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Abstract—The human body displacement estimation in differ-
ent gait patterns using wearable sensors is extremely challenging
due to lack of external references. In this paper, we present
a novel algorithm to estimate the Center of Mass (CoM) dis-
placement of human body during walking, running and hopping
using 7 body-worn Sensor Measurement Units (SMUs). The lower
body posture and feet displacements are firstly estimated by
a complementary Kalman filter (CKF) which compensates the
orientation, velocity and position errors of the Inertial Navigation
system (INS) solutions through its error state vector. The CoM
displacement can then be acquired by further fusion of the lower
body posture and feet locations based on the linked biomechanical
model. The experimental results have shown that our method
can accurately capture human motion including orientation and
locomotion for these three different gait patterns with regard to
the optical motion tracker.

Index Terms—Displacement estimation, Complementary
Kalman filter, Human biomechanical model, Motion capture.

I. INTRODUCTION

Human gait analysis and lower limb motion capture have

been widely used for animation, physical therapy, bio-

engineering, neurology and rehabilitation. With rapid techno-

logical advances in Micro-electro-mechanical systems (MEM-

S), Sensor Measurement Units (SMUs, consisting of micro

accelerometers, gyroscopes and magnetometers) are increas-

ingly being used in human motion capture systems because of

their compact size and ubiquitous deployment [1]–[4]. SMUs

can be attached to body segments to measure the orientations

of the body segments via fusion of sensor measurements.

Based on the estimated orientations and the biomechanical

characteristics of human body, the posture of the whole body

can be obtained. Unfortunately, the subject’s location within a

global coordinate system cannot be reliably recovered because

there is no external reference in a self-contained micro-sensor

based motion capture (MMocap) system.

Since low-cost MEMS sensors are subject to significant

random noise and bias, the subject’s displacement estimation

in space remains as a challenge in MMocap systems. There

is some current work attempting to solve the problem. Meng

et al. [5] proposed to estimate the displacement of human

walking based on a 3D human biomechanical model, and

obtained good results for walking via applying the fact that

there is always at least one foot in contact with the ground

during walking. The method is not applicable for the CoM

displacement estimation during running and hopping as there

is a phase no foot contacting the ground at all. To estimate

the CoM displacement during running and hopping, the most

intuitive method is to detect no ground contact periods and

estimate the CoM position using double integration method.

Researchers have proposed several methods to detect the

ground contact phase during movements. For example, Kazuki

et al. [6] proposed to put four push button switches under the

shoes (two switches under the toe and two switches under

the heel). This method will increase the cost of the system,

and make the system more complicated. Moreover, it cannot

work robustly, such as, when people run in tiptoe, it might be

quite difficult to detect the reference point correctly. Young

[7] derived a formula that the hip velocity is the opposite

of the anchor joint, which stays stationary on the ground

during movements. The hip velocity can be calculated from

integration of acceleration, but the integration will bring drifts.

If the anchor joint exists, the velocity of the anchor joint is

used to update the hip velocity; and if not, the hip velocity

will be used directly to get the position of the hip. However,

the formula is broken as the anchor is transferred between

joints during movements. Yun et al. [8] described a method for

using accelerometer data combined with orientation estimated

from the same sensor module to calculate the position during

walking and running. The periodic nature of these motions

includes short periods of zero foot velocity when the foot

is stationary on the ground. This pattern allows for precise

drift error correction. Relative position is calculated through

double integration of the accelerometer data. They got some

preliminary results for running outside in a straight line.

Despite these efforts, significant problems still remain.

In this paper, we propose an algorithm to estimate the CoM

displacement for different gait patterns, including walking,

running and hopping. 7 SMUs are placed on the lower body

segments to get their orientations and the displacements of

both feet, which are achieved by a complementary Kalman

filter (CKF). The CKF compensates the orientation, velocity

and position errors of the Inertial Navigation system (INS)

solutions through its error state vector. Zero velocity update

(ZUPT) is also employed to restrict the fast growing drifts

during integration for feet displacements estimation. The CoM

displacement can then be acquired by further fusion of the

lower body orientation and feet locations based on the linked
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biomechanical model. The proposed method makes it possible

to capture full human motion including posture and locomo-

tion accurately in an area of unlimited size with no supporting

infrastructure.

The remainder of the paper is organized as follows: Section

2 presents the details of the proposed methods to estimate the

CoM displacements for different gait patterns. Experimental

methods and results are provided in Section 3. Finally, con-

clusion and future work of this study are given in Section 4.

II. PROPOSED ALGORITHM

The orientations of the SMUs and body segments are

represented by quaternions. For relatively short time intervals,

the discrete-time process model for quaternion [9] can be

expressed as

�� = exp

(

1

2
Ω(�⃗�)Δ�

)

��−1 (1)

where �� consists of a vector part �⃗�=[�1,�, �2,�, �3,�]
T
∈ℜ3 and

a scalar part �4,�∈ℜ, i.e. ��=
[

�⃗T� , �4,�
]T

=[�1,�, �2,�, �3,�, �4,�]
T

,

and the superscript ‘T’ denotes transpose. Hereafter quaternion

is defined as the orientation of the SMUs relative to the global

frame unless otherwise specified. �⃗�=[��,�, ��,�, ��,�]
T

is the

angular rate, Δ� is the sampling interval, Ω(�⃗�) is a 4×4 skew

symmetric matrix as in

Ω(�⃗�) =

[

− [�⃗�×] �⃗�
−�⃗T

� 0

]

, (2)

and [�⃗�×] represents the cross product operator.

Displacement can be estimated by double integration of the

body acceleration represented in the global frame, denoted by

�⃗G� , as in

	⃗� = 	⃗�−1 + �⃗G� Δ�


⃗� = 
⃗�−1 + 	⃗�Δ�.
(3)

Since the accelerometer signal �⃗A,t consists of a body acceler-

ation component �⃗� and a gravitational acceleration component

⃗�, gravitational acceleration must be removed before integra-

tion. The orientations of the sensor relative to the global frame

�� can be used to get the linear acceleration by

�⃗G� = �(��)�⃗A,� − ⃗0 (4)

where �(��) is the direction cosine matrix in terms of a quater-

nion between the sensor frame and global frame described by

�(��) =
(

�24,� − �⃗
T
� �⃗�

)

I3 + 2�⃗� �⃗
T
� − 2�4,� [�⃗�×] (5)

and ⃗0 is the gravitational acceleration in the global frame.

However, it is difficult to remove the gravitational component

clearly from the accelerometer signal. Any small error in �⃗G�
can make the displacement error grow cubically over time.

The goal of this study is to estimate the CoM displacement

to reconstruct the locomotion for human different gait patterns

in MMocap system. Because of the unbounded drifts in the

double integration process, the CoM displacement cannot

be obtained by double integration of the acceleration data

Biomechanical
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Fig. 1. The schematic overview of the proposed algorithm.

from the pelvis directly. This paper proposes to estimate the

orientations of the lower body segments and displacement of

both feet based on the INS mechanism first. ZUPT technique

is imported when the feet are stationary on the ground to

restrict the unbounded drifts of the feet displacements. Then

the CoM displacements are estimated using the displacements

of both feet and the orientations of lower body segments

based on the human lower body biomechanical model. The

hierarchical human model [10] is imported to eliminate the

position error of each segment in relation to each other.

The external ground contact update is further deployed to

delimitate the displacement drifts. The schematic overview of

the algorithm is shown in Fig. 1.

A. Sensor signal model

In our system, the SMU includes three types of sen-

sors, namely accelerometer, gyroscope and magnetometer. The

model of the measured gyroscope and accelerometer signals

is given below.

1) Gyroscope: The gyroscope signal �⃗G,� is modeled as the

sum of the angular rate �⃗�, the bias �⃗G,�, and a white noise

term �⃗G,�,

�⃗G,� = �⃗� + �⃗G,� + �⃗G,�. (6)

The slow variation of the gyroscope bias is modeled as a first-

order Markov process driven by a white Gaussian noise �⃗bG,�,

with covariance matrix �bG,

�⃗G,� = �⃗G,�−1 + �⃗bG,�. (7)

2) Accelerometer: The accelerometer signal �⃗A,� is mod-

eled as the sum of the motion acceleration �⃗�, the gravitational

acceleration ⃗�, the bias �⃗A,�, and a white Gaussian noise term

�⃗A,�,

�⃗A,� = �⃗� + ⃗� + �⃗A,� + �⃗A,�. (8)

The slow variation of the accelerometer bias is modeled as a

first-order Markov process driven by a white Gaussian noise

�⃗bA,�, with covariance matrix �bA,

�⃗A,� = �⃗A,�−1 + �⃗bA,�. (9)

B. Filter Structure

A CKF is designed to estimate the orientation and displace-

ment for both feet, and orientation only for other segments,

namely, femur, tibia and pelvis in the human lower body.

The CKF operates on the errors of the state variables using a

feedback structure. The flowchart of the CKF is given in Fig. 2.

For the feet, the error states at time � for the filter are defined

as ��⃗�=
[

��⃗T� , �⃗
T
G,�, �
⃗

T
� , �	⃗

T
� , �⃗

T
A,�

]T

, including the vector part
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of the error quaternion ��⃗�, the gyroscope bias �⃗G,�, the error

position �
⃗�, the error velocity �	⃗�, and the acceleration bias

�⃗A,�. Each component has 3 elements, corresponding to a 15-

dimensional estimation. For other segments in the lower body

model, the error states are ��⃗�=
[

��⃗T� , �⃗
T
G,�

]T

, which is a 6-

element vector.

The process model of the proposed filter is governed by

��⃗� = Ft��⃗�−1 + �⃗� (10)

where �⃗� is the process noise with covariance matrix �=
�
(

�⃗��⃗
T
�

)

, and Ft is state transition matrix, which needs to

be determined.

1) Quaternion error model: Define the true quaternion ��
as the composition of the estimated quaternion �̂� and error

quaternion ���
�� = �̂� ⊗ ��� (11)

where ⊗ is the quaternion multiplication. Due to ��� de-

notes a small rotation, the scalar part of the quaternion will

be close to 1, which can be written as ��� =
[

��⃗T� , 1
]T

=

[���,1, ���,2, ���,3, 1]
T

. Thus we only include ��⃗� in the error

state. The dynamic equation of the quaternion can be written

as follows:

�̇� =
1

2
�� ⊗ �⃗� =

1

2
�̂� ⊗ ��� ⊗ �⃗�, (12a)

�̇�=˙̂�� ⊗ ���+�̂� ⊗
˙���=

1

2
�̂�⊗�⃗G,�⊗���+�̂�⊗ ˙���. (12b)

From (12a) and (12b), we can get

˙��� =
1

2
(��� ⊗ �⃗� − �⃗G,� ⊗ ���)

=
1

2
(��� ⊗ �⃗G,� − �⃗G,� ⊗ ���) −

1

2
��� ⊗ ��⃗�

(13)

where ��⃗�=�⃗G,�+�⃗G,� as defined by (6). Let Υ(�⃗G,�) and

Υ+(�⃗G,�) denote the linear mappings for �⃗G,� from ℜ3 to

ℜ4×4, as in Υ(�⃗G,�)=

[

− [�⃗G,�×] −�⃗G,�

�⃗TG,� 0

]

and Υ+(�⃗G,�) =
[

[�⃗G,�×] −�⃗G,�

�⃗TG,� 0

]

. Then we can get

[

˙��⃗�
0

]

=
1

2

(

Υ+ (�⃗G,�) ��� − Υ(�⃗G,�) ���
)

−
1

2
���⊗ ��⃗� (14)

where ��� ⊗ ��⃗�=��⃗�+��� (���, ��⃗�), and HOT stands for

higher order terms. By neglecting the higher order terms, we

can get
[

˙��⃗�
0

]

=

[

�⃗G,� × ��⃗�
0

]

−
1

2

[

�⃗G,� + �⃗G,�

0

]

. (15)

The dynamics of the error quaternion can be written as:

˙��⃗� = [�⃗G,�×] ��⃗� −
1

2

(

�⃗G,� + �⃗G,�

)

, (16)

thus the dynamics of the error quaternion can be integrated

as:

��⃗� = (I3 + Δ� [�⃗G,�×]) ��⃗�−1 −
1

2
Δ�⃗�G,�−1 − �⃗G,� (17)

where I3 is a 3 × 3 identity matrix, and �⃗G,� = 1
2
Δ��⃗G,�−1

is the zero mean Gaussian noise, with covariance matrix �q.

2) Velocity error model: To get the dynamics of the velocity

errors, we start with the true body acceleration, denoted by ˙⃗	�:

˙⃗	� = �(��)�⃗
′

A,� − ⃗0 = �(�̂�)�(���)�⃗
′

A,� − ⃗0. (18)

The estimated body acceleration, denoted by
˙̂
	⃗�, is expressed

as
˙̂
	⃗� = �(�̂�)�⃗A,� − ⃗0. (19)

The difference between the true and estimated acceleration is

computed by

˙�	⃗� =
˙̂
	⃗�− ˙⃗	�

=�(�̂�)(�⃗
′

A,�+�⃗A,�)−�(�̂�)�(���)(�⃗
′

A,� − �⃗A,�)

≈�(�̂�) [I3−�(���)] �⃗
′

A,�+�(�̂�)�⃗A,�.

(20)

The direction cosine matrix for a small error quaternion ���
can be approximated by

�(���) ≈

⎡

⎣

1 −2���,3 2���,2
2���,3 1 −2���,1
−2���,2 2���,1 1

⎤

⎦ , (21)

thus we can get

˙�	⃗� = −2�(�̂�)��⃗� × �⃗
′

A,� +�(�̂�)�⃗A,�

= 2�(�̂�)
[

�⃗ ′

A,�×
]

��⃗� +�(�̂�)�⃗A,�.
(22)

For relatively short time intervals, the dynamics of the error

velocity can be written as

�	⃗�=�	⃗�−1 + 2Δ��(�̂�)
[

�⃗ ′

A,�×
]

��⃗�−1 + �⃗A,� (23)

where �⃗A,� = �(�̂�)�⃗A,� is a zero mean Gaussian noise, with

covariance matrix �v.

3) Position error model: The dynamics of the error position

is straightforward:

�
⃗� = �
⃗�−1 + Δ��	⃗� + �⃗p,� (24)

where �⃗p,� is a zero mean Gaussian noise, with covariance

matrix �p. From (7), (17), (9), (23) and (24), we can get F�

as

F�=

⎡

⎢

⎢

⎢

⎢

⎣

I3 + Δ� [�⃗G,�×] − 1
2
Δ�I3 0 0 0

0 I3 0 0 0

0 0 I3 Δ�I3 0

2Δ��(�̂�)
[

�⃗ ′

A,�×
]

0 0 I3 0

0 0 0 0 I3

⎤

⎥

⎥

⎥

⎥

⎦

(25)

where 0 is a 3×3 matrix of zeros. It is assumed that the noise

for each state variable is uncorrelated with the noise for each

other state. Hence, all non-diagonal terms of the noise matrix

� are zero and � = ��� (�q, �bG, �p, �v, �bA) for the big

CKF and � = ��� (�q, �bG) for the small CKF.

The measurement model of the proposed method is gov-

erned by

��⃗� = Ot��� + �⃗� (26)

where ��⃗� is the error measurement, �⃗� is the measurement

Gaussian noise with covariance matrix � = �
(

�⃗��⃗
T
�

)

, which
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Fig. 2. The flowchart of the CKF for orientation and displacement estimation. 3-axis acc, gyro and mag represent the 3-axis signals from the three types

of sensors. Orientation �̂� and position ˆ⃗�� are estimated based on INS. The difference between the accelerometer and magnetometer measurements and the
gyroscope-based accelerometer and magnetometer measurements are used by CKF which estimates the errors of state. When foot is stationary on the ground,
the error between the estimated velocity and zero velocity is also used as the input of CKF. The error state of the CKF are used to compensate acceleration,
angular rate, orientation velocity and position estimates resulting in �⃗ ′

A,�
, �⃗ ′

G,�
, ��, �⃗�, and �⃗�. The measurement noise covariance matrix �S,t is adaptively

adjusted to compensate for magnetic and body acceleration disturbances.

is assumed to be uncorrelated with the process noise, and Ot

is the measurement matrix, which needs to be determined. The

error input to the CKF is the difference between the true and

estimated data provided by accelerometer and magnetometer

in the sensor frame. Given the last estimate of the quaternion

��−1, by applying (1), the current predicted quaternion �̂� can

be obtained. Given the normalized gravity vector �⃗A and the

earth magnetic vector �⃗M in the global frame, the relation

between the true and estimated gravity vector and the earth

magnetic vector in the sensor frame can be expressed as

�⃗ ′A,�=�
T(��)�⃗A=�T(���)�

T(�̂�)�⃗A=�T(���)ˆ⃗�A,�

�⃗ ′M,�=�
T(��)�⃗M=�T(���)�

T(�̂�)�⃗M=�T(���)ˆ⃗�M,�

(27)

where �⃗ ′A,� and �⃗ ′M,� are the normalized gravity and earth

magnetic vector in the BCS, ˆ⃗�A,� and ˆ⃗�M,� are the gyroscope-

based estimated normalized gravity and earth magnetic vector

in the BCS. The error measurement input to the CKF is got

from

[

��⃗A,�

��⃗M,�

]

=

[

�⃗A,� − ˆ⃗�A,�

�⃗M,� − ˆ⃗�M,�

]

=

[

�⃗ ′A,� +
�⃗�+	⃗A,t+
⃗A,�

�0
− ˆ⃗�A,�

�⃗ ′M,� +
�⃗M,�+
⃗M,�

0
− ˆ⃗�M,�

]

≈

[

�⃗ ′A,� −
ˆ⃗�A,�

�⃗ ′M,� −
ˆ⃗�M,�

]

+

[


⃗A,�

�0

⃗M,�

0

]

=

[

�T(���) − I3

�T(���) − I3

]

[

ˆ⃗�A,�

ˆ⃗�M,�

]

+

[


⃗A,�

�0

⃗M,�

0

]

= 2

[

[

ˆ⃗�A,�×
]

[

ˆ⃗�M,�×
]

]

��⃗� +

[


⃗A,�

�0

⃗M,�

0

]

(28)

where 0 and  0 are magnitude of the gravity and earth

magnetic vector respectively. (28) only holds when �⃗� and

�⃗M,� can be ignored compared to 0 and  0, respectively.

When the sensor node is stationary, the error velocity vector

�	⃗� can be taken as the third error measurement, which can

be calculated for ZUPT as �	⃗� = ˆ⃗	�−
[

0 0 0
]T

. To sum

up, if ZUPT condition satisfies, the measurement function of

the CKF can be modeled as

��⃗� =

⎡

⎣

2
[

ˆ⃗�A,�×
]

0 0 0 0

2
[

ˆ⃗�M,�×
]

0 0 0 0

0 0 0 I3 0

⎤

⎦ ��� + �⃗�, (29a)

or else

��⃗� =

[

2
[

ˆ⃗�A,�×
]

0 0 0 0

2
[

ˆ⃗�M,�×
]

0 0 0 0

]

��� + �⃗�. (29a)

Gravity and earth magnetic direction are used to correct

the estimated quaternion. However, body acceleration interfer-

ences and magnetic disturbances will decrease the accuracy

of the estimated orientations. Thus, the confidence of these

two types of data source needs to be determined before used

for correction. An adaptive weighting mechanism is proposed

by adjusting measurement noise covariance matrix �S,t to

preclude the body acceleration and magnetic disturbances from

influencing the filter behavior. The implementation details of

adaptive weighting can be found in [11].

During the movement of walking, running and hopping,

there is a phase in which the foot stays still on the ground.

For walking, the foot flat phase during the stance is detected

to apply ZUPT. This phase is ensured to last for about 0.3

seconds. For running, the still time is much shorter than

walking, and there is a phase in which both feet leave ground.
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The still time of running is detected by the sharp spikes on

heel strike. Actually it is challenging to detect the stationary

phase of running. The foot stays stationary for a much shorter

time during running than walking, and for fast speed running,

there is no such stationary phase at all. The foot stationary

detection relies on basic signal processing techniques with

accelerometers or gyroscopes. For different gait patterns, the

detection of foot stationary is obtained by tuning the threshold

of the sensor signals.

A standard Kalman filter is employed to deal with the

filtering [12]. After CKF measurement update, we will correct

the previously predicted orientation, velocity and position at

time step � using the updated CKF error state through the

following equations:

��= �̂� ⊗ ���=
[

Ξ(�̂�) �̂�
]

[

��⃗�
1

]

=Ξ(�̂�)��⃗� + �̂�

	⃗� = ˆ⃗	� − �	⃗�


⃗� = ˆ⃗
� − �
⃗�,

(30)

where Ξ(�̂�) =

[

[�⃗×] + ��,4I3
−�⃗T�

]

. The error state is reset to

zero after being used in INS to refine the current orientation,

velocity and position. The bias terms i.e. gyroscope and

accelerometer biases are maintained over time in the CKF.

C. Biomechanical fusion

When we get the orientations of the SMUs relative to the

global frame, denoted as �GS, sensor to body calibration needs

to be performed to get the orientations of the body segments

in the global frame, denoted as �GB. The details of sensor

to segment calibration can be seen in [10]. A fusion method

is proposed to get the CoM displacement based on the linked

biomechanical model as shown in Fig. 3. The right CoM posi-

tions will be taken for example to show the calculation process.

Constitute two sets of the right lower limb segments and the

right lower limb joints, S={Rpelvis,Rfemur,Rtibia,Rfoot},

and J={RCoM,Rhip,Rknee,Rankle,Rtoe}. The right CoM

positions can be obtained according to the following equations:


⃗J�−1,� = 
⃗J�,� − �
GB
S�−1,�

⊗ !⃗S�−1,0 ⊗
(

�GB
S�−1,�

)

−1

(31)

where � = 5, 4, 3, 2, respectively, are the elements indexes of

the two sets. !⃗S�−1,0 is the initial vector representing the lower

body segments, which should be measured before calculation.

�GB
S�−1,�

are the orientations of the lower body segments at time

step � during the movements, which rotate the initial vectors of

the body segments in the GCS. 
⃗J�,� represents the positions

of the lower body joints in the GCS.

From biomechanical fusion, we can obtain two positions of

the CoM from each lower limb at time step �, denoted by 
⃗LCoM

and 
⃗RCoM, respectively. Constituting a new state vector "⃗� of


⃗LCoM and 
⃗RCoM, i.e. "⃗�=
[


⃗ L
CoM,�, 
⃗

R
CoM,�

]T
. Statistically, the

two left/right CoM positions got from each lower limb are

supposed to be the same. The relation of the two left/right

CoM positions can be expressed as in a linearized function:

#⃗p,� = U"⃗� + $⃗p,� (32)

Fig. 3. The biomechanical model of the human lower body. The circles are
the joints; the lines with arrow indicate the body segments, and the arrow
shows the kinematic propagation direction in the lower body model; and the
cubes represent the SMUs placed on the segments.

where $⃗p,� is the measurement noise, which is supposed to be

Gaussian noise. The measurement #⃗p,� is supposed to be zero

and the measurement matrix U is given by

U =
[

I3 −I3

]

(33)

Another Kalman filter is adopted to reduce the CoM position

error. Because Kalman filter implements in a prediction-update

way at each time step, the dynamical model is given by a

random walk model of the state variable which is represented

as

"⃗ ∗� = "⃗−� + %⃗� (34)

where "⃗−� contains the two estimated CoM positions got from

biomechanical fusion, "⃗ ∗� is the predicted position vector, and

%⃗� is the process noise and is also assumed to be a Gaussian

vector. Then the CoM position is updated by

"⃗+� = "⃗ ∗� +&�(#⃗p,� −U"⃗−� ) (35)

where "⃗+� is the CoM positions after the Kalman update and

&� is the Kalman gain.

D. Ground contact update

During biomechanical fusion, ground contact update is

introduced. The external contact is used to further limit the

boundless integration error of the foot position. It makes use

of the fact that under most circumstances, it can be assumed

that human body must be in contact with a flat ground, and

thus the vertical position of the joint in contact with the

ground is supposed to be zero. Fig. 4 shows the ground contact

information of walking, running and hopping. When the signal,

which can be the accelerometer or gyroscope measurements,

is high, the foot leaves the ground, and when the signal is low,

the foot is in contact with the ground. The solid line stands for

right foot, and dashed line is for left foot. During the walking

gait cycle, there is always at least one foot in contact with

the ground. During the double support phase, both feet are

in contact with the ground. For running, there is a phase in

which both feet leave the ground. For hopping, both feet leave
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Walking

Running

Hopping

Time

No contact Ground contact

Right foot

Left foot

Fig. 4. The ground contact information of walking, running and hopping.
When the signal is high, it means that foot leaves the ground; when low, the
foot is in contact with the ground. The solid line shows the contact info. of the
right foot, and the dashed line gives the contact info. of the left foot during
walking, running and hopping, respectively.

ground or fall to the ground at the same time. It is much easier

to detect the ground contact phase for hopping.

Ground contact information is detected using the hypothesis

testing. It is supposed that when the foot is stationary on

the ground, the accelerometer only measures the gravitational

acceleration, so the norm of the accelerometer measurements

should be equal to 0. The null hypothesis is defined as joint

'∈Jref is stationary at time step �, which can be described as

�0� ,� : (A,� = 0, ' ∈ Jref (36)

where Jref is defined as the set of the entire potential reference

joints which are in contact with the ground, and in this paper,

this set includes left toe and right toe. (A,� is the !2-norm of

the accelerometer signals �⃗A,�.

The statistic used for the test is the absolute value difference

between the norm of the accelerometer signal and the norm

of the gravitational acceleration, defined by

��,� = ∣(A,� − 0∣ . (37)

The probability of �0� ,�, denoted by )
(

�0� ,�

)

is calculated

with

)
(

�0� ,�

)

= ) ((A,�∣0) = 2Φ (−��,�) (38)

where Φ is the cumulative distribution function of the standard

normal distribution. When the foot stays stationary on the

ground, the probability is 1, and when the foot swings in the

air, the probability is 0. The threshold should be defined to

determine if the foot is in contact with the ground.

III. EXPERIMENTAL RESULTS AND PERFORMANCE

EVALUATION

The MMocap system for the lower body consists of 7

SMUs. Each SMU contains a tri-axis accelerometer, a tri-

axis gyroscope and a tri-axis magnetometer. These SMUs are

connected to a base station by data buses. The base station

sends data packets via a high-speed wireless module to PC

for data processing. The sampling rate of the MMocap system

is 100Hz. The SMUs are fixed on the human lower body seg-

ments tightly using elastic straps. Meanwhile, optical markers

for the laboratory bound Osprey optical motion analysis sys-

tem are placed on the joints of human lower body (pelvis, hips,

Fig. 5. The attachment of the optical markers and 7 SMUs to the human
lower body. The optical markers are placed on the joints to get the position
and orientation of each segment to provide ground truth of the fusion results
from the measurement of the SMUs.

knees, ankles and toes). The Osprey system consists of 6 video

cameras operating at 100Hz. The position of the markers and

SMUs attached to the human lower body are shown in Fig. 5.

To validate the performance of the proposed algorithm, ex-

periments including walking, running and hopping are carried

out in the capture volume of the reference optical system. The

subject conducts each experiment for 5 times at a comfortable

speed. There is no defined path for each experiment. The

subject can walk/run forwards, backwards and sideways at will

and make turns freely. The accuracy of the displacement of the

root joint is quantified by calculating the Root Mean Square

Error (RMSE) with respect to the ground truth provided by

the optical system. From each sensor readings, we can get

an orientation represented by a quaternion at each time step.

After sensor to segment calibration, the orientations for each

segment can be obtained. Taking the root joint for example,

the estimated orientations for running gait are shown in Fig. 6.

The dashed line is the ground truth provided by optical system.

The dot-dashed line is the orientation obtained by integrating

the angular rate signal from the pelvis. The solid line is the

estimation results using our proposed method. From Fig. 6,

our method achieves good accuracy in orientation estimation

compared to the ground truth provided by the optical system.

The estimated displacements for walking, running and hopping

are shown in Fig. 7, 8 and 9, respectively. In each figure,

the dashed line is the reference displacement provided by

the optical system. The solid line shows the displacement

estimated by our proposed method. The the dotted-dashed line

is the CoM displacements obtained by double integration of

the accelerometer measurements placed on the pelvis after

removing gravity components. It should be noted that the

initial position is subtracted from the reference position to

compare with the estimated displacements. From Fig. 7, 8

and 9, the integration method can only get accurate CoM

displacement for a very short time period, and the drifts in

the displacement increase over time. In general, the estimated

CoM displacement by our proposed method is quite similar

to the results of the optical Osprey system, which means

that our proposed method can estimate the CoM displace-
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Fig. 6. The orientations of the root joint represented by quaternion in the
global coordinate system for running. Solid line: our method; dashed line: the
ground truth; dot-dashed line: integration method.
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Fig. 7. The CoM displacement of walking (upper: X, middle: Y, lower: Z).
Solid line: The estimated CoM displacement; dashed line: the ground truth;
dot-dashed line: integration method.

ment accurately for different gait patterns of walking with

high accuracy. The average RMS errors and their standard

deviations (RMSE±SD) of the displacement for each gait

calculated over 5 trials are given in Table I. From Table I,

the RMSE values of our method are much smaller compared

to the RMS errors of the displacement got from the double

integration of the acceleration of the pelvis. It means that

the accuracy of our method to estimate the displacement is

improved a lot. However, for running, the RMS error is still

higher than walking which is because during running, the

stationary phase is quite short, so it is more difficult to detect

this phase correctly compared to walking and hopping.

Based on our proposed algorithm, the foot displacement

should be obtained first. To get the foot displacement, the
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Fig. 8. The CoM displacement of running (upper: X, middle: Y, lower: Z).
Solid line: The CoM displacement after geometric fusion; dashed line: the
ground truth; dot-dashed line: integration method.
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Fig. 9. The CoM displacement of hopping (upper: X, middle: Y, lower: Z).
Solid line: The CoM displacement after geometric fusion; dashed line: the
ground truth; dot-dashed line: integration method.

acceleration in the global coordinate system should be cal-

culated using the orientations of the sensor placed on the

feet. To get the CoM displacement using the biomechanical

model, the orientations of the lower body segments are needed.

Thus, the major cause of the displacement error comes from

the orientation estimates. Two possible explanations for the

orientation errors are described. Firstly, the earth magnetic

field is used for the drift correction around the vertical axis

of the orientation. Due to the experiments are conducted in

the indoor environment, the structural beam in the building

and electronic devices around may distort the magnetic field

strongly. The high level magnetic disturbances would cause

orientations error. Compensation of magnetic disturbances

should be done to improve the orientations of the human
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TABLE I
THE COM DISPLACEMENT RMS ERRORS AND THEIR STANDARD DEVIATIONS ON EACH AXIS BETWEEN THE GROUND TRUTH AND ESTIMATED

DISPLACEMENT OF WALKING, RUNNING AND HOPPING. EACH EXPERIMENT ARE PERFORMED 5 TIMES. PROVIDED BY OUR PROPOSED METHOD (EST)
AND INTEGRATION METHOD (INT)

RMSE±SD(m)
walking running hopping

Est Int Est Int Est Int

X 0.08±0.02 3.56±0.89 0.12±0.05 5.73±1.39 0.09±0.03 1.56±0.75
Y 0.05±0.03 4.01±0.76 0.10±0.02 6.05±1.76 0.04±0.03 1.98±0.73
Z 0.04±0.01 2.29±0.58 0.06±0.03 3.11±0.74 0.08±0.02 2.31±0.95

body segments. Secondly, the gravitational acceleration is used

to provide inclination stability of the orientation estimations.

However, accelerometer measures the vector sum of the body

acceleration and gravitational acceleration. When gravitational

vector is used for inclination correction, the body accelerations

are the disturbances to the gravitational vector. To improve

the accuracy of the orientations, efforts should be taken to

eliminate the deleterious effects caused by the disturbances

of the body acceleration. Sun et al. [13] proposed a method

to estimate the acceleration caused by human movements

by modeling the human acceleration as a first-order Markov

process, and subtracted it from the accelerometer signals

before it is used for correction. The accuracy of the orientation

was improved after removing motion acceleration from the

accelerometer measurements. To further improve the accuracy

of the system, removing the acceleration caused by human

motions from the gravitational acceleration is considered as

our future work.

IV. CONCLUSION

This paper proposes a self-contained displacement estima-

tion method to estimate the CoM displacement for MMocap

system. The method works without any additional external

supporting infrastructures, such as magnetic, UWB or GPS. A

CKF which operates on the errors of the state variables using

a feedback structure is designed to estimate the orientations of

the lower body segments as well as the displacements of both

feet. The CoM displacement can then be acquired by further

fusion of the lower body orientations and feet locations based

on the linked biomechanical model. From the experimental

results, our method can accurately capture human motion

including orientation and locomotion for these three different

gait patterns, e.g. walking, running, and hopping with regard to

the optical motion tracker. Further improvements are expected

in our work. The threshold used to detect the foot stationary

phase for ZUPT has to be manually tuned to get the right

information for different gaits. For real-time system, we have

to detect this phase adaptively.
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