moment-Curvature Analyses	139
		4.2.4	Reinforcing Steel Properties for Moment-Curvature Analyses	140
		4.2.5	Strain Limits for Moment-Curvature Analysis	141
		4.2.6	Material Design Strengths for	
			Direct Displacement-Based Design	143
		4.2.7	Bilinear Idealization of Concrete Moment-Curvature Curves	144
		4.2.8	Force-Displacement Response from Moment-Curvature	147
		4.2.9	Computer Program for Moment-Curvature and	
			Force-Displacement	151
	4.3		Displacement Response of Steel Members	151
	4.4		Stiffness of Cracked Concrete Sections	151
		4.4.1	Circular Concrete Columns	152
		4.4.2	Rectangular Concrete Columns	155
		4.4.3	Walls	157
		4.4.4	Flanged Reinforced Concrete Beams	159
		4.4.5	Steel Beam and Column Sections	160
		4.4.6	Storey Yield Drift of Frames	161
		4.4.7	Summary of Yield Deformations	164
	4.5	•	es Related to Capacity Design Requirements	165
		4.5.1	Design Example 4.1: Design and Overstrength of a Bridge Pier	
			Based on Moment-Curvature Analysis	167
		4.5.2	Default Overstrength Factors	170
		4.5.3	Dynamic Amplification (Higher Mode Effects)	170
	4.6	-	prium Considerations in Capacity Design	170
	4.7	-	dable Strength of Capacity Protected Actions	173
		4.7.1	Flexural Strength	173
			Beam/Column Joint Shear Strength	174
		4.7.3	Shear Strength of Concrete Members: Modified UCSD model	174
		4.7.4	Design Example 4.2: Shear Strength of a Circular	100
		4 7 7	Bridge Column	182
		4.7.5	Shear Strength of Reinforced Concrete and Masonry Walls	183
		4.7.6	Response to Seismic Intensity Levels	105
			Exceeding the Design Level	185

4.8	Shear Flexibility of Concrete Members			
	4.8.1	Computation of Shear Deformations	185	
	4.8.2	Design Example 4.3 Shear Deformation,		
		and Failure Displacement of a Circular Column	188	
4.9	Analys	sis Tools for Design Response Verification	192	
	4.9.1	Introduction	192	
	4.9.2	Inelastic Time-History Analysis for Response Verification	192	
	4.9.3	Non-Linear Static (Pushover) Analysis	218	
Frar	ne Build	lings	221	
5.1	Introd	uction	221	
5.2	Review	v of Basic DDBD Process for Frame Buildings	221	
	5.2.1	SDOF Representation of MDOF Frame	221	
	5.2.2	Design Actions for MDOF Structure from		
		SDOF Base Shear Force	224	
	5.2.3	Design Inelastic Displacement Mechanism for Frames	225	
5.3		Displacements of Frames	226	
	5.3.1	Influence on Design Ductility Demand	226	
	5.3.2	Elastically Responding Frames	226	
	5.3.3	Yield Displacement of Irregular Frames	230	
	5.3.4	Design Example 5.1: Yield Displacement and		
		Damping of an Irregular Frame	233	
	5.3.5	Yield Displacement and Damping when		
		Beam Depth is Reduced with Height	237	
	5.3.6	Yield Displacement of Steel Frames	238	
5.4	Contro	olling Higher Mode Drift Amplification	239	
5.5	Struct	ural Analysis Under Lateral Force Vector	242	
	5.5.1	Analysis Based on Relative Stiffness of Members	242	
	5.5.2	Analysis Based on Equilibrium Considerations	245	
5.6	Section	n Flexural Design Considerations	251	
	5.6.1	Beam Flexural Design	251	
	5.6.2	Column Flexural Design	254	
5.7	Direct	Displacement-Based Design of Frames for Diagonal Excitation	259	
5.8	Capac	ity Design for Frames	263	
	5.8.1	General Requirements	263	
	5.8.2	Beam Flexure	263	
	5.8.3	Beam Shear	265	
	5.8.4	Column Flexure	266	
	5.8.5	Column Shear	271	
5.9	Design	n Verification	274	
	5.9.1	Displacement Response	274	
	5.9.2	Column Moments	274	
	5.9.3	Column Shears	277	

5

6

	5.9.4	Column Axial Forces	277
5.10	Design	Example 5.2: Member Design Forces for an	
		ar Two-Way Reinforced Concrete Frame	279
5.11		t Prestressed Frames	285
	5.11.1	Seismic Behaviour of Prestressed Frames with	
		Bonded Tendons	285
	5.11.2	Prestressed Frames with Unbonded Tendons	287
		Hybrid Precast Beams	290
		Design Example 5.3: DDBD of a Hybrid Prestressed	
		Frame Building including P- Δ Effects	293
5.12	Mason	ry Infilled Frames	301
	5.12.1	•	301
		Structural Action of Infill	302
		DDBD of Infilled Frames	303
5.13			304
	5.13.1	Structural Options	304
		Concentric Braced Frames	306
		Eccentric Braced Frames	307
5.14		Example 5.4: Design Verification of Design Example 5.1/5.2	310
Sterro	••••••••••••••••••••••••••••••••••••••	all Puildings	212
6.1		all Buildings	313
0.1	6.1.1	action: Some Characteristics of Wall Buildings	313 313
		1	315
	6.1.2	Foundations for Structural Walls	
		Foundations for Structural Walls Inertia Force Transfer into Walls	315
6.2			317
0.2	6.2.1	of Basic DDBD Process for Cantilever Wall Buildings	317
6.3		Design Storey Displacements	317
0.5	6.3.1	ield Displacements: Significance to Design	325
	6.3.2	Influence on Design Ductility Limits	325 327
	6.3.3	Elastically Responding Walls Multiple In Plane Walls	
6.4		Multiple In-Plane Walls nal Response of Cantilever Wall Buildings	328 328
0.4	6.4.1	Elastic Torsional Response	328
	6.4.2	Torsionally Unrestrained Systems	331
	6.4.3	Torsionally Restrained Systems	334
	6.4.4	Predicting Torsional Response	337
	6.4.5	Recommendations for DDBD	339
	6.4.6	Design Example 6.1: Torsionally Eccentric Building	346
	6.4.7	Simplification of the Torsional Design Process	352
6.5		ation Flexibility Effects on Cantilever Walls	353
0.5	6.5.1	Influence on Damping	353
	6.5.2	Foundation Rotational Stiffness	353
	0.3.2	i oundation Rotational Summess	554

	6.6	Capacity Design for Cantilever Walls	357		
		6.6.1 Modified Modal Superposition (MMS) for			
		Design Forces in Cantilever Walls	359		
		6.6.2 Simplified Capacity Design for Cantilever Walls	363		
	6.7	Precast Prestressed Walls	370		
	6.8	Coupled Structural Walls	372		
		6.8.1 General Characteristics	372		
		6.8.2 Wall Yield Displacement	376		
		6.8.3 Coupling Beam Yield Drift	378		
		6.8.4 Wall Design Displacement	379		
		6.8.5 Equivalent Viscous Damping	381		
		6.8.6 Summary of Design Process	382		
		6.8.7 Design Example 6.3: Design of a Coupled–Wall Building	382		
7		l Wall-Frame Buildings	387		
	7.1	Introduction	387		
	7.2	DDBD Procedure	388		
		7.2.1 Preliminary Design Choices	388		
		7.2.2 Moment Profiles for Frames and Walls	389		
		7.2.3 Moment Profiles when Frames and Walls are			
		Connected by Link Beams	392		
		7.2.4 Displacement Profiles	394		
		7.2.5 Equivalent Viscous Damping	396		
		7.2.6 Design Base Shear Force	397		
		7.2.7 Design Results Compared with Time History Analyses	397		
	7.3	Capacity Design for Wall-Frames	399		
		7.3.1 Reduced Stiffness Model for Higher Mode Effects	400		
		7.3.2 Simplified Estimation of Higher Mode Effects for Design	401		
	7.4	Design Example 7.1: Twelve Storey Wall-Frame Building	403		
		7.4.1 Design Data	403		
		7.4.2 Transverse Direction Design	404		
		7.4.3 Longitudinal Direction Design	410		
		7.4.4 Comments on the Design	411		
8	Mas	sonry Buildings			
	8.1	Introduction: Characteristics of Masonry Buildings	413		
		8.1.1 General Considerations	413		
		8.1.2 Material Types and Properties	415		
	8.2	Typical Damage and Failure Modes	418		
		8.2.1 Walls	418		
		8.2.2 Coupling of Masonry Walls by Slabs, Beams or			
		Masonry Spandrels	425		
	8.3	Design Process for Masonry Buildings	429		

		8.3.1	Masonry Coupled Walls Response	429
		8.3.2	Design of Unreinforced Masonry Buildings	432
		8.3.3	Design of Reinforced Masonry Buildings	439
	8.4	3-D Re	esponse of Masonry Buildings	446
		8.4.1	Torsional Response	446
		8.4.2	Out-of-Plane Response of Walls	449
9	Timl	ber Stru	ctures	455
	9.1	Introd	uction: Timber Properties	457
	9.2	Ductile	e Timber Structures for Seismic Response	460
		9.2.1	Ductile Moment-Resisting Connections in Frame Construction	457
		9.2.2	Timber Framing with Plywood Shear Panels	460
		9.2.3	Hybrid Prestressed Timber Frames	461
	9.3	DDBI	O Process for Timber Structures	462
	9.4	Capaci	ity Design of Timber Structures	463
10	Brid	ges		465
	10.1	Introd	uction: Special Characteristics of Bridges	465
		10.1.1	Pier Section Shapes	465
		10.1.2	The Choice between Single-column and Multi-column Piers	467
		10.1.3	Bearing-Supported vs. Monolithic Pier/Superstructure	
			Connection	467
		10.1.4	Soil-Structure Interaction	468
		10.1.5	Influence of Abutment Design	470
		10.1.6	Influence of Movement Joints	470
		10.1.7	Multi-Span Long Bridges	470
		10.1.8		471
		10.1.9	•	471
	10.2	Review	v of Basic DDBD Equations for Bridges	471
	10.3		1 Process for Longitudinal Response	472
		10.3.1	Pier Yield Displacement	472
		10.3.2	Design Displacement for Footing-Supported Piers	478
		10.3.3	Design Example 10.1: Design Displacement for a	
			Footing-Supported Column	481
		10.3.4	Design Displacement for Pile/Columns	483
		10.3.5	Design Example 10.2: Design Displacement for a Pile/Column	484
		10.3.6	System Damping for Longitudinal Response	485
		10.3.7	Design Example 10.3: Longitudinal Design of a	
			Four Span Bridge	489
	10.4	Design	a Process for Transverse Response	494
		10.4.1	Displacement Profiles	495
		10.4.2		498
		10.4.3		498
			· I U	

		10.4.4	Design Example 10.4: Damping for the Bridge of Fig. 10.17	500	
		10.4.5	Degree of Fixity at Column Top	502	
			Design Procedure	503	
		10.4.7	Relative Importance of Transverse and Longitudinal Response	505	
		10.4.8	Design Example 10.5: Transverse Design		
			of a Four-Span Bridge	507	
	10.5	Capacit	ty Design Issues	512	
		10.5.1	Capacity Design for Piers	512	
		10.5.2	Capacity Design for Superstructures and Abutments	513	
	10.6	Design	Example 10.6: Design Verification of Design Example 10.5	516	
11	Struc	tures wi	ith Isolation and Added Damping	519	
	11.1	Fundar	nental Concepts	519	
		11.1.1	Objectives and Motivations	519	
		11.1.2	Bearing Systems, Isolation and Dissipation Devices	522	
		11.1.3	Design Philosophy/Performance Criteria	523	
		11.1.4	Problems with Force - Based Design of Isolated Structures	524	
		11.1.5	Capacity Design Concepts Applied to Isolated Structures	526	
		11.1.6	Alternative Forms of Artificial Isolation/Dissipation	527	
		11.1.7	Analysis and Safety Verification	528	
	11.2	Bearing	g Systems, Isolation and Dissipation Devices	529	
		11.2.1	Basic Types of Devices	529	
		11.2.2	"Non-Seismic" Sliding Bearings	530	
		11.2.3	Isolating Bearing Devices	531	
		11.2.4	Dissipative systems	544	
		11.2.5	Heat Problems	554	
		11.2.6	Structural Rocking as a Form of Base Isolation	557	
	11.3	Displac	cement-Based Design of Isolated Structures	559	
		11.3.1	Base–Isolated Rigid Structures	559	
		11.3.2	Base-Isolated Flexible Structures	571	
		11.3.3	Controlled Response of Complex Structures	579	
	11.4	Design	Verification of Isolated Structures	5 9 6	
		11.4.1	Design Example 11.7: Design Verification of		
			Design Example 11.3	596	
		11.4.2	Design Example 11.8: Design Verification of		
			Design Example 11.5	597	
12	Wharves and Piers				
	12.1	Introdu	uction	599	
	12.2	Structu	aral Details	601	
	12.3	The De	esign Process	602	
		12.3.1	Factors Influencing Design	602	
		12.3.2	Biaxial Excitation of Marginal Wharves	603	

Syn	nbols I	List	703		
Ref	erence	es	691		
14	Draft	t Displacement-Based Code for Seismic Design of Buildings	677		
		13.3.4 Other Structures	676		
		13.3.3 Structural Wall Buildings	672		
		Reinforced Concrete Frame	666		
		13.3.2 Assessment Example 2: Assessment of a			
		13.3.1 Frame Buildings	661		
	13.3	Displacement-Based Assessment of MDOF Structures	659		
		under Transverse Response	656		
		13.2.3 Assessment Example 13.1: Simple Bridge Column			
		Assessment	655		
		13.2.2 Incorporation of P- Δ Effects in Displacement-Based			
		13.2.1 Alternative Assessment Procedures	653		
	13.2	Displacement-Based Assessment of SDOF Structures	653		
		13.1.3 Incremental Non-linear Time History Analysis	650		
		13.1.2 Equivalent Elastic Strength Assessment	649		
	1.5.1	13.1.1 Standard Force-Based Assessment	649		
15	13.1		647 647		
13	Displacement-Based Seismic Assessment				
	12.9	Aspects of Pier Response	645		
	12.8		639		
	120	12.7.2 Shear Key Forces	638		
		12.7.1 General Capacity Design Requirements	634		
	12.7		634		
		12.6.2 Inelastic Time History Analysis	630		
		12.6.1 Eccentricity	628		
	12.6	Design Verification	628		
		12.5.4 Inelastic Static Analysis of a Fixed Head Pile	621		
		Pile In-Ground Hinge	618		
		12.5.3 Moment-Curvature Characteristics of Prestressed			
		12.5.2 Moment-Curvature Characteristics of Pile/Deck Connection	613		
	14.0	12.5.1 Prestressed Pile Details	612		
	12.5	Lateral Force-Displacement Response of Prestressed Piles	612		
		12.4.2 Performance Criteria for Prestressed Concrete Piles 12.4.3 Performance Criteria for Seismic Design of Steel Pipe Piles	611		
		12.4.1 POLA Earthquake Levels and Performance Criteria12.4.2 Performance Criteria for Prestressed Concrete Piles	609		
	12.4	Port of Los Angeles Performance Criteria 12.4.1 POLA Earthquake Levels and Performance Criteria	608 609		
	10.4	12.3.3 Sequence of Design Operations	604		
		1222 Semana of Design Operations	604		

Abbreviations	713
Index	715
Structural Analysis CD	721