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Abstract. Dynamic range reduction and detail enhancement are two im-
portant issues for effectively displaying high-dynamic-range images ac-
quired by thermal camera systems. They must be performed in such a
way that the high dynamic range image signal output from sensors is
compressed in a pleasing manner for display on lower dynamic range
monitors without reducing the perceptibility of small details. In this paper,
a new method of display and detail enhancement for high dynamic range
infrared images is presented. This method effectively maps the raw ac-
quired infrared image to 8-bit domain based on the same architecture of
bilateral filter and dynamic range partitioning approach. It includes three
main steps: First, a bilateral filter is applied to separate the input image
into the base component and detail component. Second, refine the base
and detail layer using an adaptive Gaussian filter to avoid unwanted arti-
facts. Then the base layer is projected to the display range and the detail
layer is enhanced using an adaptive gain control approach. Finally, the
two parts are recombined and quantized to 8-bit domain. The strength
of the proposed method lies in its ability to avoid unwanted artifacts and
adaptability in different scenarios. Its great performance is validated by
the experimental results tested with two real infrared imagers. C©2011 Society

of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3659698]
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1 Introduction

Modern high-quality infrared cameras are able to produce
images that have a wide dynamic range. Raw sensor data
are often acquired at the 12- to 14-bit level that typically ex-
ceeds the 8-bit sensitivity of a state-of-the-art display device.
Furthermore, a human observer can distinguish only about
128 levels of gray (7-bit) in an image.1 Hence, a procedure
aimed at reducing the data range must take place in the pro-
cessing stage to enable the display to work with data from
the detector. This procedure must accomplish two goals: re-
duce the dynamic range of the input image into a low range
one that is acceptable for the display system and do this in
such a manner that the output image is pleasing to the human
observer.

Contrast enhancement for infrared images has been
widely investigated by many researchers, and a number of
useful techniques have been proposed in the literature. How-
ever, most of these methods2–6 operate on the low dynamic
range image (typically 8-bit) and only consider the case of
still images. It is clear that compression and enhancement
on the raw infrared data with a high dynamic range (HDR)
may be a more meaningful and challenging task since the
raw data from the analog-to-digital converter contains the
most complete information and details. Sophisticated tech-
niques are required to adapt the raw signal to the display,
maintaining, and possibly improving objects’ visibility and
image contrast.

0091-3286/2011/$25.00 C© 2011 SPIE

To our knowledge, automatic gain control (AGC) and his-
togram equalization (HE)-based methods1, 7–9 are the most
widely used display methods in infrared imaging systems.
The AGC method removes extreme values and linearly maps
the dynamic range onto an 8-bit domain. Histogram equal-
ization is achieved by normalizing the intensity distribu-
tion using its cumulative distribution function so that the
result image may have a uniform distribution of intensity.
But it typically increases contrast in the dominating tem-
perature/irradiance range and may suffer from some draw-
backs such as overenhancement, increase in the noise level,
lost in details, and washed-out effect in some almost ho-
mogeneous area.7, 8 To overcome these problems, plateau
histogram equalization9 has been proposed to display in-
frared images by suppressing the enhancement of homoge-
neous regions with a plateau threshold value. In addition to
these global histogram equalization methods (we call these
techniques global histogram equalization methods since the
whole image uses only one gray-level mapping function),
local histogram equalization techniques can also be applied
to display wide dynamic range infrared images. Adaptive
histogram equalization (AHE)7 is capable of improving an
image’s local contrast, bringing out more detail in the im-
age by computing the histogram of a local window centered
at a given pixel to determine the mapping for that pixel.
Meanwhile, it also can produce significant noise. A gen-
eralization of AHE, contrast limited AHE (CLAHE),8 has
more flexibility in choosing the local histogram mapping
function. By selecting the clipping level of the histogram,
undesired noise amplification can be reduced. In summa-
tion, these HE-based methods could compress the dynamic

Optical Engineering December 2011/Vol. 50(12)127401-1

Downloaded from SPIE Digital Library on 23 Nov 2011 to 222.190.117.212. Terms of Use:  http://spiedl.org/terms

mailto:surpasszuo@163.com


Zuo et al.: Display and detail enhancement for high-dynamic-range infrared images

Fig. 1 Block diagram of the proposed algorithm. The curved arrow symbols shown in red denote the parameters of the adaptive Gaussian filter
and the gain for detail layer are determined by the weighting coefficients extracted from the bilateral filter.

range of the raw images more effectively than AGC. How-
ever, they lack flexibility in manipulating small details of
the raw input images since they are based only on histogram
information.

Considering these problems, advanced methods10–12 com-
bining dynamic range compression and details enhance-
ment are proposed to improve the visualization of infrared
images. The balanced CLAHE and contrast enhancement
(BCCE)10 and bilateral filter and dynamic range partitioning
(BF&DRP)11 are two methods for visualizing high dynamic
range infrared images proposed by Branchitta et al. More
recently, Karali et al.12 developed a technique that increases
the contrast of the sea-surface based on local frequency cues.
In the BF&DRP method, bilateral filtering13 is adopted to
separate the detail layer from the base component, and then
the two components are handled respectively. It has been
reported to be superior to the existing methods including
BCCE.

Normally the BF&DRP method performs well, but as
stated in Ref. 11, a careful tuning of many parameters is
needed for the specific scenario so as to obtain the best vi-
sualization performance. In addition, we found in our exper-
iments that it sometimes produces severe gradient reversal
artifacts and highlights the noise in flat regions. So its per-
formance is scene dependent, which may be unsuitable for
digital video camera applications. It is therefore very de-
sirable to have an efficient display technique for infrared
cameras that enhance the global contrast and perceptibil-
ity of details without highlighting the noise and introduc-
ing unwanted artifacts. For this reason, a new method of
display and detail enhancement for high dynamic range in-
frared images is presented. This method can be viewed as
an enhanced version of BF&DRP since it is based on the
similar framework as that of the BF&DRP method. But
it includes the following improvements: First, an adaptive
Gaussian filter is introduced as post-processing for bilateral
filtering. Second, the base component is compressed using
modified histogram projection with a threshold. Finally, de-
tail layer is enhanced using an adaptive gain control pro-
cess. The aforesaid algorithms could not only improve the
method’s performance and adaptability in different scenes,
but also prevent noise amplification and unwanted artifacts
effectively.

2 Principle of the Proposed Algorithm

Inspired by the successful applications of bilateral filter
in tone reproduction for high dynamic range images in
the visible spectral region,10, 13 Branchitta et al.11 use a
BF&DRP framework to visualize high dynamic range in-
frared images. The framework relies on bilateral filtering to
separate a base component, which contains the large am-
plitude variations and must be compressed, from a detail
component, which must be expanded because it contains
the small signal variations related to fine texture. The two
components are processed independently and finally recom-
bined. The visualization method for infrared image pro-
posed here uses the similar framework. The intact principle
scheme of the proposed algorithm is clearly illustrated in
Fig. 1.

The overall process is very simple: first, a bilateral filter13

is applied to the input frames I in to obtain the image Ib f .

Ib f (i, j) =
1

k(i, j)

∑

(i ′, j ′)∈Si, j

gs(i − i ′, j − j ′)gr

[Iin(i, j) − Iin(i ′, j ′)]Iin(i ′, j ′), (1)

where k(i, j) is a normalization term:

k(i, j) =
∑

(i ′, j ′)∈Si, j

gs(i − i ′, j − j ′)gr [Iin(i, j) − Iin(i ′, j ′)].

(2)

The notation (i′, j′) ∈ Si, j denotes the fact that (i′, j′) and
(i, j) are neighborhooding pixels. Usually gs is chosen as a
normalized Gaussian kernel that sums to one. Also, we use
a Gaussian for gr in the intensity domain. Thus the total
mask of the weights k(i, j) is obtained from the product of
two different masks in the spatial and intensities domains
and its value is between 0 and 1. σ s and σ r are two stan-
dard deviation parameters defining the extension of the two
Gaussian kernels. σ s determines the size of the considered
neighborhood and should be proportionate to the image size.
Here we choose 2.5% of the image diagonal. The choice of
the range parameter σ r is more crucial since it indicates the
“minimum” amplitude of an edge. If the variation amplitude
is less than σ r, it will be smoothed by the bilateral filter and
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Fig. 2 The two steps of the operator ⌊•⌋ illustrated with plots of two histograms. Step 1: We located the 1% minimal and maximal intensity of
the input image IBP + IDP and the leading and trailing tails of the histogram are zeroed. (Middle column) Step 2: if the dynamic range of the
tail-less histogram is larger than 256, it will be compressed linearly to the display range (a). Otherwise it will only be shifted to the middle of the
display range (b) (right column).

the variation will leak into the detail layer. On the other hand,
if the oscillation is sharper than σ r, it will be less altered by
the filter. So here we choose σ r as 20% of the maximum
distinguishable gray scales for the human observer (typically
about 25). We have noticed that this choice performed con-
sistently well by combining with our compression and detail
gain control approach in all our experiments.

After the preliminary separation by a bilateral filter, the
image Ib f needs post-processing since the bilateral filter
may introduce annoying gradient reversal artifacts in de-
tail decomposition. This part will be discussed at length in
Sec. 3. The corrected Ib f , called base layer, is represented by
I B . After that, the detail component I D is merely obtained
as

ID(i, j) = Iin(i, j) − IB(i, j). (3)

The two components are then processed separately. The
base layer is mapped into the proper range using modified
threshold histogram projection, and the detail image is en-
hanced using the adaptive gain control method. These ap-
proaches will be presented in Secs. 3 and 4, respectively. The
processed base and detail components are represented by
I B P and I D P . Finally, the two components are recombined
and rearranged to get the final 8-bit output Iout:

Iout = ⌊I B P + I D P⌋ . (4)

The operator ⌊•⌋ means rearranging the image according
to its span (dynamic range between the two gray scales that
correspond to the locations in the corresponding cumulative
density are equal to 0.01 and 0.99) and an overview of the
process can be illustrated in Fig. 2. First, the “tails” of the
histogram are eliminated, forming a new histogram as de-
scribed in the middle column of Fig. 2. By removing the tails
of the histogram, outlier pixels can be forced into saturation,
increasing the contrast in the output image. If the span of the
image I B P + I D P is wider than the display range (typically
0 to 255), the tail-less histogram will be mapped linearly to
the display range. If the span is narrower than the display
range, the tail-less histogram will be shifted to the middle of
the display range.

3 Removal of Gradient Reversal Artifacts

The bilateral filter can smooth small fluctuations in intensity
while preserving strong edges. While this filter is effective
in many situations, it may have unwanted gradient reversal
artifacts14, 15 near edges. The reason is that the bilateral mech-
anism is closely related to a robust iterative procedure (i.e.,
the mean shift) which achieves edge-preserving filtering by
searching for local modes in the joint spatial-range domain.
One iteration of the bilateral filter amounts to converge to
the local mode.16 However, when a pixel around an edge has
few similar pixels around it, the Gaussian weighted average
is quite unstable. The clustering effect forces the blur edges
to become sharper and some reversed gradients leak into the
detail layers.

Below, we illustrate the reversal artifacts using a syn-
thetic one-dimensional (1D) signal (Fig. 3) and a real
two-dimensional (2D) image (Fig. 4). The detail signal in
Fig. 3(c) and the detail layer in Fig. 4(b) are yielded by sub-
tracting the bilateral filtered signal/image from their origi-
nals. The oversharpened edge causes large fluctuations in the
detail layers, which are shown in Fig. 3(c). Also, it is evident
that in Fig. 4(b) there are small false edges and blooming
at high contrast regions, such as the perimeter of the flower
beds. When the detail layer is enhanced and then added back
to the base image, some annoying artifacts can be perceived
inevitably.

Some researchers attempted to address the inherit short-
comings of the bilateral filter. Durand and Dorsey14 intro-
duced a fixing strategy using a linear interpolation between
the base layer and its smooth version, but they admitted that
this method is not so satisfying. Bae et al.15 addressed this
by directly constraining the gradient of the decomposition
to prevent reversal, but solving the Poisson equation is quite
time consuming. Here we tackle this problem using adaptive
Gaussian filtering. Our basic observation is that the gradient
reversal artifacts always appear near strong edges. Besides,
these edges after bilateral filtering are always sharper than
the original. If we blur the sharper edges so that they could
get closer to the original, the blurred version is preferable as
a base layer since the oversharpened edges are diffused and
the gradient reversal artifacts can be eliminated. On the other
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Fig. 3 1D illustration for gradient reversal artifacts. The original signal
is shown in blue (a), and the bilateral filtered signal is in red (b). The
detail signal (green) yielded by the bilateral filter is amplified (c). The
oversharpening causes ringing in the detail layer.

hand, we also hope that other parts in the result of the bilateral
filter will be less altered since these regions are less affected
by the gradient reversal artifacts. Both of the two aspects
inspire us to adopt an adaptive smoothing as post-processing
for bilateral filtering.

Gaussian filtering has been intensively used in image pro-
cessing and computer vision. Mathematically, applying a
Gaussian filter to an image is the same as convolving the im-
age with a Gaussian kernel. Since the Fourier transform of a
Gaussian is another Gaussian, Gaussian filtering is thus a low
pass filter and has the effect of reducing the image’s high-
frequency components, i.e., smoothing sharp edges. How-
ever, the Gaussian filter with a fixed filter standard deviation
cannot be used for smoothing the oversharpened edges since
it may not fit all regions of the image and even distorts those
parts where the details are already properly extracted by a
bilateral filter. There are two basic methods to solve the prob-
lem. The first method is to process the image using different
filters with different standard deviations, and the final result
is constructed by selectively blending among those blurred
versions. The second method, which we adopted here, is to

make the filter standard deviation adapt to the local charac-
teristics of an image.

The adaptive Gaussian filtering is based on the strategy
that different parts of an image should be smoothed differ-
ently, depending on the degree of oversharpening and the type
of edges. The goal of our method is to construct a modified
base layer I B by properly smoothing the base layer Ib f to
make it more closely with the original input image I in. First,
we calculate the weighted difference between the output of
bilateral filter and the raw image

E(i, j) = k(i, j)[Iin(i, j) − Ib f (i, j)]. (5)

The weighting coefficient k(i, j) is the normalization factor
in Eq. (2). It is a direct indicator that whether a certain pixel
belongs to the unstable region around strong edges. Thus
the difference image E can be regarded as the unwanted
distortion caused by bilateral filtering. To fix these errors with
adaptive Gaussian smoothing, the filter standard deviation
should be properly selected so that the smoothed version is
an optimum approximation to the original input image. In
other words, the error resulting from the smoothing process
should be as close to the difference image E. Hodson et al.17

has shown that a Gaussian filtering of a signal F(x), denoted
as Fg(x), can be expressed as

Fg(x) = F(x) +
F ′′(x)

2
σ 2 + · · · +

F (2m)(x)

�
m
p=1 2p

σ 2m + · · · ,

(6)

where m = 1, 2, . . ., F′′(x) is the second derivative of F(x).
F(2m)(x)is the 2m’th order derivatives of F(x). σ is the stan-
dard deviation parameter of the Gaussian filter. Omitting the
higher order terms, Eq. (6) can be approximated by

Fg(x) ≈ F(x) +
F ′′(x)

2
σ 2. (7)

This result can be easily extended to a 2D image since the
Gaussian filter is linear and isotropic.18 So the relationship
between the Gaussian smoothed image I g and its original I

can be represented as

Ig(i, j) ∼= I (i, j) +
∇2 I (i, j)

2
σ 2, (8)

where ∇2I(i, j) is the second derivative of I(i, j) and can be
approximated as

∇2 I (i, j) ≈ I (i + 1, j) + I (i − 1, j) + I (i, j + 1)

+ I (i, j − 1) − 4I (i, j). (9)

Fig. 4 Gradient reversal artifacts of bilateral filter for a 2D image. (a) Input HDR infrared image displayed by linear scaling (AGC). (b) The detail
layer yielded by a bilateral filter. (c) Corrected detail layer by adaptive Gaussian filtering.

Optical Engineering December 2011/Vol. 50(12)127401-4

Downloaded from SPIE Digital Library on 23 Nov 2011 to 222.190.117.212. Terms of Use:  http://spiedl.org/terms



Zuo et al.: Display and detail enhancement for high-dynamic-range infrared images

Since we use a Gaussian filter to approach the real edges,
the difference between Ib f and its Gaussian smoothed ver-
sion should be almost equal to the difference image E. Thus,
the standard deviation of the adaptive filter should be

σ (i, j) =

√

2E(i, j)

∇2 Ib f (i, j)
. (10)

The base layer I B is the result of an adaptive Gaussian
filter of Ib f . Then the detail layer I B is obtained accordingly
through Eq. (3). In Fig. 4(c), it can be seen that when an
adaptive Gaussian filter is used, the quality of the detail layer
is noticeably improved and the gradient reversal artifacts go
away.

4 Histogram Projection for Base Component

The base component is usually characterized by piecewise
smoothness and wide dynamic range. Simple methods can
be applied to dynamic range compression of the base layer
without considering the problems of losing details and noise
amplification. In Ref. 11, the base layer is compressed sim-
ply with a gamma curve, allowing a small percentage with
extreme pixel values to saturate. But it cannot be guaranteed
that the base image has the property that the histogram has
a quasiuniform distribution in its dynamic range. Here the
histogram projection method is modified to make it more
suitable for our purposes.

In the histogram projection method,1, 9 the output range
is assigned equally to each valid gray level present, regard-
less of how many pixels occupy that level. If one specific
gray level is occupied by one or more pixels, this level is
considered valid. To accomplish this, one needs only to com-
pute an occupancy (binary) histogram h(x) from which the
corresponding cumulative distribution function b(x) now rep-
resents the fraction of occupied levels at or below the level x.
b(x) rises from 0 to 1 in discrete and original values at level
x are now mapped into D · b(x), where D is the total range
of the output (typically D equals 255).

The histogram projection could effectively reproduce the
shape of the raw signal histogram aside from the omission of
the unoccupied levels. However, under conditions of scenes
with wide dynamic ranges, it tends to produce too little con-
trast where it is needed since the output range is filled by
gray levels occupied by a very small number of pixels. So
we improve it as follows: First, the original histogram of I B

is binarized using a threshold T:

H (x) =

{

0 for nx < T

1 for nx ≥ T
, (11)

where nx denotes the number of pixels that is resident within
the histogram bin for gray level x. The purpose of threshold T
is to improve the overall contrast. It is also very useful for re-
ducing the influence of small outliers that could dramatically
change the global intensity of the display. When nx is larger
than the threshold T, it means the gray level x can be found
frequently in the original image and should be preserved in
the output. In our experiments, we have seen that the best
results are obtained when T is chosen as 0.1% of the total
number of pixels. The cumulative distribution function of
H(x) is used as the gray scales transform functions to assign
the new intensity values to the input image. The cumulative

distribution function B(x) is defined as

B(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 for x = 0

x−1
∑

y=0

H (y)

nvalid

other

. (12)

Using this transform function, level x is now mapped into
R · B(x) and the maximum range of output image R is

R = min(nvalid, D), (13)

where nvalid denote the total number of the valid gray levels
and min (•) operator is used to select the minimal value.
In this manner, the base image can be mapped into the 8-bit
domain properly. Note that we do not simply map the original
into the output dynamic range D since the dynamic range of
the input is not necessarily higher than the display range. It is
quite possible when the camera faces a uniform background,
perhaps a uniform wall, or the cloudless sky. Given these
possible scenarios, we prefer to keep the dynamic range at
its original level.

5 Adaptive Gain Control for Detail Image

As mentioned before, the detail component must be expanded
because it contains the small signal variations related to fine
structures. However, it also contains most of the noise in the
original image signal. If the detail component is magnified
directly, it will give rise to an unacceptable amplification of
noise in the homogeneous region of the image. In cases where
the human observer is the receiver of the output image, the
properties of the visual system should be incorporated into
the enhancement algorithm in order to obtain visually optimal
results.

Psychophysical experiments confirm that noise in flat re-
gions of the image will give rise to spurious or texture to
the observer and that at sharp transitions in image intensity
the contrast sensitivity of the human visual system decreases
with the sharpness of the transition. This masking effect of
the human visual system results in lower noise visibility in
the complex background. Based on this information, An-
derson et al.19 first defined the noise masking function at
coordinate (i, j) as a measure of spatial detail. Then, they per-
formed subjective tests and obtained visibility function f(i,
j) at coordinate (i, j) which express the relationship between
the visibility of noise and masking function. Katsaggelos
et al.20 adopted the local variance as noise masking function
M(i, j) to measure the spatial detail. Then they defined the
noise visibility function as:

f (i, j) =
1

M(i, j) · θ + 1
, (14)

where θ is a tuning parameter. The visibility function is nor-
malized and takes the values between 0 and 1. It is clear
from Eq. (14) that for the areas with high spatial activity,
the visibility function goes to zero and noise is almost un-
perceivable; while for flat areas the visibility function goes
to 1 and noise is in complete exposure. Obviously, in our
cases, the normalization term k(i, j) of the bilateral filter is a
good indicator of spatial detail. For simplicity, we could use
k(i, j)− 1 − 1 the as noise masking function and set θ to
1. We hope that in the smooth region of the image, the
gain of the details should be set low to avoid the noise
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Fig. 5 Adaptive gain control for detail layer. (a) Input HDR infrared
image displayed by linear scaling (AGC). (b) The detail layer of (a)
without adaptive gain control. (c) Gain matrix for the detail layer shown
in (b) (Gmin = 1,Gmax = 2.5). Note that larger values will amplify more
the subtleties in detail layer. (d) The detail layer after adaptive gain
control. (b) and (d) are scaled to a same range for better display.

overamplification. On the contrary, in the high spatial ac-
tivity area of the image, the gain of the details should be set
high to enhance the image’s visual effect.

Assuming the gain of the final details of the images ranges
from Gmin to Gmax , according to the noise visibility function,
it should be f(i, j) → 0, G(i, j) → Gmax and f(i, j) → 1, G(i, j)
→ Gmin . For simplicity in this implementation, we use linear
mapping to obtain the detail gain for each pixel as follows:

G(i, j) = Gmin + [1 − f (i, j)] (Gmax − Gmin)

= Gmin + [1 − k(i, j)] (Gmax − Gmin) . (15)

The final form is quite simple. In general, in order to
prevent the loss of details and avoid noise amplification,
Gmin can be set as 1. Gmax can be selected as needed, but the
value must be greater than or equal to Gmin . A larger Gmax

allows one to generate more pronounced or even exaggerated
details. In our experiments, we have noticed that a value
of Gmax = 2.5 yields satisfactory results. Figure 5 gives an
example to demonstrate the effect of the adaptive gain control
for an image of a building with a clean background. It can
be noted that the values of gains of the sky region are near 1,
which prevents amplification of noise in that region, while the

Table 2 Mean RMSC results for the four test sequences.

Algorithm Sequence I Sequence II Sequence III Sequence IV

AGC 45.70 21.32 29.12 41.61

Histogram
equalization

72.26 73.84 69.32 71.72

BF&DRP 51.32 34.77 35.67 40.81

Proposed 59.17 66.13 49.72 44.12

building region has larger gains to ensure better enhancement.
The detail image ID(i, j) is multiplied by the corresponding
gain coefficient G(i, j) and combined with the compressed
base layer using Eq. (4) to get the final result.

6 Experimental Results

In order to validate the proposed approach in different sce-
narios, we acquired four sets of real infrared data using two
infrared cameras. A brief description of the test sequences
are summarized in Table 1.

The proposed method is compared with three visualization
techniques, i.e., AGC, classic histogram equalization, and the
BF&DRP. For the BF&DRP, we use the parameter set as pro-
posed in Ref. 11. In our method we have Gmin = 1 and Gmax

= 2.5 for all the experiments. The metric used to quantita-
tively evaluate the enhancement effect of different methods
is given by the root-mean-square contrast (RMSC),21 which
is defined as

RMSC =

√

√

√

√

1

M · N

∑

i, j

(I (i, j) − Ī )2, (16)

where Ī is the average intensity of all pixel values in the im-
age. M and N are the image’s rows and columns, respectively.
Note the RMSC is measured by calculating the average dif-
ference between the pixel values and the mean of the image.
It reflects the amount of ambiguity in a picture that is mea-
sured, and larger values usually indicate better enhancement.
The results of the RMSC over each sequence are presented
in Table 2. From there, it can be seen that the histogram
equalization and the proposed method has higher RMSC in
the mean sense.

A performance measurement like RMSC can help, but it
does not necessarily indicate good visual effects. Therefore,
the video sequences must be watched to perform a subjective
evaluation (Video 1, Video 2, Video 3, and Video 4). From

Table 1 Description of test image sequences.

Test sequence IR cameras Capture time Weather Image characteristics

Dataset 1 320×256 3–5 μm HgCdTe IRFPA 11 a.m. Very hot Outdoor building surveillance

Dataset 2 320×256 3–5 μm HgCdTe IRFPA 8 p.m. — Human indoor and presence of
hot objects

Dataset 3 320×256 8–14 μm HgCdTe IRFPA 10 a.m. Fine Outdoor scenery

Dataset 4 320×256 8–14 μm HgCdTe IRFPA 1 p.m. Cloudy Aircraft tracking sequences
against clear sky background

Optical Engineering December 2011/Vol. 50(12)127401-6
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Fig. 6 (Video 1). Comparison results: (a) AGC, (b) histogram
equalization, (c) BF&DRP, and (d) proposed method. (QuickTime,
8.70 MB) [URL: http://dx.doi.org/10.1117/1.3659698.1]

these video sequences, it is very noticeable that the proposed
method provides the best visual effect and detail enhance-
ment over all four sequences. Besides, it effectively avoids
undesirable artifacts and amplification of the noise. Never-
theless, the histogram equalization method underperforms in
our subjective evaluation. Frame samples are presented in
Figs. 6–9.

The first sample image is chosen as the representative of
images with a complex scene and high dynamic range. In the
AGC’s output, the roof of the building is very bright while the
trees are very dark and cannot be readily seen. This is because
the raw signals of bright roofs caused by sunshine reflection
are much larger than those of the background (the difference
is about 2500 digital levels). AGC maps the original dynamic

Fig. 7 (Video 2) Comparison results: (a) AGC, (b) histogram
equalization, (c) BF&DRP, and (d) proposed method. (QuickTime,
8.65 MB) [URL: http://dx.doi.org/10.1117/1.3659698.2]

Fig. 8 (Video 3) Comparison results: (a) AGC, (b) histogram
equalization, (c) BF&DRP, and (d) proposed method. (QuickTime,
8.81 MB) [URL: http://dx.doi.org/10.1117/1.3659698.3]

range to the display range linearly, so the large brightness
difference is transferred to the output image proportionally.
Observing the resulting image of histogram equalization, it
can be seen that the overall contrast is improved. However,
it also results in loss of details and saturation in the bright
regions. BF&DRP gives a more satisfactory result, but it suf-
fers gradient reversal artifacts around some edges, while our
method is free of this problem. Furthermore, our algorithm
shows a better enhancement in contrast and tiny details.

Figure 7 illustrates a more challenging situation: a side
view representation of a human face with an extremely hot
object (a soldering iron) in the scene. The dynamic range
of the raw signal surpasses 8000 and the digital level of the
soldering iron is about 6500 more than those of the human

Fig. 9 (Video 4) Comparison results: (a) AGC, (b) histogram
equalization, (c) BF&DRP, and (d) proposed method. (QuickTime,
8.66 MB) [URL: http://dx.doi.org/10.1117/1.3659698.4]
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face and about 7500 more than the background. Note that
in the output of AGC, the background is completely dark
and the face is rather faint. Histogram equalization tends to
overenhance the background, inducing some stair-step arti-
facts. Besides, the soldering iron regions are all saturated.
The details of human and soldering iron are improved by
BF&DRP, but the result is not suitable for observation by the
human eye since the image is too dark and without strong
contrast. The poor contrast is probably caused by inappropri-
ate compression of the base layer. Because the pixel number
of the soldering iron region is much larger than the satura-
tion threshold, compression using a gamma curve may be
severely affected by these extreme values, while in Fig. 7(d)
the details of the human face and soldering iron are greatly
enhanced with the overall contrast improved. And it avoids
the gradient reversal artifacts that are noticeable in the result
of BF&DRP.

Figure 8 shows a scene characterized by rich details. The
AGC version Fig. 8(a) could be considered the most “plain,’’
in that it fails to reproduce the details of the wall and bush.
Figure 8(b) is the result image by histogram equalization. The
wall on the right is too bright while the background window
and the tree are too dark. Also, the details are not improved.
The overall contrast of BF&DRP’s result is a resemblance to
that of the AGC, while the details show a great improvement.
But the fake contours caused by gradient reversal make one
uncomfortable. A result from the proposed method indicates
that not only the details are enhanced but also the contrast of
the scene is significantly improved. The bricks on the wall at
the leaves of the bush are the clearest to recognize.

Figure 9 depicts a helicopter hovering in the sky with a
simple and a little noisy background. We have zoomed in the
helicopter regions of each image to draw a better comparison.
AGC controls the noise level very well, but the object of
interest, which is the helicopter, appears to be a little weak
and blurry. It is obvious from Fig. 9(b) that background and
noise is overenhanced by histogram equalization, resulting
in unpleasant artifacts in the sky regions. BF&DRP enhance
the image details as well as noise. The gradient reversal
artifacts affect the visual effect once again and change the
shape of the helicopter body. Our method gives the most
satisfactory result: the helicopter is well enhanced, and we
could clearly identify its shape; the details and contrast of the
building region and iron tower are greatly improved. Further,
our method shows a great ability of noise suppression.

7 Conclusions

In this paper, we have presented a new display technique for
high dynamic range infrared images. The technique, simi-
lar to the recently proposed BF&DRP, is based on separating
the acquired image into two components: base part and detail
part using a bilateral filter, then processing each part inde-
pendently. To avoid unwanted gradient reversal artifacts, the
base layer is modified by adaptive Gaussian filtering. Then
the base layer is projected to the display range, and the detail
layer is added back after an adaptive gain control process.

The performance of the proposed method is tested with a
mid-wavelength infrared camera and a long-wavelength in-
frared camera with a default setting of the parameters. The
experimental results validate that our method can effectively
reproduce the acquired signal in different scenarios, improve
the overall contrast, enhance the target and image details,

avoid halos and gradient reversal artifacts, and suppress back-
ground noise.

Our proposed method has a very good application prospect
among such applications as IR inspection in design, test, and
manufacturing, chemical imaging, night vision for driver as-
sistance, surveillance in security, target signature measure-
ment, and tracking. But it also shares some limitations with
most nonlinear visualization methods: it may not work for
some particular conditions such as temperature measurement
where the radiometric accuracy is needed.
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