
1. Introduction

Any interactive software engineering tool that deals

with programs inevitably displays source code for a

human to read and possibly modify1. The technology for

doing this, however, has changed little in twenty years,

despite a compelling intuition that specializing the tech-

nology for programming languages might increase user

productivity substantially. In contrast, consider how word

processing systems have evolved beyond simple text edi-

tors during those same twenty years.

Extensive research, numerous prototypes, and more

than a few commercial attempts have failed to deliver

practical language-based editing for source code. Pro-

grammers find such systems difficult and unpleasant when

compared with simple text editors. Tool builders find that

implementations are fragile and place high demands on

supporting infrastructure.

Language-based editing will only succeed in practice

when it addresses the real goal: to help programmers pro-

gram in the context of existing skills and tools. This trans-

lates to two sets of requirements, often conflicting, for an

editor:

• Programmer’s perspective: the editor must make read-

ing and writing source code easier and more reward-

ing.

• Tool builder’s perspective: the editor must reliably

share information with other tools, for which it may

act as a user interface, and it must be packaged for

reuse (portable, highly configurable, and embeddable).

The CodeProcessor2 is an experimental tool for edit-

ing source code, under development at Sun Microsystems

Laboratories. It is based on technology that strikes a bal-

ance among apparently competing requirements. It is text

oriented, but fundamentally driven by language technol-

ogy. It can make its language-oriented representation

(configured by declarative specifications) available to

other tools, and can be embedded in other GUI contexts.

The key architectural choice is a lexically-oriented inter-

mediate representation for source code that addresses both

usability and integration with other tools.

1. We do not address purely graphical programming languages, although

some of the issues are similar.

2. “CodeProcessor” is an internal code name for this prototype; it is

intended to suggest a specialization of simple text editing for source

code, much as word- and document-processors are specialized for nat-

ural language documents.

Displaying and Editing Source Code

in Software Engineering Environments

Michael L. Van De Vanter1 and Marat Boshernitsan2

1Sun Microsystems Laboratories

901 San Antonio Avenue

Palo Alto, CA 94303 USA

Tel +1 650 336-1392, Fax +1 650 969-7269, Email michael.vandevanter@sun.com

2Department of Computer Science

University of California at Berkeley

Berkeley, CA 94720-1776 USA

Tel +1 510 642-4611, Fax +1 510 642-3962, Email maratb@cs.berkeley.edu

Abstract

Source code plays a major role in most software engineering environments. The interface of choice between source code

and human users is a tool that displays source code textually and possibly permits its modification. Specializing this tool

for the source code’s language promises enhanced services for programmers as well as better integration with other tools.

However, these two goals, user services and tool integration, present conflicting design constraints that have previously

prevented specialization. A new architecture, based on a lexical representation of source code, represents a compromise

that satisfies constraints on both sides. A prototype implementation demonstrates that the technology can be imple-

mented using current graphical toolkits, can be made highly configurable using current language analysis tools, and that

it can be encapsulated in a manner consistent with reuse in many software engineering contexts.

Keywords: Program editor, software engineering tool integration, language-based editing

SML 2000-0180

Second International Symposium on Constructing Software Engineering Tools (CoSET’2000)



Experience suggests that simple usability testing, bet-

ter GUI design, or new algorithms would not have pro-

duced this design. Rather, it resulted from rethinking the

tasks, skills, and expectations of programmers, and from

then finding ways to address them: using existing lan-

guage technology and within the context of practical soft-

ware engineering tools. The result is an architecture that is

different, though not necessarily more complex, than

those tried in the past.

This paper presents an overview of the CodeProcessor

and the design choices it embodies. Section 2 reviews

requirements, and Section 3 discusses how previous tech-

nologies have failed to meet them all. Section 4 offers a

new look at the design trade-offs needed when combining

text editing and language support, and shows how this

analysis leads to a solution. Sections 5 and 6 describe the

two complementary and mutually dependent aspects of

the CodeProcessor’s design: architecture and user-model.

Finally Section 7 reviews implementation status, followed

by related work and conclusions.

2. Design goals

The requirements mentioned in the introduction, and

discussed in more detail here, reflect different perspec-

tives: programmers and tool designers. Past failures result

from neglecting one point of view or the other; Sections 3

and 4 will show how they can be reconciled.

2.1. No training

All available evidence shows that programmers read

programs textually; they also have “structural” under-

standing, but it is highly variable and not based on lan-

guage analysis [10][12]. Programmers have deeply

ingrained work habits as well as motor-learning that

involves textual editing; they will only accept a tool that is

familiar enough for immediate and comfortable use with-

out special training.

This need not, however, prohibit advanced functional-

ity. Consider how users experienced with simple text edi-

tors find the transition to word processors smoothed by

familiar text entry and cursor commands. By analogy, lan-

guage-based editing services should be layered carefully

onto basic text editing behavior, imposing no (or barely

noticeable) restrictions.

2.2. Enhance reading and writing

Additional editing services derive from specialization

for the tasks confronting programmers. A familiar exam-

ple is automatic indentation of source code lines. This ser-

vice is based loosely on linguistic structure, and it helps

both reading (visual feedback on nesting) and writing

(saving tedious keystrokes). This particular service can be

delivered in a simple text editor, but it can and should be

taken much further.

Research shows that high quality, linguistically-driven

typography measurably improves reading comprehension

[3][19]. In many environments, reading is still the domi-

nant task for programmers, even while writing code

[9][31]. Good designs for program typography are avail-

able (for example the paper-based publication designs by

Baecker and Marcus [3]), yet rarely used.

Also highly important, is special support (both reading

and writing) for program comments. Transparent to con-

ventional language tools, comments are tedious to format

but crucial for readers.

Although specialized enhancements are important, it is

absolutely essential that they not make things worse. Any

intrusion on text editing must respect the “balance of

power” between user and tool. This can be delicate even

in the simplest of cases, for example auto-indentation

mechanisms that programmers find helpful but “not quite

right.”

Nowhere has intrusiveness been more problematic

than in treatment of fragmentary and malformed source

code. This is, of course, the normal state for programs

under development. Unfortunately, language-based edi-

tors typically treat such situations as user “errors” and

encourage or require corrective action. The real “error” is

that the tools fail to model what the user is really doing

[14] and cannot function usefully until rescued. Editing

tools must function without interruption in any context.

2.3. Access to linguistic structure

Software engineering tools (for example analyzers,

builders, compilers, and debuggers) generally operate

over structural source code representations such as

abstract syntax trees. An editing tool is most easily inte-

grated with other tools if it can share such representations,

but as Section 3.1 discusses, this presents severe design

challenges for a tool whose job is to display and permit

modification to source code in terms of text.

2.4. Configuration and embedding

Finally, as software engineering tools evolve, empha-

sis shifts from standalone editing systems to specialized

tools that must work with other tools. A tool for source

code editing must be well encapsulated, somewhat like a

GUI component, and not demand complex support such

as a particular kind of source code repository. Reflecting

the reality that practical software engineering involves

many languages, it should be easily configured via lan-

guage specifications. In order to be used as an interface by

many other tools, an editing tool must have a visual style

that is easily configured for different contexts and tasks.

3. The design space

At the heart of a specialized editing tool is an internal

representation for source code. Conventional choices,

depicted in Figure 1, are divided by a gulf between funda-

mentally different approaches: one oriented toward usabil-

ity and one toward higher level services.



3.1. Pure designs

At the far right of the diagram are “structure editors”

[4][6][8][18], so called because of internal representations

closely related to the tree and graph structures used by

compilers and other tools. This greatly simplifies some

kinds of language-oriented services, but it requires that

programmers edit via structural rather than textual com-

mands. Behind this approach is a conjecture, articulated

by Teitelbaum and Reps, that programs are intrinsically

tree structured, and that programmers understand and

should manipulate them that way [25]. Unfortunately,

years of failed attempts [11], combined with research on

program editing [17] and on how programmers really

think about programs [13][22] have refuted that conjec-

ture. From a tool integration perspective, the advantages

of complete linguistic analysis are offset by its fragility (in

the presence of user editing) and context-dependency (the

meaning of code in many languages depends potentially

on all the other code with which it will run). Few structure

editors are in use today

At the far left are simple text editors with no linguistic

support. Editing is simple and familiar, but there is no real

specialization for source code. Integrating a simple text

editor with software engineering tools requires complex

mappings between structure and text, but these typically

result in restrictive and confusing functionality, fragile

representations (for example, where the identity of struc-

tural elements is not preserved during editing operations),

or both [27].

3.2. Modified designs

Subsequent efforts in language-based editing can be

viewed as attempts to bridge this gulf. Some structure edi-

tors allow programmers to “escape” the structure by trans-

forming selected tree regions into plain text [21], but

usability problems persist. The complex unseen relation-

ship between textual display and internal representation

makes editing operations, both structural and text escapes,

confusing and apparently unpredictable [27] because of

“hidden state.” Textual escapes make matters with a con-

fusing and distracting distinction between those parts of

the program where language-based services are provided

and those where they are not. Often language services and

tools stop working until all textual regions are syntacti-

cally correct and promoted back into structure.

At the left side of Figure 1 are widely used code-ori-

ented text editors such as Emacs [23]. These use a purely

textual representation, assisted by ad-hoc regular expres-

sion matching that recognizes certain language constructs.

The structural information computed by simple text edi-

tors is, by definition, incomplete and imprecise. It there-

fore cannot support services that require true linguistic

analysis, advanced program typography for example.

Simple text editors typically provide indentation, syntax

highlighting1 and navigational services that can tolerate

structural inaccuracy. A malformed program will, at

worst, be incorrectly highlighted.

A few text editors perform per-line lexical analysis

with each keystroke, but the information has never been

fully exploited and the lack of a true program representa-

tion leads to confusion in the inevitable presence of mis-

matched string quotes and comment delimiters.

3.3. Inclusive designs

A more inclusive approach is to maintain both textual

and structural representations. Although this approach

promises a number of advantages [5][26], it is difficult to

keep the representations consistent and it has not been

demonstrated that the cost and complexity are justified.

4. Finding the middle ground

Section 3 described a fundamental design tension:

• It is desirable to maintain a linguistically accurate pro-

gram representation, updating it on every modifica-

tion, however small.

• The greater the degree of structural sophistication, the

more fragile the representation is in the presence of

unrestricted textual editing, and the more room there is

for confusing behavior and inconsistency between

what’s seen and what’s represented internally.

In summary, an ideal representation would be closely

related to displayed text, but would also reflect linguistic

structure at all times. What’s needed is a compromise

Text

Rich representation

(more structural: better for services)

Simple user-model

(less structural: better for users)

Figure 1: Design choices for program editors

Language

Structure
Text

+

Ad Hoc Matching

Language Structure

+

Text Escapes

1. “Syntax highlighting” is an unfortunate misnomer, since pattern-

matching is considerably weaker than syntactic analysis. It would be

more accurate to call it “unreliable keyword, string, and comment rec-

ognition”.



somewhere in the middle of Figure 1, where the amount

of language analysis performed is as simple (and local-

ized) as possible, but also as useful as possible.

A compromise can be found by taking a closer look at

language analysis: both the internal engineering of com-

pilers, and the formal language theory behind it. A typical

compiler analyzes textual programs in phases, shown

below. Each stage is driven by a different kind of grammar

(corresponding approximately to types 3, 2, and 1 in the

Chomsky grammar hierarchy) and uses a corresponding

kind of analyzer [29]. Programming languages are often

designed around this grammatical decomposition, and

batch-oriented compilers benefit from the simplicity and

formal foundations of separate phases.

This decomposition reveals additional choices,

depicted in Figure 2, for analyzing and representing pro-

grams being edited. Possible representations include the

standard products of each phase: lexical token stream,

parse tree, and attributed tree respectively. Intermediate

choices include partial analysis of the next grammatical

level: regular expression matching is a partial lexical anal-

ysis, fuzzy parsing is a partial syntactic analysis which

recognizes only certain features of the context-free syntax

(e.g. nested parenthesis or context-dependent categoriza-

tion of identifiers into function and variable names), and

partial semantic attribution that can be used for computing

limited amounts of semantic context. Partial analyses are

often simpler to implement (fuzzy parsing can be per-

formed through a simple pattern matching on the token

stream) and more forgiving of inconsistencies in the rep-

resentation.

An important distinction among the three analysis

phases concerns the scope of cause and effect. Static

semantic analysis (closely related to Chomsky’s context-

sensitive syntax) at each point in a program depends

potentially upon the entire program. Parsing (context-free

syntax) depends only on the enclosing phrase, but

assumes that program is well formed. Lexical analysis

(regular syntax) depends only on adjacent tokens, making

it highly suitable for the inner loop of an editor.

Thus the lexical representation, not used in any prior

systems, emerges as a promising compromise:

• It is a stream, not a tree, and thus bears a close rela-

tionship to textual source code;

• The analysis needed to update the representation after

each edit usually requires only local context;

• It is suitable for program fragments;

• It has enough linguistic information to provide many

language-based services, including more robust imple-

mentation of familiar services such as indentation,

parenthesis and bracket matching, procedure or

method head recognition, etc.; and

• It is a language representation suitable for integration

with other tools, including complete language analyz-

ers. Further analysis, for example parsing, could be

folded into the CodeProcessor if added carefully, but

at some additional cost in complexity.

Although this approach is promising, a number of

design questions remain:

• Can the textual display and behavior be made to look

and feel familiar enough that it requires no training?

• To what degree can the display be specialized for pro-

grams using only lexical information?

• Can such a fine-grained typographical display be

implemented using current toolkit technology and

made configurable?

• Can the lexical token representation be made robust in

the presence of partially typed and badly formed

tokens? In particular, how can “bracketed” tokens such

as string literals be managed when one of the brackets

(double quotes for strings) is missing?

• What specialized support for comments and other,

possibly non-textual, annotations is possible?

• How can a description-driven lexical analyzer be

adapted to update the representation after each key-

stroke?

Solutions appear in the following two sections, which

summarize respectively the two mutually dependent

aspect of the CodeProcessor’s design: architecture/imple-

mentation and user-model. The architecture is presented

first in Section 5, although many aspects were driven by

the user-model design described in Section 6.

lexical analysis → parsing → static semantic analysis

Pure

Text

Text

+

Regular

Expressions

Lexical Tokens

Lexical Tokens

+

Fuzzy

Parsing

Parse Tree

Syntax Tree

+

Fuzzy

Attribution

Fully-Attributed

Syntax Tree

Rich representation

(more structural: better for services)

Simple user-model

(less structural: better for users)

Figure 2: Additional choices for program representation and analysis



5. Architecture

The CodeProcessor’s architecture, depicted in Figure

3, is based on the Model-View-Controller design para-

digm. This choice is not accidental: in addition to being a

natural architecture for display and editing, it also reflects

the design of the Java™ Foundation Classes (JFC)

“Swing” toolkit and its text framework [30] which was

used to implement the current prototype. Multi-lingual

behavior is supported by separating each of the three core

modules into two components: one implementing the lan-

guage-independent functionality, and the other (collec-

tively known as a Language Module) providing language-

sensitive features for a particular language. In the

CodeProcessor this separation is achieved by subclassing,

but other decompositions are also possible.

The remainder of this section describes each of the

major design constituents in order.

5.1. The Controller

The Controller is manifested through two closely

related components: the Editor Widget and the Editor Kit.

The Editor Widget is responsible for dispatching window

system events and making the CodeProcessor a fully func-

tional member of the JFC widget family. The Editor Kit

implements the intricate editing behavior described in

Section 6.2.

Much of Editor Kit’s functionality is language-inde-

pendent; some, however, may be custom-tuned for each

particular language, for example adding keyboard short-

cuts for inserting language constructs.

The primary responsibility of the Editor Kit is to

implement user actions that require taking the context of

the action into the consideration. Some actions, such as

cursor movement commands, require no changes to the

source code model; their execution depends only on the

context (tokens) surrounding the cursor. Other actions,

such as insertions and deletions, may depend not only on

the modification context, but also on the state after the

modification, since certain nuances of the user-model

require “looking into the future.”

To facilitate this, the Editor Kit commences a two-

stage modification process upon any potential change.

First, the source code model is requested to consider the

effects of the change without modifying the underlying

content. This produces an object describing the change in

terms of a model transformation that needs to take place.

When the Editor Kit regains control it examines the trans-

formation, either discarding it, if it has no effect or is not

valid, or applying it to the model.

5.2. The Model

As discussed in Section 4, source code is represented

as a sequence of lexical tokens, although this representa-

tion is extended in several crucial ways. This representa-

tion allows for much-needed flexibility, as it both supports

the required user-model, and fits naturally with the incre-

mental lexical analysis algorithm.

The lexical analysis algorithm, developed by Tim

Wagner [28], is fully general: it supports unbounded con-

textual dependency and multiple lexical states. Moreover,

incrementality can be crafted onto existing batch lexers

that conform to a simple interface. For instance, the cur-

rent prototype’s lexer for the Java programming language

is generated by the JavaCC tool [16] from a readily avail-

able lexical specification; the specification is extended to

include various categories of irregular lexemes created

during editing, as discussed in Section 6.1.

Figure 4 depicts the modification of a model after

insertion of the characters “=x” into a fragment contain-

ing the four tokens ‘a’, ‘+’, ‘c’, and ‘;’ with cursor ini-

tially between ‘+’ and ‘c’. Figure 4a represents the

Get token

text & type

Model

changed

Editor Kit

Styler

Abstract

Editor Kit

Abstract

Styler

Abstract

Lexer

Language

Module
Source Code

Model M
odel/Editor Kit

protocol

Model/Lexer
protocol

Rendering

Engine

View/Styler

protocol

User actions

Lexer

Editor

Widget

PaintModel

View

Controller

Figure 3: CodeProcessor Architecture



content immediately prior to the modification, 4b -- the

transformation resulting from considering given modifica-

tion, and 4c -- the content after the suggested transforma-

tion has been applied.

The source code model is also responsible for adding

and removing “separators,” special non-linguistic tokens

whose role in the user-model is described in Section 6.2.

Other non-linguistic tokens include comments, line

breaks, and other layout directives.

A significant advantage of the model, from the per-

spective tool integration is that it enables stable references

to source code structure: during any kind of editing, the

identity of unaffected tokens is guaranteed.

5.3. The View

The rendering mechanism displays source code in

accordance with the requirements outlined in Section 6.1.

The typographically-enhanced display is facilitated by

assigning stylistic properties to each token by means of

the Styler component. The Styler lends itself to being

automatically-generated, although the current implemen-

tation uses hand-written Stylers.

Stylers can also be used to export human-readable

source code from the CodeProcessor by rendering into a

character stream, dropping stylistic information that can-

not be represented. Appropriate formatting can be

achieved by Stylers optimized for text output.

5.4. Representing embedded structures

Programming languages commonly include embedded

syntactic structures that have distinct lexical rules, most

notably comments and strings. Embedded structures are

supported by nested editors with transparent boundaries

(behavioral considerations are presented in Section 6.3).

The only requirements for this support, easily met by all

embedded language structures we have encountered, are

that they have well-defined linguistic boundaries and that

their contents be tokenized as a single entity by the lan-

guage lexer.1

This architecture permits utilization of any editors in

the JFC text framework, including the CodeProcessor

recursively. The mapping from token types to editor types

is performed by the Language Module; this module in the

current prototype uses the standard JFC text editor for

comments and a token-based CodeProcessor editor for

strings and character literals.2

6. Functionality and user-model

This section presents an overview of the CodeProces-

sor’s functional behavior as well as the user-model experi-

enced by the programmer.

6.1. Advanced program typography

The CodeProcessor is visually distinguished by its

advanced typographical “styles,” implemented by the

view architecture described in Section 5.3. These styles

approximate designs by Baecker and Marcus [3] and are

updated with each keystroke as the source code is being

incrementally reanalyzed. Alternate styles for each lan-

guage can be selected dynamically, either to suit individ-

ual preference or as required by particular tools driving

the display. The style appearing in Figure 5 is configured

by 123 token categories to which are assigned 61 separate

token styles.3 Each token style specifies type face, size

relative to a base, style (plain, bold, italic), foreground and

1. If the nested editor is, in fact, another instantiation of the CodeProces-

sor, the contents of an embedded structure may be further tokenized

by the nested lexer.

a + c ;

Figure 4: Example model update

a)

b) replace from to with += xc

a += xc ;c)

2. Both strings and character constants afford a simple lexical descrip-

tion that recognizes character escapes such as \n, \t, etc. This lets us,

for example, highlight legal escapes so that they are distinguishable

from the rest of the text, as well as indicate which ones are invalid.

3. Much of the stylistic detail is required as compensation for the

absence of type faces suitable for programs [3].

Figure 5: Example CodeProcessor display



background colors, baseline elevation, and both left and

right boundary specifications used to compute display

spacing between adjacent tokens. Token styles can also

specify alternate display glyphs, for example to display

ligatures.

In a departure from the Baecker and Marcus designs,

which require well-formed programs, CodeProcessor

styles reveal that certain tokens are lexically incomplete

(for example “0x”) or badly formed (for example “08”),

based on lexical grammars extended to include such

tokens. The CodeProcessor treats such tokens as legiti-

mate in every other respect.

Although the Baecker and Marcus designs require full

program analysis, a surprising amount of the visual detail

can be achieved using only lexical information. Indenta-

tion requires fuzzy parsing in the style of many text edi-

tors. More visual features could be added through other

kinds of fuzzy parsing, for example adjusting operator

spacing based on expression depth.

Horizontal spacing between tokens is computed from

the source code, not affected by presses on the space bar.

This improves legibility and saves keystrokes, much in the

same way that conventional auto-indentation works at the

beginning of each line. We anticipate adding a tab-like

mechanism to the current prototype that gives program-

mers some ability to impose vertical alignment.

6.2. Editing behavior

The CodeProcessor behaves like a code-oriented text

editor in most respects. Where it differs, the behavior has

been designed so that it appears to do the right thing when

used as a text editor. Preliminary experience with the

CodeProcessor’s user-model suggests that programmers

find descriptions of the behavior confusing, but the behav-

ior itself unremarkable.

Some behaviors are completely conventional. Indenta-

tion is automatic. Line breaks are explicitly entered and

deleted by the programmer.1 Typing text within comments

and language tokens (especially string literals) is likewise

conventional, with the notable exception that program-

mers can easily type multi-line comments (and perhaps

eventually strings), as shown in Figure 5.

Non-standard behavior appears in and around token

boundaries. To first approximation, token boundaries are

determined purely by the lexical analyzer. When the cur-

sor rests between two tokens it is displayed midway

between them; pressing the space bar silently does noth-

ing.

However, not all boundaries can be unambiguously

computed, for example between keywords. Here the

CodeProcessor automatically inserts a “separator” token.

This behaves somewhat like a “smart space” in a word

processor: no more than one can be present between adja-

cent lexical tokens. The cursor can rest on either side of a

separator; deleting a separator is treated as a request to

join surrounding lexical tokens (if they could not be

joined, there would have been no separator present). Sepa-

rators often come and go as the lexical categories of adja-

cent tokens are changed by editing, but since they are

behavioral rather than visual, this is not distracting.

String literals and comments receive special treatment,

as described in the following section. Additional subtleties

in the user-model, beyond the scope of this paper, are

required so that “the right thing” appears to happen at all

times.

6.3. Nested editors

The user-model for editing programs described in the

previous section is inappropriate in certain regions. The

contents of string literals obey different grammars than

surrounding code, and the contents of comments are not

analyzed at all.

Such regions receive special support in the CodePro-

cessor, beginning with behavior that preserves their

boundaries during all normal editing. This has the flavor

of structure editing, but it solves a number of traditional

problems with boundary confusion; potentially confusing

behavior can smoothed over with careful design.

Having guaranteed boundary stability for these

regions, the CodeProcessor can then provide specialized

behavior in a straightforward way. Specialized editors are

simply embedded to match the model: one kind for

strings, another for character literals, yet another for plain

text comments. More can be added, for example to sup-

port HTML or graphical comments. Although this has

something of the flavor of a compound document system,

it is specialized for source code and designed so that the

boundaries are no more obtrusive than absolutely neces-

sary. For example, the text cursor moves smoothly across

boundaries between code and embedded structures.

6.4. The Programmer’s Experience

The net result of these behaviors is by design an edit-

ing experience that is visually rich but otherwise unobtru-

sive. Nearly all familiar keystroke sequences have their

intended effect, with the added bonus of fine-grained

visual feedback. Time wasting efforts at whitespace man-

agement, for example deciding where to insert spaces and

how to align multi-line comments, become as unnecessary

as manual indentation. This frees the programmer to con-

centrate more completely on the task at hand: understand-

ing and writing code. Furthermore, the rich display engine

creates new opportunities for tools to present information

by modulating the source code display to suit the task at

hand.
1. The CodeProcessor does not break lines, but it would be helpful to add

a linguistically driven mechanism for “wrapping” lines wider than the

available window.



7. Implementation status

Initial design of the CodeProcessor was carried out at

Sun Labs by the first author in the Spring of 1993. A pro-

totype using C++, the lex analyzer, and the Interviews

graphical toolkit [15], was demonstrated later that year as

part of a larger programming environment project. An

evolution of the first prototype, using the Fresco toolkit

[7] (itself an evolution of Interviews) was completed and

demonstrated in early 1995, at which time work ceased

with the conclusion of the project. The design was then

shelved, awaiting more suitable infrastructure than was

available at that time.

The second author commenced a reimplementation of

the CodeProcessor design during a summer internship at

Sun Labs in 1998, adding recent improvements in incre-

mental lexing technology and adapting the recently devel-

oped text framework from the JFC swing toolkit [30].

This prototype, which will be subject to further refinement

and evaluation, is substantially complete, with the excep-

tion of automatic indentation and other services not part of

the core design.

8. Related work

Emacs [23] is an augmented text editor of the kind

described in Section 3.2. Its editing modes add specialized

behavior and text coloring via pattern matching, but they

fall short of the CodeProcessor’s requirements. Weak

encapsulation of its internal representation, as well as

insufficient model-controller separation, makes reliable

representation and manipulation of structural information

difficult, if not impossible. Language analysis is limited to

(unreliable) regular expression matching of fewer than ten

lexical constructs. Rendering and layout, even in the more

recent XEmacs [32], does not meet the CodeProcessor’s

demands. The editors embedded in many commercial

integrated development environments have basic text edit-

ing and display functionality comparable to Emacs.

Numerous structure editors, mentioned in Section 3.1,

were built in research environments, for example Centaur

[6], Gandalf [18], Mentor [8], and PSG [4]. All had

acknowledged usability problems [11].

The commercialized Synthesizer Generator [21] is a

notable example of the modified structure editors

described in Section 3.2, but was still plagued by confus-

ing behavior [27] and by restrictions on editing.

The Pan system [5] is characteristic of the inclusive

designs described in Section 3.3. It permitted unrestricted

text editing, performed full incremental language analysis

on demand, and provided semantic feedback. Although

some attention was paid to usability [26], the implementa-

tion was enormously complex and offered no language-

related advantages during textual editing. Important fea-

tures such as comments received no special support at all.

Several elements of the CodeProcessor’s design subse-

quently appeared in the Desert environment, including

attention to usability, adoption of advanced typesetting,

and the choice of a token-based representation [20].

FRED, the Desert editor, performs language analysis via

integration with the FrameMaker document processing

system [1]. This limits FRED’s ability to support fine-

grained language-based behavior due to the lack of appro-

priate abstractions in the Frame Developer’s Kit API [2].

Moreover, reliance on a sizable document processing sys-

tem reduces the likelihood of embedding FRED else-

where.

9. Conclusions

We have designed and prototyped source code editing

technology that addresses the full spectrum of require-

ments faced by designers of software engineering tools.

This technology matches programmers’ skills and expec-

tations, and brings to bear the power of language-based

technology in support of both the people and other tools in

the environment. Meeting these often conflicting require-

ments required both a new user-model for its behavior as

well as a new architecture. Its construction stretches the

limits of the existing infrastructure.

History tells us that less ambitious designs will fail.

Some language-oriented technology can be grafted onto

simple text editors, but insufficiently rich representations

limits their power and accuracy. Some usability compro-

mises can be made to language-oriented structure editors,

but the fundamental architecture dooms their usability.

A lexical-based architecture by itself would also fail,

since a naive user-model would suffer many of the ills of

tree-oriented editors. Likewise, the new user-model by

itself would fail, since the mismatch between it and exist-

ing representations would preclude adequate implementa-

tions.

The CodeProcessor performs enough linguistic analy-

sis to permit useful tool integration, as well as useful lan-

guage-based services such as high-quality on-the-fly

typography. At the same time its fundamental behavior is

textual, permitting easy adoption by programmers, and it

includes specialized support that simplify and extend

comment management significantly.

Designing tools that are both powerful and effective is

difficult, and the more “low level” the tool, the more

demanding are the user requirements. Starting with these

requirements, however, and embracing the notion that

powerful tools must above all fit with programmers skills,

expectations, and tasks, gives hope that benefits of soft-

ware development technology can actually make a differ-

ence in the way people work.

10. Acknowledgments

The reimplementation of this design was made possi-

ble by support from Mick Jordan, Principal Investigator of

the Forest Project at Sun Microsystems Laboratories.

Yuval Peduel made helpful comments on early drafts of



this paper, and we thank the anonymous reviewers for

their constructive suggestions as well.

11. Trademarks

Sun, Sun Microsystems, and Java, are trademarks or

registered trademarks of Sun Microsystems Inc. in the

United States and other countries.

References

[1] Adobe Systems Incorporated, Adobe FrameMaker,

http://www.adobe.com/products/framemaker/

[2] Adobe Systems Incorporated, Frame Developer’s Kit,

http://partners.adobe.com/asn/developer/framefdk/

fdkguide.html

[3] Ronald M. Baecker and Aaron Marcus, Human Factors

and Typography for More Readable Programs, Addison-

Wesley Publishing Co. (ACM Press), Reading, MA, 1990.

[4] Rolf Bahlke and Gregor Snelting, “The PSG System:

From Formal Language Definitions to Interactive Pro-

gramming Environments,” ACM Transactions on Pro-

gramming Languages and Systems 8,4 (October 1986),

547-576.

[5] Robert A. Ballance, Susan L. Graham and Michael L. Van

De Vanter, “The Pan Language-Based Editing System,”

ACM Transactions on Software Engineering and Method-

ology 1,1 (January 1992), 95-127.f

[6] P. Borras, D. Clemént, Th. Despeyroux, J. Incerpi, G.

Kahn, B. Lang and V. Pascual, “CENTAUR: the system,”

Proceedings ACM SIGSOFT ‘88: Third Symposium on

Software Development Environments, November 1988,

14-24.

[7] Steve Churchill, “C++ Fresco: Fresco tutorial,” C++

Report, (October 1994).

[8] Véronique Donzeau-Gouge, Gérard Huet, Giles Kahn and

Bernard Lang, “Programming Environments Based on

Structured Editors: The MENTOR Experience,” in Inter-

active Programming Environments, David R. Barstow,

Howard E. Shrobe and Erik Sandewall (editors), McGraw-

Hill, New York, NY, 1984, 128-140.

[9] Adele Goldberg, “Programmer as Reader,” IEEE Software

4,5 (September 1987), 62-70.

[10] Robert W. Holt, Deborah A. Boehm-Davis and Alan C.

Schultz, “Mental Representations of Programs for Student

and Professional Programmers,” in Empirical Studies of

Programmers: Second Workshop, Gary M. Olson, Sylvia

Sheppard and Elliot Soloway (editors), Ablex Publishing,

Norwood, New Jersey, 1987, 33-46.

[11] Bernard Lang, “On the Usefulness of Syntax Directed

Editors,” in Advanced Programming Environments, Lec-

ture Notes in Computer Science vol. 244, Reidar Conradi,

Tor M. Didriksen and Dag H. Wanvik (editors), Springer

Verlag, Berlin, 1986, 47-51

[12] Stanley Letovsky, “Cognitive Processes in Program Com-

prehension,” in Empirical Studies of Programmers, Elliot

Soloway and Sitharama Iyengar (editors), Ablex Publish-

ing, Norwood, New Jersey, 1986, 58-79.

[13] Stanley Letovsky and Elliot Soloway, “Delocalized Plans

and Program Comprehension,” IEEE Software 3,3 (May

1986), 41-49.

[14] Clayton Lewis and Donald A. Norman, “Designing for

Error,” in User Centered System Design: New Perspectives

on Human-Computer Interaction, D. A. Norman and S.

W. Draper (editors), Lawrence Erlbaum Associates, Hills-

dale, New Jersey, 1986, 411-432.

[15] Mark A. Linton, John M. Vlissides, and Paul R. Calder,

“Composing user interfaces with InterViews,” Computer,

22,2 (February 1989), 8-22.

[16] Metamata, Inc. “JavaCC - The Java Parser Generator: A

Product of Sun Microsystems,”

http://www.metamata.com/JavaCC/

[17] Lisa Rubin Neal, “Cognition-Sensitive Design and User

Modeling for Syntax-Directed Editors,” Proceedings SIG-

CHI Conference on Human Factors in Computing Sys-

tems, Toronto, Canada, April 1987, 99-102.

[18] David Notkin, “The GANDALF Project,” Journal of Sys-

tems and Software 5,2 (May 1985), 91-105.

[19] Paul Oman and Curtis R. Cook, “Typographic Style is

More than Cosmetic,” Communications of the ACM 33,5

(May 1990), 506-520.

[20] Steven P. Reiss, “The Desert Environment,” ACM Trans-

actions on Software Engineering and Methodology 8, 1

(October 1999), 297-342.

[21] Thomas Reps and Tim Teitelbaum, The Synthesizer Gen-

erator Reference Manual, Springer Verlag, Berlin, 1989.

Third edition.

[22] Elliot Soloway and Kate Ehrlich, “Empirical Studies of

Programming Knowledge,” IEEE Transactions on Soft-

ware Engineering SE-10,5 (September 1984), 595-609.

[23] Richard M. Stallman, “EMACS: The Extensible, Custom-

izable, Self-Documenting Display Editor,” Proceedings of

the ACM-SIGPLAN SIGOA Symposium on Text Manipula-

tion, SIGPLAN Notices 16,6 (June 8-10 1981), 147-156.

[24] Gerd Szwillus and Lisa Neal (editors), Structure-Based

Editors and Environments, Academic Press, 1996.

[25] Tim Teitelbaum and Thomas Reps, “The Cornell Program

Synthesizer: A Syntax-Directed Programming Environ-

ment,” Communications of the ACM 24,9 (September

1981), 563-573.

[26] Michael L. Van De Vanter, Susan L. Graham and Robert

A. Ballance, “Coherent User Interfaces for Language-

Based Editing Systems,” International Journal of Man-

Machine Studies 37,4 (1992), 431-466, reprinted in [24].

[27] Michael L. Van De Vanter, “Practical Language-Based

Editing for Software Engineers,” in Software Engineering



and Human-Computer Interaction: ICSE '94 Workshop on

SE-HCI: Joint Research Issues, Sorrento, Italy, May 1994,

Proceedings, Lecture Notes in Computer Science vol.

896, Richard N. Taylor and Joelle Coutaz (editors),

Springer Verlag, Berlin, 1995, 251-267.

[28] Tim A. Wagner, Practical Algorithms for Incremental

Software Development Environments, UCB/CSD-97-946,

Ph.D. Dissertation, Computer Science Division, EECS,

University of California, Berkeley, December 1997.

[29] William M. Waite and Gerhard Goos, Compiler Construc-

tion, Springer-Verlag, 1984.

[30] Kathy Walrath and Mary Campione, The JFC Swing Tuto-

rial: A Guide to Constructing GUIs, Addison-Wesley,

1999.

[31] Terry Winograd, “Beyond Programming Languages,”

Communications of the ACM 22,7 (July 1979), 391-401

[32] XEmacs, http://www.xemacs.org


	1 . Introduction
	2 . Design goals
	2.1 . No training
	2.2 . Enhance reading and writing
	2.3 . Access to linguistic structure
	2.4 . Configuration and embedding

	3 . The design space
	Figure 1 : Design choices for program editors
	3.1 . Pure designs
	3.2 . Modified designs
	3.3 . Inclusive designs

	4 . Finding the middle ground
	In summary, an ideal representation would be closely related to displayed text, but would also re...
	Figure 2 : Additional choices for program representation and analysis
	Solutions appear in the following two sections, which summarize respectively the two mutually dep...

	5 . Architecture
	Figure 3 : CodeProcessor Architecture
	5.1 . The Controller
	5.2 . The Model
	Figure 4 : Example model update

	5.3 . The View
	5.4 . Representing embedded structures

	6 . Functionality and user-model
	6.1 . Advanced program typography
	Figure 5 : Example CodeProcessor display

	6.2 . Editing behavior
	6.3 . Nested editors
	6.4 . The Programmer’s Experience

	7 . Implementation status
	8 . Related work
	9 . Conclusions
	10 . Acknowledgments
	11 . Trademarks
	References
	[1] Adobe Systems Incorporated, Adobe FrameMaker, http://www.adobe.com/products/framemaker/
	[2] Adobe Systems Incorporated, Frame Developer’s Kit, http://partners.adobe.com/asn/developer/fr...
	[3] Ronald M. Baecker and Aaron Marcus, Human Factors and Typography for More Readable Programs, ...
	[4] Rolf Bahlke and Gregor Snelting, “The PSG System: From Formal Language Definitions to Interac...
	[5] Robert A. Ballance, Susan L. Graham and Michael L. Van De Vanter, “The Pan Language-Based Edi...
	[6] P. Borras, D. Clemént, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang and V. Pascual, “CENTAUR:...
	[7] Steve Churchill, “C++ Fresco: Fresco tutorial,” C++ Report, (October 1994).
	[8] Véronique Donzeau-Gouge, Gérard Huet, Giles Kahn and Bernard Lang, “Programming Environments ...
	[9] Adele Goldberg, “Programmer as Reader,” IEEE Software 4,5 (September 1987), 62-70.
	[10] Robert W. Holt, Deborah A. Boehm-Davis and Alan C. Schultz, “Mental Representations of Progr...
	[11] Bernard Lang, “On the Usefulness of Syntax Directed Editors,” in Advanced Programming Enviro...
	[12] Stanley Letovsky, “Cognitive Processes in Program Comprehension,” in Empirical Studies of Pr...
	[13] Stanley Letovsky and Elliot Soloway, “Delocalized Plans and Program Comprehension,” IEEE Sof...
	[14] Clayton Lewis and Donald A. Norman, “Designing for Error,” in User Centered System Design: N...
	[15] Mark A. Linton, John M. Vlissides, and Paul R. Calder, “Composing user interfaces with Inter...
	[16] Metamata, Inc. “JavaCC - The Java Parser Generator: A Product of Sun Microsystems,” http://w...
	[17] Lisa Rubin Neal, “Cognition-Sensitive Design and User Modeling for Syntax-Directed Editors,”...
	[18] David Notkin, “The GANDALF Project,” Journal of Systems and Software 5,2 (May 1985), 91-105.
	[19] Paul Oman and Curtis R. Cook, “Typographic Style is More than Cosmetic,” Communications of t...
	[20] Steven P. Reiss, “The Desert Environment,” ACM Transactions on Software Engineering and Meth...
	[21] Thomas Reps and Tim Teitelbaum, The Synthesizer Generator Reference Manual, Springer Verlag,...
	[22] Elliot Soloway and Kate Ehrlich, “Empirical Studies of Programming Knowledge,” IEEE Transact...
	[23] Richard M. Stallman, “EMACS: The Extensible, Customizable, Self-Documenting Display Editor,”...
	[24] Gerd Szwillus and Lisa Neal (editors), Structure-Based Editors and Environments, Academic Pr...
	[25] Tim Teitelbaum and Thomas Reps, “The Cornell Program Synthesizer: A Syntax-Directed Programm...
	[26] Michael L. Van De Vanter, Susan L. Graham and Robert A. Ballance, “Coherent User Interfaces ...
	[27] Michael L. Van De Vanter, “Practical Language-Based Editing for Software Engineers,” in Soft...
	[28] Tim A. Wagner, Practical Algorithms for Incremental Software Development Environments, UCB/C...
	[29] William M. Waite and Gerhard Goos, Compiler Construction, Springer-Verlag, 1984.
	[30] Kathy Walrath and Mary Campione, The JFC Swing Tutorial: A Guide to Constructing GUIs, Addis...
	[31] Terry Winograd, “Beyond Programming Languages,” Communications of the ACM 22,7 (July 1979), ...
	[32] XEmacs, http://www.xemacs.org

	Displaying and Editing Source Code in Software Engineering Environments
	Michael L. Van De Vanter1 and Marat Boshernitsan2
	1Sun Microsystems Laboratories 901 San Antonio Avenue Palo Alto, CA 94303 USA Tel +1 650 336-1392...
	2Department of Computer Science University of California at Berkeley Berkeley, CA 94720-1776 USA ...
	Editor Kit
	Styler
	Abstract Editor Kit
	Abstract Styler
	Abstract Lexer
	Source Code Model
	Model/Editor Kit protocol
	Rendering Engine
	View/Styler protocol
	Lexer
	Editor Widget



