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Displacement phase differences 

in a harmonically oscillating pile 

N. MAKRIS* and G. GAZETAS* 

Analytical solutions are developed for harmonic 

wave propagation in an axially or laterally oscil- 

lating pile embedded in homogeneous soil and 

excited at the top. Pilesoil interaction is realisti- 

cally represented through a dynamic Winkler 

model, the springs and dashpots of which are given 

values based on results of finite element analyses 

with the soil treated as a linear hysteretic contin- 

uum. Closed form expressions are derived for the 

phase velocities of the generated waves; these are 

compared with characteristic phase velocities in 

rods and beams subjected to compression- 

extension (axial) and flexural (lateral) vibrations. 

The role of radiation and material damping is elu- 

cidated; it is shown that the presence of such 

damping radically changes the nature of wave pro- 

pagation, especially in lateral oscillations where an 

upward propagating (reflected) wave is generated 

even in a semi-infinite head-loaded pile. Solutions 

are then developed for the phase differences 

between pile displacements at various depths. For 

most piles such differences are not significant and 

waves emanate nearly simultaneously from the 

periphery of an oscillating pile. This conclusion is 

useful in analysing dynamic pile to pile interaction, 

the consequences of which are shown in this Paper. 

KEYWORDS: deformation; dynamics; piles; vibration; 
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Des solutions analytiques ont ctb d&velopp&s afin 

d’Ctudier la propagation harmonique des ondes 

dans un pieu ancri! dans un sol homogbe, excite! zi 

son sommet, et oscillant IaGralement et axi- 

alement. L’interaction sol-pieu est bien reprbent&e 

par le modkle dynamique de Winkler dont les 

ressorts et ‘pistons’ sont affect(ts de valeurs calcu- 

l&s P partir d’analyses par Blbments finis, le sol 

&tant supposit g hyst&sis linbaire. Des expressions 

de forme bquivalente sont d&iv&s pour calculer les 

vitesses de phase des ondes induites. Elles sont 

compari?es aux vitesses en phase caracti?ristiques 

obtenues dans des barres et poutres soumises I des 

vibrations de type compression-extension (axiales) 

ou de type flexion (IatCrales). Le ri31e de la radi- 

ation et celui du ‘damping’ du matkriau sont expli- 

qub; l’on montre que l’existence d’un ‘damping’ 

modifie totalement la nature de la propagation des 

ondes, tout particuli&ement lors d’oscillations late- 
rales oi une onde se propageant vers le haut 

apparait, m@me dans un pieu semi-h&i charge! P 

son sommet. Des solutions permettant de calculer 

les differences de phase entre les deplacements des 

pieux P differentes profondeurs sont alors develop- 

pi?es. Pour la plupart des pieux, ces differences ne 

sont pas signiticatives et les ondes Cmergent $ peu 

pr&s simultanCment de la p&iphi?rie du pieu oscil- 

lant. Cette conclusion est trb utile pour I’analyse 

de I’interaction dynamique pieu-pieu dont I’article 

d&rite les consCquences. 

INTRODUCTION 

This work was prompted by the need to develop 

a deeper understanding of some of the wave pro- 

pagation phenomena associated with the dynamic 

response of piles and pile groups. For example, it 

is well known (Kaynia & Kausel, 1982; Nogami, 

1983; Novak, 1985; Roesset, 1984) that two 

neighbouring piles in a group may affect each 

other so substantially that the overall dynamic 

behaviour of the group is vastly different from 

that of each individual pile. This pile to pile inter- 

action is frequency-dependent and is a conse- 

quence of waves that are emitted from the 

Discussion on this Paper closes 1 July 1993; for further 
details see p. ii. 
* State University of New York at Buffalo and Nation- 
al Technical University of Athens. 

periphery of each pile and propagate until they 

‘strike’ the other pile. 

As an example, for a square group of 2 x 2 

rigidly-capped piles embedded in a deep homoge- 

neous stratum Fig. 1 shows the variation with fre- 

quency of the vertical and horizontal dynamic 

group stiffness and damping factors, defined as 

the ratios of the group dynamic stiffness and 

dashpot coefficients, respectively, to the sum of 

the static stiffnesses of the individual solitary 

piles. At zero frequency the stiffness group factors 

reduce to the respective static group factors (also 

called ‘efficiency factors’ by geotechnical 

engineers) which are invariably smaller than 

unity. 

The continuous curves in Fig. 1, adopted from 

the rigorous solution of Kaynia & Kausel (1982), 

reveal that, as a result of dynamic pile to pile 
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Fig. 1. Normal&d vertical and lateral impedances of a 2 x 2 pile group (E,/E, = 1000, L/d = 15, v = O-4, jl = O-05): 

solid curves = rigorous solution of Kaynia & Kausel (1982); points = simplified solution of : (a) Dobry & Gazetas 

(1988); (b) Makris & Gazetas (1992) (impedances are expressed as t + iu, Q; subscripts z and x refer to vertical and 

horizontal mode* KC’) and QC’) 

of the single (solitary) pile) 

are the total dynamic stiffness and damping of the Qpile group; ZP) is the static stitTuess 

interaction, the dynamic stiffness group factors 

achieve values that may far exceed the static efh- 

ciency factors, and may even exceed unity. Both 

stiffness and damping factors are not observed in 

the single pile response. Specifically, the peaks of 

the curves occur whenever waves originating with 

a certain phase from one pile arrive at the adjac- 

ent pile in exactly opposite phase, thereby indu- 

cing an upwards displacement at a moment when 

the displacement due to this pile’s own load is 

downwards. Thus, a larger force must be applied 

to this pile to enforce a certain displacement 

amplitude, resulting in a larger overall stiffness of 

the group as compared to the sum of the individ- 

ual pile stiffnesses. 

Also shown in Fig. 1 as points are the results of 

a very simple analytical method of solution pro- 

posed by Dobry & Gazetas (1988) and further 

developed by Makris & Gazetas (1992), Makris, 

Gazetas & Fan (1992) and Gazetas & Makris 

(1991). The method introduces a number of physi- 

cally motivated approximations, and was orig- 

inally intended merely to provide a simple 

engineering explanation of the causes of the 

numerically observed peaks and troughs in the 

dynamic impedances of pile groups. Yet, as is 

evident from the comparisons shown in Fig. 1, 

the results of the method plot remarkably close to 

the rigorous curves for all three pile separation 

distances considered (two, five and ten pile 

diameters). Even some detailed trends in the 

group response seem to be adequately captured 

by the simple solution. Further successful com- 

parisons are given in the above-mentioned refer- 

ences. 

The fundamental idea of this method is that the 
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displacement field created along the sidewall of 

an oscillating pile (in any mode of vibration) pro- 

pagates and affects the response of neighbouring 

piles. It is assumed that cylindrical waves are 

emitted from the perimeter of an oscillating pile, 

and propagate horizontally in the r direction 

only. This hypothesis is reminiscent of the shear- 

ing concentric cylinders around statically loaded 

pile and pile groups assumed by Randolph & 

Wroth (1978, 1979), and is also similar to the 

dynamic Winkler assumption introduced by 

Novak (1974) and extensively used with success in 

dynamic analyses of pile groups. It is further 

assumed that these cylindrical waves emanate 

simultaneously from all points along the pile 

length; hence for a homogeneous deposit they 

spread out in phase and form a cylindrical wave- 

front, concentric with the generating pile (unless 

the pile is rigid, the amplitude of oscillation along 

the wavefront will be a (usually decreasing) func- 

tion of depth). The resulting dynamic complex- 

valued pile to pile interaction factor for vertical 

oscillation takes the simple form (Dobry 8z 

Gaze&s, 1988) 

~V=~)“‘exp(-@{)exp(-io~) (1) 

where r,, = d/2 is the radius of the pile, S is the 

axis to axis distance of the piles, and V, and /l are 

the S wave velocity and hysteretic damping ratio 

of the soil respectively. 

The most crucial of the introduced simplifying 

assumptions is that the waves created by an oscil- 

lating pile emanate simultaneously from all peri- 

metric points along the pile length, and hence, for 

a homogeneous stratum, form cylindrically 

expanding waves that would ‘strike’ an adjacent 

pile simultaneously at various points along its 

length, i.e. the arriving waves are all in phase, 

although their amplitudes decrease with depth. 

The question arises as to whether the satisfac- 

tory performance of such a simple method is 

merely a coincidence (e.g. due to cancellation of 

errors), or a consequence of fundamentally sound 

physical approximations. Answering this question 

was one of the motives for the work reported in 

this Paper. Hence, the first objective was to inves- 

tigate whether or not this key assumption of syn- 

chronous wave emission from an oscillating pile 

is indeed a reasonable engineering approximation 

and, if it is, for what ranges of problem param- 

eters. 

A second, broader, objective of the Paper is to 

obtain a deeper physical insight into the nature of 

wave propagation in a single harmonically oscil- 

lating pile embedded in homogeneous soil. To 

this end, realistic dynamic Winkler-type models 

for vertically and horizontally oscillating single 

piles are developed, from which analytical solu- 

tions are derived for the apparent phase velocities 

of the waves propagating along the pile and for 

the variation with depth of pile displacements 

and phase angle differences. A limited number of 

rigorous finite element results are also obtained 

to substantiate the findings of the Winkler model. 

It is shown that the apparent phase velocities for 

typical piles are indeed quite large, and the dis- 

placement phase differences correspondingly 

small, especially within the upper, most active 

part of the pile. It is also found that at very high 

frequencies the phase velocities in a pile embed- 

ded in homogeneous soil become asymptotically 

equal to the wave velocities of an unsupported 

bar or beam in longitudinal and flexural oscil- 

lations. 

PROBLEM DEFINITION 

The problem studied involves a single floating 

pile embedded in a uniform halfspace and sub- 

jected at its head to a harmonic loading of circu- 

lar frequency w. The pile is a linearly elastic 

flexural beam of Young’s modulus E, , diameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, 

cross-sectional area A,, bending moment of 

inertia I, and mass per unit length m. The soil is 

modelled as dynamic Winkler medium, resisting 

pile displacements through continuously distrib- 

uted linear springs (k, or k,) and dashpots (c, or 

c,), as shown in Fig. 2 for horizontal (x) and verti- 

cal (z) motion. For the problem of lateral vibra- 

tion (horizontal motion), the pile is considered to 

be fixed-head (zero rotation at the top). The force 

to displacement ratio of the Winkler medium at 

every depth defines the complex-valued imped- 

ances k, + iwc, (vertical motion) or k, + iwc, 

(horizontal motion), i = J( - l), where c, and c, 

would, in general, reflect both radiation and 

material damping in the soil. k, and k, are in 

units of stiffness per unit length of the pile (i.e. 

[F] CL]-‘); they correspond to the traditional 

subgrade modulus (in units [FJ CL]-“) multiplied 

by the width (diameter) d of the pile. 

Frequency-dependent values are assigned to 

these uniformly-distributed spring and dashpot 

coefficients, using the following algebraic expres- 

sions developed by matching the dynamic pile- 

head displacement from Winkler and from 

dynamic finite-element analyses (Roesset & 

Angelides, 1979; Blaney, Kausel & Roesset, 1976; 

Dobry et al., 1982; Gazetas & Dobry, 1984a, 

1984b) 

k, E 0.6E,(l + -$,/a,,) (2a) 

c~ x (Cr)radiation + (Cz)hysteresis 

(2b) 
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Fig. 2. Dynamic Winkler model for axially and laterally oscillating pile 

k, z 1.2E, 

‘.X E (CxLliation + (Cxhystcresis 

(24 

z 2dp+ + (%>“4]~ ;1,4 +2/I b (2d) 

where B is hysteretic damping, ps is mass density, 

E, is Young’s modulus, V, is S-wave velocity of 

the soil, a, = ad/l/ and V,, is an apparent veloc- 

ity of the compressionextension waves, called 

‘Lysmer’s analogue’ velocity (Gazetas & Dobry, 

1984a, 1984b) 

3.4 
v,, = 

n(l - v)v, 
(3) 

where v is the Poisson’s ratio of the soil. For an 

average typical value v = 0.4, equation (3) gives 

V La z 1.8 V, and equation (2d) simplifies to 

Similar springs and dashpots can be obtained 

using Novak’s plane-strain elastodynamic solu- 

tion for a rod oscillating in a continuum (Novak, 

1974, 1977, 1985; Novak et al., 1978). Novak’s 

results would be exact for an infinitely long, infi- 

nitely rigid rod fully embedded in a continuum 

space. In contrast, equations (2b) and (2d) for 

radiation damping are derived in two steps 

(4 

(4 

their form is determined from a simple one- 

dimensional ‘cone’ model (Gazetas & Dobry, 

1984a; Gazetas, 1987; Wolf, 1992) which 

resembles Novak’s model but does allow for 

some non-zero vertical deformation of the soil 

during lateral motion, as is appropriate due to 

the presence of the stress-free surface and to 

the non-uniformity with depth of pile deflex- 

ions 

the numerical coefficients of the two expres- 

sions are then calibrated by essentially curve- 

fitting rigorous finite element results for a 

variety of pilesoil geometries and properties, 

as well as for different loading conditions 

(Gazetas & Dobry, 1984a; Gazetas, 1987; 

Wolf, 1992). 

The spring constants, however, are derived 

solely through curve-fitting, i.e. by matching pile- 

head stiffnesses of the Winkler and the finite 
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element formulations. One approximation intro- 

duced in deriving equations (2a-2d) is to neglect 

the (relatively small) influence of pile slenderness 

and flexibility (measured for example through L/d 

and E,/E,). 

The resulting values from equations (2)-(4) for 

k,, c,, k, and c, at various frequencies are gener- 

ally comparable with those of Novak. Equations 

(2)-(4) are preferred for three reasons: first, they 

are simpler (as they do not involve complicated 

expressions with Bessel functions of complex 

argument). Second, they avoid the substantial 

underestimation of stiffness values by the plane- 

strain model at frequencies wd/VS < 1, i.e. in the 

range of practical interest. (Novak compensates 

for this underestimation through a simple intu- 

itive adjustment, which assumes constant k, and 

k, below two different ‘cut-off’ frequencies.) 

Third, the lateral radiation damping expression of 

equation (2d) does not show the spurious high 

sensitivity to Poisson’s ratio observed in the 

plane-strain Novak’s solution, which arises 

mainly from the unrealistic restriction of vertical 

soil deformation. 

It is also worth noting that dynamic Winkler 

springs and dashpots have been derived by Liou 

& Penzien (1980), Roesset & Angelides (1980) and 

Kagawa & Kraft (1980), using yet another meth- 

odology. They all used three-dimensional formu- 

lations (based on either Midlin’s static solution or 

finite element modelling) to relate local unit soil 

reaction to local pile deflexion at various depths 

along the pile; a single complex-valued dynamic 

stiffness S, and S, to be uniformly distributed as 

springs and dashpots along the pile (as is appro- 

priate for a Winkler foundation) was then derived 

by a suitable integration of local stiffnesses over 

depth. Only a small number of results, pertaining 

to a uniform soil stratum, have been presented in 

those studies. 

All these alternative methods give k and c 

values that are in reasonable agreement for the 

range of frequencies of greatest interest (a, < 1): 

individual differences in the Winkler parameters 

do not exceed lo-20%. The findings of this Paper 

can be shown to be quite insensitive to such dif- 

ferences; hence any set of expressions for the 

Winkler parameters could have been adopted 

successfully. 

The c, values obtained from equations (2c), (2d) 

and (4) apply in real situations only for fre- 

quencies w above the stratum cutoff frequency 

The latter is nearly identical to the natural 

zrqGf&icy w = (n/2)VJH in horizontal (shear) 

vibrations ofs the soil stratum. For w < w, radi- 

ation damping is vanishingly small, in function of 

the material damping; it may then be stated that 

c, x (cx)hystcrcsis = 2/X/m (5) 

Similarly, the c, expression in equations (2a) and 

(2b) applies only for frequencies above the 

stratum cutoff frequency in vertical compression- 

extension vibration, which is approximately equal 

to 

0, 2 3.4oJ[IL(l - v)] 

For w < w, 

AXIAL VIBRATION 

Governing equations and solution 

For very short (say, L/d < 10) and stiff 

(E,/E, > SOCKI) piles, the basic validity of the sim- 

phfying assumption of synchronous wave emis- 

sion is self-evident, as such piles respond 

essentially as rigid bodies to axial loading (static 

or dynamic). For the other extreme case, of long 

and flexible piles, the pile is considered here as an 

infinite elastic ‘thin’ rod (i.e. lateral inertia effects 

are ignored, in accordance with classical rod 

theory). The deflected state of such a pile and the 

forces acting on an element are shown in Fig. 2. 

For harmonic steady-state oscillations, the verti- 

cal displacement v(z, t) of a point on a cross- 

section of the pile at depth z and time t can be 

written as 

v(z, t) = v(z) eio’ 

and dynamic equilibrium yields 

(8) 

E A dz44 
- - (k, + ioc, - mo’)v(z) = 0 

’ ’ dz’ 
(9) 

Solutions are obtained separately for each of the 

two possible cases o < 6, and w 2 W, , where 

6, = (k,/m)‘/’ 

First, consider o < 6,. This inequality trans- 

lates approximately to a, < 1.8, which is the 

usual range of practical interest in foundation 

problems. Equation (9) can be written as 

d’o(z) 
- - n2v(z) = 0 
dz2 

where 12’ is a complex number (having positive 

real and imaginary parts) with 

L = R cos i + i sin : 
> 

(12) 

where 

(13) 
R = (kz - mo2)2 + (wc,)~ ‘I4 

(4, A,)’ 1 

0 = tan-’ 
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The solution to equation (11) is 

MAKRIS AND 

e 
v(z,t)=A,exp Rcos-z ( > 2 

wt - R sin - z (15) 

where A, and A, are integration constants to be 

determined from the boundary conditions. For 

the displacement to remain finite as z tends to 

infinity, A, must vanish. If V, is the displacement 

at the pile head (z = 0), equation (15) leads to 

r(z,r)=VOexp(-Rcos:z) 

6 
ot - R sin - z 

2 
(16) 

For an applied harmonic load P, exp (iwt) at the 

top of the pile (PO is a real number), the pile-head 

displacement is a complex number (its real part 

being the component that is in phase with the 

applied force, while the imaginary part is the 

out-of-phase component) 

(17) 

where R and ~9 are given by equations (13) and 

(14) respectively. It can be checked that when 

w = 0 (i.e. under static loading), 0 = 0 and equa- 

tion (14) reduces to the familiar static expression 

(Roesset & Angelides, 1980) 

(18) 

Equation (16) represents a travelling wave of 

amplitude decreasing 

and of phase velocity 

c, = w 
R sin 612 

(19) 

in which both R and 0 are functions of the fre- 

quency w, and depend on the damping c,. With 

an arbitrary dynamic loading, when several fre- 

quencies would be present, each harmonic com- 

ponent of motion would propagate with a 

different velocity, and therefore the motion expe- 

rienced by a receiver at a neighbouring location 

would be different (less pronounced) than the 

exponentially with depth 

GAZETAS 

input (source) motion: hence the term ‘dispersion’ 

relation which is used in wave propagation 

theory to describe such an equation. 

Second, consider o 2 W, This inequality 

translates to approximately a, > 1.8, a frequency 

range of lesser interest, but nevertheless examined 

here as it gives an insight into asymptotic behav- 

iour at high frequencies. The solution now takes 

the form 

D(z, t) = V, exp 

K 
6 

x exp i wt - R cos - z 
2 >I (20) 

where R is as in equation (13), but 9 is negative 

(-x/2 < I9 < 0). 

In this case 

v, = 

-PO sini+icos: 
( > 

RR, 4, 
(21) 

Equation (20) represents a travelling wave with 

amplitude decreasing exponentially with depth 

and a phase velocity 

c,= o 
R COS e/2 

(22) 

Equation (22) is the dispersion relation for the 

second case. 

Discussion of results 

From the dispersion relation of equation (19), the 

ratio of the pile phase velocity to the soil S-wave 

velocity is obtained 

C 
a= ~oJEed4hl 

K {u-i - (7d4)SA no212 +f2211’2 

where 

x sin {$ tan-’ cf2/(fi - (7c/4)s,s,ao2)]} 

(23) 

s1 = GJE, (24a) 

s2 = E$E, (24b) 

s3 = PplP, (24~) 

fi = 0.6(1 + 0.5,/a,) (24d) 

f* = 1.27rs,ajj’4 + 2fifl (24e) 

The ratio CJV, is plotted against a, in Fig. 3 for 

two characteristic values of relative pile stiffness, 

s2 = E,fE, = 1000 and 5000, and two pile mass 

densities, pP = 0.7~~ and 1.4~~. In the frequency 

range of greatest practical interest (i.e. for 0.2 < 
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Fig. 3. Dispersion relationships for phase velocity of waves in an axially vibrating iniinitely 

long pile, in the frequency range of greatest interest, for two values of pile-to-soil Young’s 

moduli ratio and two values of pile-to-soil mass densities ratio 

a, < 0.8), the ratio CJV, attains relatively high 

values, of the order of 70 for EJEs = 1000 and 

170 for E,/E, = 5000. As a result, phase differ- 

ences introduced by waves travelling down the 

pile would be negligible compared with the phase 

differences due to S-waves travelling in the soil 

from one pile to another. Thus, for example, with 

a pile of L = 20d and pP = 1.4p,, the error 

yielded by assuming synchronous wave emission 

would be of the order of 4% (for EplEs = 1000) 

and 2% (for EdEs = 5000). 

To show this more clearly, the phase angle 

from equation (16) is 

e 
4(z) = of - Rz sin - 

2 
(25) 

Figure 4 shows the phase differences 

A0 = Ad(z) between the displacement of a section 

at depth z and that at the head of the pile, for two 

values of a0 (0.2 and 0.5) and for three values of 

EJE,: 5000 (typical for soft soil), 1000 (medium- 

stiff soil), and 300 (stiff-hard soil). Evidently, even 

in the case of hard soil (i.e. in the case of a rela- 

tively very flexible pile), the pile at a depth 

z = 20d has a phase difference with the head of 

only about 15”. For the softer soil (stiffer pile), 

Ad < 4”. These differences are indeed insignifi- 

cant (within engineering accuracy), and therefore 

the assumption of synchronous emission is a rea- 

sonable approximation. A similar conclusion can 

be drawn from Fig. 3 of Novak (1977). 

As these results were derived on the basis of an 

infinitely long bar on dynamic Winkler founda- 

tion model, it is of interest to show their general 

validity for piles of finite length supported by a 

visco-elastic continuum. To this end, a rigorous 

finite element study was conducted for a pile of 

slenderness ratio L/d = 20 embedded in a deep 

homogeneous stratum and having EJE, = 1000 

or 5000. Fig. 5 shows the distribution along the 

length of the pile of the real and imaginary parts 

of the vertical pile displacement, u = u(z), for the 

same two values (0.2 and 0.5) of the frequency 

factor a,. Evidently, the imaginary and real com- 

ponents of the displacement as well as the 

resulting phase angle remain almost constant 

with depth; hence, the phase differences between 

various points along the pile and its head (also 

plotted in Fig. 5) are very small, and their values 

are very close to those predicted by the analytical 

method (Fig. 4). Thus, the analytical results and 

the hypothesis of synchronous wave emission are 

largely substantiated. However, in much stiffer 

soils, for which the moduli ratio EJEs may attain 

values lower than, say, 300 (e.g. hollow pipe piles 

in hard soil), the apparent phase velocity C, 

becomes a smaller multiple of V,, and then for 

very slender piles (L > 40) phase differences along 

the pile may reach 40” at higher frequencies. In 
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Fig. 4. Phase difference between displacements at depth z and at pile top for two values of the frequency factor 

such cases the assumption of synchronous emis- 

sion might not be applicable. Dobry & Gazetas 

(1988) have reported that their simple pile group 

interaction factor (equation (l)), leads to an over- 

prediction of pile group effects for values of E,/E, 

lower than 300. 

A further observation can be made on the dis- 

persion relation of equation (19). While Fig. 3 

plots C, for a homogeneous halfspace, in reality, 

bedrock or at least a stiff rock-like soil layer is 

likely to exist at some depth below the ground 

surface. Then the soil deposit is a deep stratum 

rather than a true halfspace, although a long pile 

can still be modelled as an infinitely long beam. 

Below the stratum cutoff frequency u, the pile- 

soil system radiates very little energy, and c, 

essentially reflects only the hysteretic material 

damping in the soil. Without material damping 

c, = 0, and the solution reduces to the case dis- 

cussed by Wolf (1985, 1988), in which the phase 

velocity is indeed infinite (as 6 = 0). Therefore as 

a first approximation, for w < 0,: C, -+ co. In 

general, however, the phase velocity is finite pro- 

vided that a mechanism of energy dissipation 

exists along the pile (radiation or material 

damping). 

It is also of interest to study the complete evol- 

ution of the phase wave velocity over an extreme 

range of frequencies (0 < a, < lo), as shown in 

Fig. 6 for a pile with E,/E, = 1000 and in Fig. 7 

for a pile with E,JEs = 5000 for two different pile 

mass densities: pP = 1.4~~ and 0.7~~. The solid 

curve represents the developed dispersion rela- 

tion; it is obvious that equations (19) and (22) 

give the same value for both C, and dCJda, at 

the characteristic frequency WZ. Also plotted in 

Figs 6 and 7 are the dispersion relations of two 

simpler associated systems, namely a semi-infinite 

rod on elastic-Winkler foundation and a semi- 

infinite unsupported rod. These two systems have 

been studied extensively in the wave-propagation 

literature (e.g. Graff, 1975; Achenbach, 1976), and 

are obviously particular cases of the pile system 

studied here (Fig. 2). The phase velocity C, for 

the rod on elastic foundation is obtained from 

equations (19) and (22) by setting c, = 0 at all fre- 

quencies. As discussed by Wolf (1985) and men- 

tioned above, C, becomes infinite at and below 

the characteristic frequency W, Therefore 

C,=m, ifw<f%, (26a) 

WW 

The phase velocity C, for longitudinal waves in 

an unsupported rod (called bar or rod wave 
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Fig. 5. Distribution with depth of normalized vertical pile displacements and 

pile-displacement phase differences for an L/d = 20 pile in a deep homoge- 

neous soil: (a) Q./E, = 1000; (b) &,/ES = 5000; displacements of soil below the 

pile are also plotted; real part denotes the component of displacement that is in 

phase with the applied force and imaginary part denotes the component of dis- 

placement that is out of phase with the applied force; results were obtained with 

a dynamic finite element formulation (Blaney et al., 1976) for the two shown 

values of the frequency factor 

velocity) is equal to J(E,/p,) only when lateral 

inertia effects are ignored. However, for the fre- 

quency range studied (a, < lo), the decline of C, 

with frequency (called the Pochhammer effect in 

wave theory (Graff, 1975)) is indistinguishable in 

the scale of the figure. 

Figures 6 and 7 reveal an interesting feature: 

all three phase wave velocities C,, C, and C, 
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Fig. 6. Comparison of dispersion relations for three long- Fig. 7. Comparison of dispersion relations for three long- 

itudinal phase velocities: C,, for a pile supported on itudinal phase velocities: C, , for a pile supported on axial 

axial springs and dashpots (modelling embedment in springs and dashpots (modelling embedment in 

halfspace); C,, for a bar on axial springs; CL for an balfspace); Cs, for a bar on axial springs; CL for an 

unsupported bar-two different values of pile-to-soil mass unsupported bar-two different values of pile-to-soil mass 

densities ratio; EJE, = 1000 densities ratio; E&E, = 5000 

reach identical asymptotic values at high fre- 

quencies. It appears that at these frequencies pile 

inertia effects dominate, while the resistance of 

the supporting springs and dashpots becomes 

negligibly small in comparison. 

LATERAL VIBRATION 

Governing equation and solution 

With regard to lateral excitation, the assump- 

tion of an infinitely long pile is quite appropriate 

even for stiff piles, as their active length is usually 

smaller than the total pile length. Indeed, for a 

pile on Winkler foundation, the active length 

below which the pile deformations are negligible 

is given by Randolph (1981) as 

1, % 4(u)“* N 1.75d(+y4 

EdE, = 5000 

ede. = 0.7 

I 

0 IA 1 I I 

i 

I 

. G \ 
ede. = 1.4 

I I I I 

72 
I 

4 6 a 10 

FL&d/ V, 

a, = codI’/ , 

where the expression for k, from equation (2~) has 

been used. For the typical values of E,/E, = 1000 

and 5000, the active lengths from equation (27) 

are only about 10d and 1% respectively. As 

shown by Krishnan et al. (1983) and Gazetas & 

Dobry (1984a, 1984b) the concept of the active 

length is also valid under dynamic harmonic 

loading, although the exact values of I, are slight- 

ly larger than those predicted from equation (27). 

Hence, in most cases, piles respond as infinitely 

long beams. 

The pile is modelled as an Euler-Bernoulli 

beam, where the effects of rotatory inertia and 

shear distortion are ignored. The deflected state 

of the pile and the forces acting on an element are 

shown in Fig. 2, with u(z, t) denoting the horizon- 

tal displacement at depth z and time t. Zero slope 

is imposed at pile head to account for the shape 

of deformation induced by a horizontally- 

translating rigid pile cap (fixed-head pile, in 
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geotechnical terminology). For a harmonic 

steady-state excitation u(z, t) = U(Z) exp (iot), 

dynamic equilibrium gives 

E I  d4W 
- + (k, + iwc, -  mw2)u(z) = 0 

p p dz4 
(28) 

The solution to equation (28) is sought separately 

for the two cases of w < i3, and w > Li,, where 

w, = (/CX/m)“Z. 

First, consider w < I&. This is again the usual 

range of greatest interest in foundation dynamics, 

corresponding approximately to a, < 1.8. The 

solution of equation (28) derived in Appendix 1 

takes the form 

u(z, t) = ? (( 1 + i) exp (- Rbz) 

x exp [i(wt -  Raz)] 

+ (1 -  i) exp (-Raz) 

x exp [i(wt + Rbz)]} (29) 

where U, = u(O) is the displacement amplitude at 

the pile head and R, 0, a and b are as given in 

Appendix 1. 

For an applied harmonic load P, exp (iwt) 

with P, real, U, is complex 

u, = Pobl - iy2) 

Ep 1, R3(yi2 + ~2’) 

(30) 

where 

y1 = -a3 - b3 + 3a2b + 3ab2 

yz = a3 - b3 + 3a2b - 3ab2 

(3W  

(31b) 

and a, b are as given in Appendix 1. It can be 

checked that when w = 0 (i.e. under static 

loading), a = b = 1, y1 = 4 and y2 = 0; then 

equation (30) reduces to the familiar static expres- 

sion 

PO 
U,=- 

4E, Ip 1’ 
(32) 

with I (from Appendix 1) being simply equal to 

the static value (Elson, 1984) 

1 = (k,,‘4E, 1p)1’4 (33) 

The first term in the parentheses in equation 

(29) corresponds to a downwardly propagating 

wave and the second term to an upwardly propa- 

gating wave, both with amplitude decaying expo- 

nentially as with z. It should be emphasized that 

the two waves coexist and the displacement dis- 

tribution along the pile should always be regard- 

ed as the superposition of both. Nevertheless, the 

phase velocity of each wave separately can be 

identified, giving a dual dispersion relation 

“‘=R(cos{+sin~) 

(34a) 

“=R(coscsin$ 

(34b) 

Second, consider w > cc,, which translates 

approximately to n, > 1.8, a frequency range of 

less practical interest, which is examined here as 

providing insight into asymptotic behaviour at 

high frequencies. Following a similar procedure 

to the one already outlined, gives the solution 

u(z, t) = ?{(I •t i) exp (- Rqz) exp [i(wt -  Rpz)] 

+ (1 - i) exp (- Rpz) exp [i(wt + Rqz)]} 

(35) 

where 

R= 
(mu2 - kJ2 + (W C.J~ I’* 

(E, I,)’ 1 (36) 

p = cos $ > 0, 
e 

q= -sin;>0 (37) 

and B is given by the same expression as for the 

case w < 6, (given in Appendix I), but now takes 

a negative value (- 7r/2 < 6 < 0). Again, the solu- 

tion is a superposition of two waves, one propa- 

gating downwards and one propagating upwards, 

with respective phase velocities 

c,L =w 

R cos f 

(38a) 

C,f= w 

-Rsin$ 

(3W  

In the completely hypothetical case of c, = 0, one 

would have 0 =0, p= 1, q =0, R = (mw2 

- kJE,I) , ‘I4 = 1. and equation (36) would 

reduce to 

u(z, t) = + = ((1 - i) exp (--AZ) exp (iwt) 

+ (1 + i) exp [i(wt - AZ)]} (39) 

In this case only down-going waves exist, as the 

term corresponding to incoming waves reduces to 

a decaying exponential. 
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DISCUSSION 

From equations (34) and (38), the phase velo- 

cities C,l and Cat of the direct (down-going) and 

reflected (up-coming) waves are shown as solid 

lines in Figs 8 and 9, over a wide range of the 

frequency factor 0 < n, < 10. Also plotted in Figs 

8 and 9 are the frequency-dependent phase velo- 

cities of a semi-infinite beam on the elastic- 

Winkler foundation (Cw), and a semi-infinite 

unsupported flexural beam Cr. These two cases 

are recovered from the developed formulation for 

c, = 0 and k, = c, = 0, respectively. The corre- 

sponding phase velocities are 

C,=co, ifw<i3, (40a) 

ede. = 0.7 

0 I I I 1 A 

0 j2 4 6 8 10 

W,dlV, 

a, = w dlV, 

Fig. 8. Phase wave velocities of beams in lateral harmo- Fig. 9. Phase wave velocities of beams in lateral harmo- 

nic oscillations; tbe two solid lines are for the up-going nic oscillations: the two solid linea are for the up-going 

sod down-going waves in a pile oa lateral springs and and down-going waves in a pile on lateral springs and 

dashpots (modelling embedment in halfspace); Cw is for dasbpots (modelling embedment in halfspace); C, is for 

a flexoral beam on lateral springs; C, is for an unsup a flexural beam oo lateral ‘spriogs’; C, is for ao ansop- 

ported flexoral beam-two ditTerent values of pile-to-soil ported flexoral beam-two different values of pile-to-soil 

mass densities ratio; E,/E, = 1000 mass densities ratio; E&E, = SO00 

Ja0 
c,=v+- + ( > 

l/4 

13 

(41) 

where f, = 1.2 and f2 = 6~,ai/~ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2fifl. 

The following trends are worthy of note. 

The presence of material and geometric 

damping in the pile-soil system has a highly sig- 

nificant effect on the nature of propagating waves 

and the phase velocities. As mentioned above, an 

upward propagating (reflected) wave is generated 

only in the damped system. Moreover, at the low 

frequency range of usual interest (a, < I), while 

the phase velocity becomes infinite in the 

undamped case Cw, both C,l and C,t achieve 

very small values and, in fact, tend to zero with 

decreasing frequency. Hence the presence of a 

rigid soil layer or rock at a shallow depth that 

would create a cutoff frequency w,, below which 

@de, = 1.4 

W,dlV, 

a, = w d/ V, 
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radiation damping diminishes, deserves attention. 

In such a case, if soil and pile material damping 

are ignored, then c, = 0, 0 = 0, a = b = 1, R = 

(k, -  mw2/4E, IJ 1/4 = 1 (real number), and equa- 

tion (29) simplifies to 

u(z, t) = U, e-“‘(sin lz + cos AZ) eiwt (42) 

which describes a standing wave and is identical 

in form to the static solution (Scott, 1981), to 

which it reduces for w = 0. Hence, in this case 

there are no propagating waves (infinite apparent 

phase velocity) and all points move in phase, 

although with an amplitude decreasing exponen- 

tially with depth, in accordance with the behav- 

iour of the elastically restrained beam (equation 

(42)) already described. 

The phase velocity C,l of the downwardly pro- 

pagating wave in the pile remains very close to 

the velocity C, of the (unsupported) flexural beam 

for all but the very low frequencies. Nevertheless, 

it is perhaps surprising that C,’ is much closer to 

C, than to C,.,. Hence, neglecting radiation and 

material damping may adversely affect even the 

nature of the solution. 

The phase velocities of the three downwardly 

propagating waves, namely Cal in the pile, C, in 

the elastically-restrained beam and C, in the flex- 

ural beam, converge to a single curve at high fre- 

quencies (say a, > 3), and tend to infinity by 

growing in proportion to ,/a. However, the 

velocity C,’ of the reflected wave in the pile soon 

diverges significantly and tends to infinity as a 

power of o. That the phase velocities grow 

without limit with increasing frequency is an inac- 

curacy attributed to neglecting rotatory inertia 

and shear distortion effects. Such effects must be 

included in the formulation if more correct values 

are to be obtained for phase velocities at very 

high frequencies. 

No clear conclusions can be drawn from Figs 8 

and 9 regarding the assumption of synchronous 

wave emission from a laterally oscillating pile. 

Both C,l and Cat attain relatively small values, of 

about 2-5 V,, in the frequency range of greatest 

interest, even for a relatively stiff pile (EJE, = 

5000). It seems that the only way to assess the 

significance of such wave velocities is to examine 

the phase differences among lateral displacements 

along the pile. 

1.2 

r 

0.8 h 

Fixed-head pile 

zid 

Fig. 10. Variation with depth of phase diierences and 

normalized lateral deflexion amplitudes at two frequency 

factors 

Fig. 11. Variation with depth of phase differences and 

normalized lateral deflexion amplitudes at two frequency 

factors 
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To this end, the phase of the motion at a par- 

ticular depth z in time t is computed from 

and for z equal to zero the phase becomes 

The phase difference between the motion at depth 

z and the motion at the head of the pile 

A+ = or - I$(z, t) (45) 

is plotted in Figs 10 and 11 as a function of z/d 

for two values of the dimensionless frequency a, 

(0.2 and 0.5) for EJES = 1000 and 5000. It is clear 

that phase differences remain quite small up to a 

certain depth, beyond which they increase 

rapidly, especially at higher frequencies. Figs 10 

and 11 also show the normalized amplitude of 

pile displacements plotted against z/d. It is 

evident that, strictly speaking, the assumption of 

simultaneous emission is not valid. Nevertheless, 

it is also clear that phase differences become sub- 

stantial only at relatively large depths where the 

displacement amplitude has decreased signifi- 

cantly; thus waves emitted from such depths 

would have a negligible amplitude and their 

phase differences would be of little, if any, conse- 

quence to adjacent piles. Hence, the error intro- 

duced by assuming synchronous wave emission 

along the pile would in most cases be acceptable. 

This may explain the successful performance of 

the method developed by Dobry & Gazetas 

(1988), Makris & Gazetas (1992), and Gazetas & 

Makris (1991), as shown in Fig. 1. 

CONCLUSIONS 

Axial vibrations 

When an infinitely long pile embedded in a 

realistic dynamic-Winkler model of a homoge- 

neous halfspace is subjected to axial harmonic 

head loading, it undergoes steady-state oscil- 

lations due to a compression-extension wave that 

propagates downwards with amplitude decaying 

exponentially with depth, and a frequency- 

dependent phase velocity C, (dispersive system). 

In the frequency range of greatest interest in 

foundation dynamics (0.2 ,< a, < 0+3), C, initially 

increases with frequency and for typical real-life 

piles achieves quite large values compared to the 

S-wave velocity in soil V,. As a result, phase dif- 

ferences between displacements along the oscil- 

lating pile are very small and can be neglected in 

approximate studies of through-soil interaction 

between two adjacent piles-a conclusion for 

which additional (direct and indirect) supporting 

evidence is provided in this Paper. 

In the frequency range of interest considered, 

the wave velocity C, of a bar elastically restrained 

solely by Winkler springs is infinite. However, C, 

could approach infinity only at frequencies below 

a possible stratum cutoff frequency (when radi- 

ation damping vanishes) if all material hysteretic 

damping were ignored. 

At high frequencies (a, x 5-lo), C, , C, and the 

(unsupported) bar wave velocity C, reach the 

same asymptotic value, equal to about J(EJp,) 

(lateral inertia Pochhammer effects are not as yet 

discernible). 

Lateral vibrations 

During lateral steady-state oscillation under 

harmonic fixed-head horizontal leading, two 

waves develop in the pile: a downwardly propa- 

gating (direct) wave with phase velocity C,l, and 

an upwardly propagating (reflected) wave with 

different phase velocity C,f-both having ampli- 

tude decaying exponentially with depth. 

The two phase velocities C,l and Cat increase 

monotonically with frequency, the latter at a 

much faster rate. In the frequency range of great- 

est interest they both attain very low values, only 

a few times larger than V, in the soil but smaller 

than C, (the phase velocity of an unsupported 

flexural beam). 

In contrast to the spring-and-dashpot sup- 

ported pile, only one downwardly propagating 

wave develops in a beam supported solely on 

springs. Moreover, the phase velocity C, in the 

latter is infinitely large below the characteristic 

frequency W, = J(kJm), i.e. in the frequency 

range of greatest interest. Therefore, ignoring the 

material and especially the radiation damping 

generated by the soil-pile system would change 

the nature of the wave propagation in laterally 

oscillating piles. 

Despite the relatively low values of C,l and Cat 

at 0 < a,, < 1.8, the two waves (direct and 

reflected) combine in such a way that phase differ- 

ences between pile deflexions at various depths 

remain quite small along the upper, most active, 

part of the pile. Such differences increase con- 

siderably at greater depths, but this has only a 

minor effect on how wave energy is radiated from 

a pile: this observation is significant in the behav- 

iour of pile groups. An exception to this behav- 

iour, however, must be noted: with hollow pipe 

piles in hard soils, for which EJE, < 300, phase 

differences may become appreciable and the 

assumption of synchronous emission might lead 

to a slight overprediction of pile to pile inter- 

action factors. 
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The phase velocities of the three downwardly 

propagating waves C,, C, and C, converge to a 

single curve at high frequencies (a, > 3), while 

growing in proportion to Jw. 

The results presented may lead to an improved 

understanding of wave propagation phenomena 

in piles, and find applications in geotechnical 

problems involving pile dynamics. 

APPENDIX 1. SOLUTION OF EQUATION (28) FOR 

w < 6, 

To obtain the solution of equation (28), first substi- 

tute 

4,P = 
k, + iwc, - mw’ 

%I, 
(46) 

and then apply the Laplace transform (to accommodate 

the boundary conditions directly) 

L d‘W 
[-]+4PLC.(z),=O 

dz4 

Denoting the Laplace transform of u(z) by Is(s) = L[u(z)] 

and using standard Laplace transform properties, equa- 

tion (47) becomes an algebraic equation in the trans- 

formed space 

f-J(s) = u’“(0) & + u”(0) -.A- 
s4 + 4P 

S3 

+ u(O) - 
s4 + 4P 

(48) 

where the prime denotes derivative with respect to z. 

Applying the inverse Laplace transform and intro- 

ducing Euler’s complex notation leads to the following 

solution, with the boundary conditions at z = 0 incor- 

porated as unknowns 

u(z) = - i[exp (iRaz) exp (Rbz) 

- exp (-iRbz) exp (Roz)][$ + $1 

- i[exp (iRbz) exp (-Raz) 

-exp(-iRnz)exp(Rbz)][$-$1 

+ [exp (iRaz) exp (Rbz) 

W 

+ exp (- iRbz) exp (Raz)] - 2 + y 1 
+ [exp (iRbz) exp (- Raz) 

- exp (-iRaz) exp (-Rbz)][z + y] (49) 

To ensure a finite displacement amplitude as z tends to 

infinity 

(504 

VW 

Using these expressions and exp (iwt) leads finally to 

u(z, t) = : {(l + i) exp (-iRbz) exp [i(ot - Raz)] 

+ (1 - i) exp (-Raz) exp [i(ot + Rbz)]} (51) 

where 

R = (kx - mw2)’ + (wc,)* “* 

(4R, 1,)’ 1 
’ 

o<e<q 

(52) 

(53) 

a = cos % + sin $ > 0, b = cos $ - sin % > 0 (54) 

NOTATION 

a, = wd/v, 

A, 
c, 

c, 

C, 

G1 

C,’ 

CE 

cw 

d 

E,, Es 

1: 
kx 

k, 

m 

dimensionless frequency 

cross-sectional area of pile 

distributed dashpot constant per unit pile 

length for soil reaction against pile lateral 

motion (equation (2d)) 

distributed dashpot constant per unit pile 

length for soil reaction against pile verti- 

cal motion (equation (2b)) 

phase velocity of wave propagating in an 

infinite rod supported by visco-elastic 

foundation and subjected to axial vibra- 

tion 

phase velocity of down-going wave pro- 

pagating in an infinite flexural beam sup- 

ported by visco-elastic foundation and 

subjected to lateral vibration 

phase velocity of up-coming wave propa- 

gating in an infinite flexural beam sup- 

ported by visco-elastic foundation and 

subjected to lateral vibration 

phase velocity of wave propagating in an 

infinite rod supported by elastic (Winkler) 

foundation and subjected to axial vibra- 

tion 

phase velocity of wave propagating in an 

infinite unsupported flexural beam sub- 

jected to lateral vibration 

phase velocity of wave propagating in an 

infinite unsupported rod subjected to 

axial vibration (longitudinal waves) 

phase velocity of wave propagating in an 

infinite flexural beam supported by elastic 

(Winkler) foundation and subjected to 

lateral vibration 

pile diameter 

Young’s moduli of pile and soil 

imaginary unit J( - 1) 

cross-sectional moment of inertia of pile 

distributed spring constant per unit pile 

length for soil reaction against pile verti- 

cal motion (equation (2c)) 

distributed spring constant per unit pile 

length for soil reaction against pile verti- 

cal motion (equation (2a)) 

distributed mass per unit length of pile 
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P, exp (ion) 

r 0 

: 

u(s, t) 

U, exp (ion) 

4% t) 
V, exp (id) 

K 
B 

A4 
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harmonic load at the pile head 

pile radius 

independent variable in Laplace space 

axis-to-axis distance between interacting 

piles 

horizontal pile displacement 

harmonic displacement of the pile head 

vertical pile displacement 

harmonic vertical displacement of the pile 

head 

S-wave velocity in soil 

damping ratio of the soil 

phase difference between the motion at 

depth z and the motion at the pile head at 

a specific time 

wave number (equation (44) or (47)) 

Poisson’s ratio of the soil 

phase of the pile motion at a particular 

depth z at time t 

circular frequency of oscillation 

stratum cutoff frequency in vertical 

(compression-extension) vibrations 

stratum cutoff frequency in horizontal 

(shear) vibrations 

characteristic frequency in horizontal 

(lateral) vibration, J(kJm) 

characteristic frequency in vertical (axial 

vibration, J(kJm) 
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