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Fig. 1. Direct display of an HDR map in the logarithmic scale (left); the gain map image of the HDR map (middle); the sum of the left and 

middle images (right). Note the gain map image is only computed for the luminance hence it is shown as grayscale image. Radiance map 

courtesy of Raanan Fattal, Dani Lischinski and Michael Werman 

 
Abstract - In this paper, we present a novel method for the 

display of high dynamic range images. The new method first 

computes a gain map image using a computational approach 

inspired by a machine learning algorithm and sums the gain 

map and the original image together; it then linearly scales the 

sum image to fit the dynamic range of the display devices. 

Results are presented to demonstrate the effectiveness of this 

new method and it is also shown that the new approach is an 

effective method for enhancing standard (8bits/pixl) images.  

 

Index Terms – Tone mapping, high dynamic range imaging, 

display, machine learning 

 

I. INTRODUCTION 

 

Today, digital cameras are ubiquitous. However, when 

imaging scenes containing wide variations of illumination 

intensities, the picture quality often turns out to be less than 

satisfactory. In such cases, the main cause of the poor image 

quality is the mismatch between the dynamic range of 

irradiance of the real-world scene and the number of binary 

bits used to represent pixel values in the standard image 

formats. Whilst the real world irradiance can have dynamic 

ranges exceed four to five orders of magnitude, typical 

standard image formats using 8 bits per pixel can only 

represent part of the real world dynamic range. The situations 

can be remedied by using high dynamic range (HDR) 

imaging technology [1-4] where the so called HDR radiance 

maps (>32bits/pixel) can record the actual dynamic range of 

the real world scenes; however, there is still the problem of 

faithfully reproducing the image in conventional low dynamic 

range (LDR) reproduction media such as print paper and 

monitors which normally have a useful contrast about 2 

orders of magnitude.  

Processing HDR maps for reproduction in LDR media is 

often called tone mapping or dynamic range compression. 

Even though high dynamic range display devices have started 

to emerge, they are very expensive. In the foreseeable future, 

conventional LDR devices will still be the dominant 

reproduction media for HDR pictures and hence effective 

processing techniques for the display of HDR images in LDR 

devices are still important.  

In this paper, we present a novel method for the 

processing of HDR images for display in LDR media. Our 

idea is to “invent” a high dynamic range gain map image 

(GMI) the same size as the original image, which when 

summed with the original image will produce a contrast 

enhanced version of the original high dynamic range image. 

The enhancement is controlled in such a way that weak local 

contrasts are enhanced more whilst strong local contrasts are 

enhanced less. By linearly scaling down the new high 

dynamic range image to fit the dynamic range of the 

reproduction devices results in a LDR version of the HDR 

image in which low contrasts are boosted and high contrasts 

are suppressed thus achieving dynamic range reduction 

without causing heavy loss of visual details. We burrow ideas 

from a manifold learning technique [6] and formulate the 

problem of computing the GMI as a linearly constrained 

optimization problem and compute the GMI by solving a 

linear system of equations. Furthermore, we show that the 

GMI idea can be used to enhance standard (8 bits/pixel) 

images. 

 

II. DISPLAY HDR IMAGE USING A GAIN MAP 

 

The display pipeline of our new scheme is illustrated in Fig. 

2. From the HDR map, I, we compute a gain map image 

(GMI), G, and the sum of the two, I + G, is then linearly 

scaled to fit the dynamic range of the display device for 

display. Note that I is in logarithmic scale, G is derived from 

I, hence also in logarithmic scale, so is I + G. Unlike several 

other methods in the literature, e.g. [2, 3], we do not take the 

antilogarithm of the processed signal but display it directly 

because the HDR map data is linear and the display devices 

are nonlinear having an antilogarithmic-like curve. 
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HDR MAP, I Gain Map Image, G I + G Scaling+ = DisplayHDR MAP, I Gain Map Image, G I + G Scaling+ = Display  
Fig. 2: Schematic of HDR map using gain map image, where the HDR map is 

in logarithm scale. 

 

To compress the dynamic range of the HDR map to fit 

the dynamic range of the LDR reproduction media, linear 

scaling should have been the simplest and the correct way 

because linear scaling preserves the relation of the pixels, i.e., 

a relatively bright HDR pixel will be displayed as relatively 

bright and a relatively dark HDR pixel will be displayed as 

relatively dark, which ensures that the relative brightness of 

the display matches that of the original scene. However, when 

the dynamic range between the scene and that of the 

reproduction devices differ greatly, a large down scaling 

factor will have to be used to make the scene dynamic range 

fit within that of the display device. The consequence of 

which is that, for large contrasts, they would have been 

suppressed to within the display’s dynamic range and will 

still be visible in the display; however, for small contrasts, 

which would have been visible on the original scene, would 

become invisible because of too aggressive compression. The 

end effect is that the linearly scaled image appears blurry and 

lack of local details. See the left image in Fig. 1 for a visual 

example of such effect.  

The introduction of the gain map image in Fig.2 is to 

engineer a solution such that when we scale down the HDR 

map to fit the dynamic range of the reproduction device, not 

only the relative brightness of the pixels is well preserved, but 

local details will also be protected. To find such a gain map 

image, our idea is very simple: we find an image (the gain 

map) with the same edge directions as the original HDR map 

but with the edge strengths as a function of the edge 

magnitude of the corresponding edge in the original HDR 

map. We use Fig. 3 to illustrate how the idea works. 
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Fig. 3: Illustration of how the idea of using a gain map image 

will work in rendering a HDR map for display 

 

From the input HDR signal I, we find a signal which has 

the same edge directions, i.e., in the Figure, I changes from 

low to high and then to low, G follows I and changes from 

low to high and then to low at the same changing points. The 

edges in the display image D (sum of I and G) will have 

exactly the same direction as those in the original image I. In 

other words, the display image D will not have edge direction 

reversed thus is free from halo artifact. 

Only having the correct edge orientations in the display 

image is not enough, we also have to reduce the dynamic 

range of the display image. One way to achieve this is to 

boost relatively weak contrasts and compress high contrasts 

as suggested by several authors [2]. We adopt a similar 

approach and our task is to design the GMI such that when 

summing the original image and the GMI together to produce 

a display image in which, when compared with the original 

image, weak contrasts are enhanced and strong contrasts are 

suppressed. Such a GMI can be obtained by ensuring that, for 

a larger edge magnitude in I, the corresponding edge 

magnitude in G will be smaller; conversely, for a smaller edge 

magnitude in I, the edge magnitude in G will be larger. To see 

why such a GMI can achieve the goal of boosting weaker 

contrasts and suppressing strong contrasts in the display 

image, lets consider two edges at location u and v, in the 

original image I with magnitudes (u) and (v), and the 

corresponding edge magnitudes in the GMI are (u) and (v). 

Assuming that (u) > (v), we will have (u) < (v), thus 

(u) (v) > (v) (u). The edge magnitudes of the display 

signal at these locations are (u) + (u) and (v) + (v). We 

have  
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What equation (1) means is that the ratio of a larger 

magnitude over a smaller magnitude is reduced in the display 

image, which can only mean one of three things: (i) the larger 

edge is reduced: (u)> (u)+ (u), (ii) the smaller edge is 

boosted: (v) < (v) + (v) and (iii) the larger edge is reduced 

and the smaller edge is enhanced: (u)> (u)+ (u) and (v) < 

(v) + (v).  

Note that the sum signal D will have to be linearly scaled 

to fit the dynamic range of the display devices. However, 

linear scaling does not change the relative values of the pixels 

hence the display image will have weak contrasts relatively 

boosted and high contrasts relatively suppressed. From a 

human perception’s point of view, the visual system is 

sensitive to relative intensities rather than the absolute 

intensities. The task now is to compute such a GMI. 

 

III. COMPUTING THE GAIN MAP 

 

For a given image I(x, y), we seek a gain map image G(x, y) 

to produce a display image D(x, y) = I(x, y) + G(x, y). Based 

on the discussion in the previous Section, we know that the 

GMI should have the same edge orientations as the original 

image and should have edge magnitudes inversely 

proportional to those of the original image. To compute such 

GMI, our basic idea is illustrated in Fig. 4, which consists of 

two steps; we first compute a linear relation for each pixel 

and its local neighbors in the original image and then embed 

these linear relations in the gain map image. These local 

neighborhood relationships can be thought of as constraints to 

ensure that the GMI changes with the original image; in other 

words, to ensure that G to have the same edge orientations as 

the original image. We sparsely constrain the gain map image 

locally, i.e., seed some initial GMI pixel values such that the 

contrasts of these seeds follow the requirements of GMI as 
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discussed in previous section. These initial seeds are then 

propagated to the whole image by adhering to the local 

neighbor relations of the original image. Such propagation of 

the initial seeds is achieved by solving a constrained 

optimization problem. We compute the locally linear relations 

and solve the global embedding problem by borrowing the 

computational techniques of the “think globally, fit locally” 

manifold leaning framework [6]. Note all processing is done 

in logarithm scale. 
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Step 1: Compute the neighborhood pixel relations, W Step 2: Set initial seeds, G(xi,yi) = si and compute G
 

Fig. 4: Schematic of linear neighborhood embedding (LNE) and its application to computing the gain map image. The process has two steps. 

First, we compute the local neighborhood pixel relations by solving a quadratic optimization problem. Secondly, we seed some initial GMI 

pixels and use the neighborhood pixel relations computed from step 1 to compute the GMI by solving a constrained optimization problem. 

 

To compute the local neighborhood pixel relations, we can 

perform following constrained optimization: 

 

Minimizing 
2
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where Nxy denotes a local neighborhood surrounds the pixel at 

location (x, y), wxy(u, v) is the weight which quantifies the 

contribution of the neighborhood pixel at location (u, v) to 

reconstructing the pixel at (x, y). Note that the relation is 

made local by setting the weights of pixels outside a local 

neighborhood of the pixel to zero. All weights summed to 1 

to be invariance to the absolute intensity of the image.  

The locally linear spatial relation at pixel location (x,y) in 

the original image is captured in the weight matrix Wxy = 

{wxy(u, v)}. These weight matrices should also capture the 

spatial variations of the gain map G because the gain map G 

should follow the variations of I as discussed before. 

Therefore, we can construct G by embedding Wxy’s in the 

gain map by solving following constrained optimization 

problem: 

 

Minimizing 
2

, ,

, , ,xy

x y u v

E G G x y w u v G u v   (3) 

Subject to  

G(xi, yi) = si, i = 1, 2, … 

 

where si’s are pre-se seed values of the gain map at location 

(xi, yi). The function is quadratic and the constraints are 

linear, and therefore the optimization problem leads to large, 

sparse linear system of equations which can be solved using a 

number of standard methods.  

Note that although the reconstruction weight matrix for 

each pixel is computed from a local neighborhood in the 

original image and is independent of the weights of other 

pixels, the embedding is a global operation that couples all 

gain map pixels. Therefore, G should follow I locally and 

globally as well. Informally, we can view (3) as fitting the 

local constraints G(xi, yi) to the whole image globally. 

Another way to view this solution is that G is a connected 

graph with each pixel corresponding to a vertex and the 

connection weights corresponding to the edges. Therefore the 

pixel values of G are affected by all the initial seeds and the 

connection weights.  

Implementation of the gain map computation is relatively 

straightforward. To solve the constrained least squares fit 

problem of (2), we follow the computational method of LLE 

[6] by solving a linear system of equations. However, since in 

our case, the data is 1-d and there will always be more 

neighbors than input dimensions, the least squares problem 

for finding the weights does not have a unique solution. We 

follow the method of [5, 6] by adding a regularization term to 

the reconstruction cost function to solve the problem. The 

computational complexity of this step scales as O(mn3) where 

m is the number of pixels and n is the neighborhood pixels (n 

= 8 in all our results). 

For the embedding problem of (3), since the cost function 

is quadratic and the constraints are linear, this optimization 

problem yields a large, sparse system of linear equations, 

which may be solved using a number of standard methods. 

The embedding step of LLE solve a similar optimization 

problem but under different constraints. Without special 

optimization, the complexity of this step scales as O(m3), 

where m is the number of pixels. To speed up the 

computation, there are several alternative methods for solving 

the embedding problem, such as multigrid solver which will 

lead to a complexity scales as O(m).  

To set the constraints, we divide the image into 17x17 
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(other sizes are also possible) blocks, and for each block we 

identify the largest and the smallest pixels and fix the gain 

map pixels at these two locations such that the difference 

between these two pixels in the sum image is enhanced if it is 

small and suppressed if it is large. For each block, the two 

constraint values are set as 

minmax
minmax

maxmin ,0 BB
BB

GG  

where Bmax and Bmin are the largest and the smallest pixel 

values in a 17x17 block, is set to 0.3 times the average 

local patch contrast of the image and  between 0.6 – 0.8. 

 

IV. EXAPERIMENTAL RESULTS 

 

High dynamic range image compression. We have applied 

our technique to compress high dynamic range radiance maps 

for display in low dynamic range device. Fig. 1 shows an 

example of applying our method. To inspect the effect of the 

method more closely, we extract one line of pixels from the 

images in Fig.1 and show the plot of this line of pixels in 

Fig.5. Fig. 6 shows more examples of our results and 

comparison with other methods in the literature. It is seen that 

our method is quite competitive. 

I

G

D = I + G

 
Fig. 5. A scan line from the images in Fig. 1, all three signals are 

scaled to 0 ~ 255. It is seen that the gain map image (bottom line) 

strictly follows the changes of the original image (middle line). The 

result image (top line) and the original image (middle line) have 

exactly the same edge directions. It is also seen that the sum image 

D (top line) has more local details than the logarithm of the original 

radiance map (middle line). 

 

  

  
Fig. 6 Left column: our results. Top right result of [2] (note the halo 

artifacts in this image) and bottom right result of [3]. Images are 

courtesy of Raanan Fattal, Dani Lischinski and Michael Werman, F. 

Durand and J. Dorsey and P. Debevec.  

It is straightforward that our approach can also be applied 

to the enhancement of ordinary (8 bit/pixel) images. Fig. 7 

shows an example of applying our method to image 

enhancement.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 7 (a) Original image, (b) The gain map image (c) Our result (d) 

Result of gradient domain technique [2]. Image data and gradient 

domain result courtesy of Raanan Fattal, Dani Lischinski and 

Michael Werman. 

 

V. CONCLUDING REMARKS 

 

In this paper, we have presented a novel technique for the 

display of high dynamic range images. Our novel approach 

computes a gain map image using a computational method of 

machine learning and achieves effective dynamic range 

compression by suppress strong contrasts and boost weak 

contrasts. We have presented experimental results which 

demonstrate that our method is effective both for display 

HDR images and for image enhancement. 
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